УДК 519.676

Замечания о практически эффективных алгоритмах численного статистического моделирования*

Г.А. Михайлов

Институт вычислительной математики и математической геофизики Сибирского отделения Российской академии наук, просп. Акад. М.А. Лаврентьева, 6, Новосибирск, 630090 E-mail: gam@osmf.sscc.ru

Михайлов Г.А. Замечания о практически эффективных алгоритмах численного статистического моделирования // Сиб. журн. вычисл. математики / РАН. Сиб. отд-ние. — Новосибирск, 2014. — Т. 17, № 2. — С. 177–190.

Рассматривается ряд алгоритмов численного моделирования случайных величин и функций, а также параметрического численно-статистического анализа, в разработке которых принял участие автор. Даны практически важные уточнения и разъяснения формулировок и обоснований алгоритмов.

Ключевые слова: базовое случайное число, плотность распределения, метод дискретной суперпозиции, ветвление траекторий, метод подобных траекторий, случайное поле, гистограмма.

Mikhailov G.A. About efficient algorithms of numerically-statistical simulation // Siberian J. Num. Math. / Sib. Branch of Russ. Acad. of Sci. – Novosibirsk, 2014. – Vol. 17, \mathbb{N} 2. – P. 177–190.

A set of numerical algorithms for the simulation of random variables and functions as well for the parametrical numerically-statistical analysis are considered. Important specifications and explanations of the algorithms formulations and substantiation, which are effective from the standpoint of practice, are given.

Key words: base random number, probability density function, discrete superposition method, branching of trajectories, similar trajectory method, random field, histogram.

Введение

В настоящее время имеется большое количество комплексов алгоритмов и компьютерных программ для решения различных прикладных задач методами численного статистического моделирования. Однако довольно часто возникают новые актуальные задачи, решение которых предварительно оценивается методами Монте-Карло с помощью оперативного программирования. Для этой цели особенно подходят, может быть, сравнительно трудоемкие, но логически простые и легко программируемые алгоритмы. В настоящей статье с дополнительными, практически важными, замечаниями представлен ряд таких алгоритмов, в разработке которых, в той или иной степени, принял участие автор. Даны уточнения и разъяснения формулировок и обоснований, а также указания о возможном использовании рассматриваемых методов. С точки зрения автора это может расширить сферу применения численного статистического моделирования.

^{*}Работа выполнена при частичной финансовой поддержке РФФИ (проекты № 12-01-00034, № 13-01-00746, № 13-01-00441), МИП СО РАН № 47, № 126 и проекта Ведущие научные школы НШ-5111.2014.1.

[©] Михайлов Г.А., 2014

1. Моделирование равномерно распределенных пар номеров

Пусть $\xi, \eta \in \overline{1, n}, \xi \neq \eta$. Такие равновероятные пары номеров, в частности, моделируются при решении нелинейных кинетических уравнений методом Монте-Карло (см., напр., [1]).

Известен следующий алгоритм: $\alpha_1 := \text{rand}; \quad \alpha_2 := \text{rand};$ $\xi := \text{entier}(\alpha_1 \times n) + 1; \quad \eta := \text{entier}(\alpha_2 \times (n-1)) + 1;$ если $\eta \ge \xi$, то $\eta := \eta + 1$. Обоснование этого алгоритма следует из соотношения

$$P(\xi = i, \eta = j) = P(\xi = i)P(\eta = j|\xi = i) = \frac{1}{n-1}P(\xi = i), \quad j = 1, \dots, i-1, i+1, \dots, n,$$

которое связано с тем, что распределение на любом фиксированном подмножестве рассматриваемых пар также равномерно. Интересно заметить, что здесь допустима подстановка $\alpha_2 = n\alpha_1 - \xi + 1$ (см. далее п. 4).

Здесь и далее через rand обозначена процедура, реализующая следующее, т.е. каждый раз новое псевдослучайное число. Символом α с различными индексами обозначаются независимые реализации базового случайного числа, равномерно распределенного в (0,1).

Дополнительное замечание: случайные номера $entier[n(n^{k-1}\alpha - entier(n^{k-1}\alpha))] + 1, k = 1, 2, 3, ...,$ независимы и равномерно распределены в $\overline{1, n}$.

2. Моделирование гамма- и бета-распределений

2.1. Рассматривается распределение с плотностью

$$f_{\nu,\lambda}(x) = \frac{x^{\nu-1}e^{-\lambda x}}{\Gamma(\nu)}, \quad x > 0, \quad \lambda > 0,$$

при $0 < \nu < 1$. Известно, что случай произвольного ν сводится к рассматриваемому на основе правила композиции гамма-распределений [2].

Справедливо представление

$$\xi_{\nu,\lambda} = \frac{\xi_{\nu}}{\lambda},$$

где ξ_{ν} распределено с плотностью

$$f_{\nu}(x) = \frac{x^{\nu-1}e^{-x}}{\Gamma(\nu)}, \quad x > 0,$$

так как $P(\frac{\xi_{\nu}}{\lambda} < x) = F_{\nu}(\lambda x) = F_{\nu,\lambda}(x)$. Моделирование ξ_{ν} осуществляется "мажорантным" методом исключения (см., напр., [2]) на основе соотношения

$$g(x) = x^{\nu-1}e^{-x} \le g_1(x) = \begin{cases} x^{\nu-1}, & x \le 1, \\ e^{-x}, & x > 1, \end{cases}$$

причем случайная величина ξ_1 с плотностью $(\nu^{-1} + e^{-1})^{-1}g_1(x)$ моделируется "методом обратной функции", т.е. путем решения уравнения

$$\frac{1}{\nu^{-1} + e^{-1}} \int_{0}^{\xi_1} g_1(x) \, dx = \alpha.$$

Если $\alpha < \frac{\nu^{-1}}{\nu^{-1} + e^{-1}} = \frac{1}{1 + \nu e^{-1}}$, то

$$\frac{1}{\nu^{-1} + e^{-1}} \int_{0}^{\xi_1} x^{\nu - 1} \, dx = \alpha, \quad \xi_1 = [\alpha(1 + \nu e^{-1})]^{1/\nu}, \tag{2.1}$$

иначе

$$\frac{1}{\nu^{-1} + e^{-1}} \int_{1}^{\xi_1} e^{-x} dx = \alpha - \frac{\nu^{-1}}{\nu^{-1} + e^{-1}}, \quad \xi_1 = -\ln[(e^{-1} + \nu^{-1})(1 - \alpha)].$$
(2.2)

В используемом далее алгоритме исключения, основанном на проверке неравенства $\alpha_1 g_1(\xi_1) < g(\xi_1)$, можно уменьшить число вычислительных операций, сокращая один из множителей в выражении $g(\xi_1)$, т. е. в случае (2.1) полагать $\xi = \xi_1$, если $\alpha_1 < e^{-\xi_1}$, а в случае (2.2) такое значение ξ реализовать, если $\alpha_1 < \xi_1^{\nu-1}$. Известно, что среднее число циклов в такой процедуре исключения пропорционально величине $S(\nu) = (\nu^{-1} + e^{-1})/\Gamma(\nu)$, причем S(0) = 1, $S(1) = 1 + e^{-1}$ и $S'_{\nu}(\nu) > 0$, $0 < \nu < 1$ [2].

Отметим, что моделирование гамма-распределений широко используется при решении стохастических задач метеорологии и финансовой математики.

2.2. Плотность бета-распределения определяется формулой

$$f_{p,m}(x) = \frac{x^{p-1}(1-x)^{m-1}}{B(p,m)}, \quad 0 < x < 1,$$

где p, m > 0 — параметры.

В [2] для случая целого т дана следующая моделирующая формула:

$$\xi_{p,m} = \exp\left(\sum_{k=1}^{m} \frac{\ln \alpha_k}{p+k-1}\right).$$
(2.3)

Приведенный в [2] вывод этой формулы является нестандартным и технически сложным. Его проверка затруднительна и, по-видимому, в связи с этим формула (2.3) незаслуженно мало используется. Однако эту формулу можно обосновать переходом к случайной величине $\ln \xi_{p,m}$, плотность распределения которой легко выводится индукцией по m с использованием формулы свертки

$$C_0 \int_0^x e^{-zp} (1-e^{-z})^{m-1} e^{-(p+m)(x-z)} dz = C_0 e^{-(p+m)x} \int_0^x e^{z} (e^{z}-1)^{m-1} dz$$
$$= C e^{-(p+m)x} (e^{x}-1)^m = C e^{-px} (1-e^{-x})^m.$$

Для p, m нецелых можно использовать мажорантный вариант метода исключения, рассматривая в качестве мажоранты для $x^{p-1}(1-x)^{m-1}$ одну из функций:

$$x^{[p]-1}(1-x)^{m-1}, \qquad x^{p-1}(1-x)^{[m]-1}$$

кроме случая p, m < 1, для которого предварительно используется алгоритм суперпозиции (см. п. 4) на основе представления

$$f_{p,m}(x) = \frac{p}{p+m} f_{p+1,m}(x) + \frac{m}{p+m} f_{p,m+1}(x).$$

3. Метод "мажорантного (максимального) сечения" для моделирования обобщенного экспоненциального распределения

Пуассоновский случайный точечный поток $\{\tau_i\}, i = 0, 1, \ldots$, интенсивности $\sigma(t)$ характеризуется тем, что случайные величины $\tau_i - \tau_{i-1}$ (i = 1, 2, ...) распределены соответственно с плотностями

$$f_i(t|\tau_{i-1}) = \sigma(t+\tau_{i-1}) \exp(-T(t;\tau_{i-1})), \quad t > 0,$$

где $T(t; \tau_{i-1}) = \int_0^t \sigma(t' + \tau_{i-1}) dt'; \tau_0 = 0.$ Предполагается, что $T(\infty; \tau_{i-1}) = +\infty$. Распределение случайной величины $\xi = \tau_1$ с плотностью

$$f(t) \equiv f_1(t|0) = \sigma(t) \exp\left(-\int_0^t \sigma(t') dt'\right), \quad t > 0,$$

будем называть обобщенным (или неоднородным) экспоненциальным.

Пусть $\sigma(t) \leq \sigma_m(t)$, причем пуассоновский поток $\{\tau_i^{(m)}\}$ интенсивности $\sigma_m(t)$ достаточно просто моделируется. Метод мажорантного сечения вытекает непосредственно [3] из известного свойства прореживания потока $\{ au_i^{(m)}\}$:

если точки $\tau_i^{(m)}$ (i = 1, 2, ...) исключать условно независимо с вероятностями $1 - \sigma(\tau_i)/\sigma^{(m)}(\tau_i), m. e.$ "отбирать" с вероятностями $p(\tau_i) = \sigma(\tau_i)/\sigma^{(m)}(\tau_i),$ то отобранные точки $\{\tau_i\}$ реализуют точечный поток интенсивности $\sigma(t)$.

С точностью до рассмотрения величин o(dt) это свойство следует из того, что вероятность появления отобранной точки в интервале (t, t + dt) равна $p(t) \cdot \sigma^{(m)}(t) dt = \sigma(t) dt$. На основе вышесказанного можно сформулировать алгоритм мажорантного сечения: реализуется поток $\{\tau_i^{(m)}\}$, причем определяется $\nu = \min\{i : \alpha_i < \sigma(\tau_i^{(m)})/\sigma_m(\tau_i^{(m)})\}; 6$ результате $\xi = \tau_{\nu}^{(m)}$.

Соответствующий варианту $\sigma_m(t) \equiv \sigma_m$ "алгоритм максимального сечения" Колемана (W.A. Coleman) можно сформулировать особенно просто:

$$\xi := 0; L: \xi := \xi - \ln(\operatorname{rand})/\sigma_m;$$
 если rand > $\sigma(\xi)/\sigma_m(\xi)$, то на L.

При этом $E(\nu) < +\infty$, в частности, если $\sigma(t) \ge \varepsilon > 0$. Более реальный критерий конечности величины E(ν) получается путем рассмотрения вероятности "отбора через одну точку потока $\tau_i^{(m),, [3]}$.

Метод мажорантного сечения широко используется при решении кинетических уравнений методом Монте-Карло для геометрически сложных (см. п. 8) радиационных моделей. Известен также рандомизированный (по слагаемым величины σ) вариант этого метода под названием "метод мажорантной частоты". Аналогичное, приведенному здесь, вероятностное обоснование этого метода дано в [4].

4. Метод "дискретной суперпозиции" (рандомизация моделирования)

4.1. Пусть $\{p_i\}$ — вероятности, $\{f_i(x)\}$ — плотности вероятностей, $\{\psi_i(\alpha)\}$ — соответствующие моделирующие функции и

$$f(x) = \sum_{i} p_i f_i(x), \quad i = 1, 2, \dots$$

Согласно методу дискретной суперпозиции, случайная величина ξ с плотностью вероятностей f(x) моделируется следующим образом:

если
$$\alpha_1 \in \Delta_k = \left[\sum_{i=1}^{k-1} p_i, \sum_{i=1}^k p_i\right)$$
, то $\xi = \psi_k(\alpha_2)$.

Величину α_2 здесь можно заменить на $(\alpha_1 - \sum_{i=1}^{k-1} p_i)/p_k$, так как при условии $\alpha_1 \in \Delta_k$ величина $\alpha_1 - \sum_{i=1}^{k-1} p_i$ равномерно распределена в интервале $[0, p_k)$.

Таким образом получается модифицированный алгоритм [2]. Отметим, что алгоритм дискретной суперпозиции элементарно обосновывается путем вычисления функции распределения по формуле полной вероятности.

4.2. Далее рассмотрен практически важный пример использования модифицированного алгоритма суперпозиции.

Пусть $f(x) \equiv f(x;s), \ \xi \equiv \xi_s,$ где s — некоторый параметр, причем

$$f(x;s) = \frac{s-s_1}{s_2-s_1}f(x;s_2) + \frac{s_2-s}{s_2-s_1}f(x;s_1), \quad s_1 \le s \le s_2,$$

т. е. f(x;s) в интервале $s_1 \leq s \leq s_2$ определяется линейной интерполяцией по параметру. Полагая $(s-s_1)/(s_2-s_1) = p_2$, $f(x;s_1) = f_1(x)$, $f(x;s_2) = f_2(x)$, получаем соответствующий модифицированный алгоритм дискретной суперпозиции:

если
$$\alpha < p_1$$
, то $\xi := \psi_1(\alpha/p_1)$, иначе $\xi := \psi_2((\alpha - p_1)/p_2)$.

Такой алгоритм целесообразно использовать, в частности, при моделировании рассеяния частицы соответственно индикатрисе, кусочно-линейно зависящей от длины волны [5]. Если $0 \le \xi_s \le s$, то здесь целесообразно¹ переходить к моделированию случайной величины ξ_s/s .

4.3. В [6] был предложен "метод повторения" для моделирования случайного вектора $\xi = (\xi_1, \ldots, \xi_n)$ с неотрицательными ковариациями r_{ij} , $R = \{r_{ij}\}$, и одинаковым для всех компонент заданным одномерным распределением с математическим ожиданием m и дисперсией s^2 .

В этом методе последовательность компонент случайно разбивается на группы одинаковых значений, которые затем независимо реализуются. Ясно, что для заданного разбиения Δ_m при этом реализуется случайный вектор с корреляционной матрицей

$$R(\Delta_m) = \{r_{ij}^{(m)}\}, \quad i, j = 1, \dots, n,$$

такой, что $r_{ij}^{(m)} = 1$, если ξ_i, ξ_j принадлежат одной и той же группе, и $r_{ij}^{(m)} = 0$ иначе. Следовательно, если $p_m = P(\Delta_m)$, то имеет место соотношение

$$R = \sum_{m=1}^{N} p_m R(\Delta_m).$$

¹Это фактически заметила Г.З. Лотова.

Если это уравнение относительно вероятностей $\{p_m\}$ не имеет решения, то метод повторения не реализуем. Оказалось, что в случае экспоненциальных, т.е. показательных, r_{ii} алгоритм метода повторения можно построить на основе моделирования пуассоновского точечного потока следующим образом.

На отрезке $0 \le t \le n$ строится пуассоновский точечный поток $\{t_k\}(k=0,1,\ldots,m;$ $t_0 = 0, t_m = n$) интенсивности $\sigma(t)$ [3]; при этом компоненты ξ_i для $t_{k-1} \leq i < t_k$ образуют k-ю группу $\Delta_m^{(k)}$ одинаковых значений. Поскольку $E((\xi_i - m)(\xi_j - m)) = P_{ij}s^2$, где P_{ij} — вероятность нуля точек в отрезке

 $i \leq t \leq j$, то здесь

$$r_{ij} = s^2 P_{ij} = s^2 \exp\left(-\int_i^j \sigma(t) dt\right).$$

Если $\sigma(t) \equiv \sigma$, то $r_{ij} = s^2 \exp(-\sigma |j-i|) = s^2 q^{|j-i|}$.

Отметим, если заданное одномерное распределение безгранично делимо, то реализуемое здесь *n*-мерное распределение можно модифицировать путем суммирования независимых реализаций вектора. Таким образом можно построить, например, случайный вектор с достаточно реальным многомерным гамма-распределением.

5. Моделирование гауссовского случайного вектора

Гауссовский вектор $\eta = (\eta_i, \ldots, \eta_l)^\top$ с нулевым средним (Е $\eta = 0$) и корреляционной матрицей $K = \{K_{ij}\}, i, j = 1, ..., l$, моделируется по формуле $\eta = A\xi$, где $\xi = (\xi_1, ..., \xi_l)^\top$ вектор независимых стандартных нормальных величин и $A = \{a_{ij}\}$ $(1 \le j \le i \le l)$ подходящая нижняя треугольная матрица. Будем предполагать, что матрица К строго положительно определена и соответственно строго положительными являются ее главные миноры. Поскольку $E\xi\xi^{\top} = diag(1, \ldots, 1)$, то справедливо соотношение

$$\mathbf{E}A\xi(A\xi)^{\top} = \mathbf{E}A\xi\xi^{\top}A^{\top} = A\mathbf{E}\xi\xi^{\top}A^{\top} = AA^{\top} = R.$$

Из последнего равенства легко получается известное (см., напр., citeMih) рекуррентное представление величин a_{ij} :

$$a_{jj} = \sqrt{R_{jj} - \sum_{k=1}^{j-1} a_{jk}^2}, \qquad a_{ij} = \frac{R_{ij} - \sum_{k=1}^{j-1} a_{ik} a_{jk}}{a_{jj}}$$

Под знаком квадратного корня здесь имеет место j-й главный минор матрицы K. Если величины K_{ij} вычисляются статистически приближенно, то главные миноры могут оказаться отрицательными и матрицу К следует модифицировать. Наиболее просто это сделать, сдвинув спектр $K_{ii} \to K_{ii} + \varepsilon$. Более точная модификация получается занулением отрицательных собственных чисел К с использованием вращения системы координат. Таким образом, уменьшается ранг ковариационной матрицы и моделирование осуществляется линейным преобразованием вектора меньшей размерности. Разработка такого алгоритма (а также исследование погрешности, возникающей при сдвиге спектра) является одной из задач численного статистического моделирования.

В заключение этого пункта рассмотрим формулы Винера (Wiener N.):

$$\xi_1 = \sqrt{-2\ln\alpha_1}\cos(2\pi\alpha_2), \qquad \xi_2 = \sqrt{-2\ln\alpha_1}\sin(2\pi\alpha_2).$$
 (5.1)

Случайные величины ξ_1 , ξ_2 независимы и стандартно нормальны. Однако при использовании псевдослучайных чисел эти свойства воспроизводятся удовлетворительно лишь при условии достаточной равномерности распределения точки (α_1 , α_2) в единичном квадрате. Определяемый формулами (5.1) вектор изотропен на плоскости. Известно (см., напр., [2]) более общее утверждение:

случайный вектор (ξ_1, \ldots, ξ_n) с независимыми одинаково нормально распределенными компонентами изотропен в R^n .

С другой стороны, в [10] получено следующее выражение функции распределения l-й компоненты n-мерного единичного изотропного вектора ω_n :

$$F_l(t) = P(x_l < t) = \frac{S_{l-1}}{S_l} \int_{-\frac{\pi}{2}}^{\arcsin t} \cos^{l-2}(\Theta) \ d\Theta,$$

где S_l — площадь поверхности единичной сферы в R^l . При экономном табулировании функции $F_l^{-1}(\alpha)$ это дает сравнительно эффективный алгоритм моделирования ω_n . Он особенно полезен для реализации лишь части координат ω_n .

Алгоритмы с ветвлением траекторий и задача минимизации дисперсии целочисленной случайной величины

Эффективный коэффициент k_{ef} размножения частиц по поколениям актов ветвления траекторий можно оценивать путем прямого моделирования, которое дает числа $\{n_i\}$ частиц, появляющихся в актах соответствующих номеров. В результате строится следующая статистическая оценка (см., напр., [7]):

$$k_{ef} \approx \tilde{k} = \frac{n_2 + \ldots + n_m}{n_1 + n_3 + \ldots + n_{m-1}} = \frac{L(2,m)}{L(1,m-1)}$$

При этом для улучшения оценки какое-то количество N начальных поколений не учитывается, т. е. делается замена $n_N \to n_1$ [7].

В [7] дана следующая асимптотически точная (при $N, n_1 \to \infty$) оценка среднего квадрата погрешности:

$$D\tilde{k} \approx \frac{k_{ef} \left(1 - \frac{k_{ef}}{\tilde{E}\nu}\right) + \frac{k_{ef}}{E\nu} D\nu}{L(1, m - 1)},$$
(6.1)

где ν — случайное число частиц, появляющихся в одном акте ветвления. Интересно отметить, что до работы [7] слагаемое с D ν игнорировалось, по-видимому, потому, что в качестве основных рассматривались модели с фиксированным ν . Величина k_{ef} в рамках заданной модели переноса частиц вполне определяется значением $q = E\nu$ независимо от распределения ν . Поэтому, согласно (6.1), возникает задача минимизации величины D ν .

Лемма 6.1. Величина D ν минимальна в классе Σ_q целочисленных случайных величин ν с заданным значением $E\nu = q$ и равна (q - [q])(1 - q + [q]), если

$$P(\nu = [q]) = 1 - (q - [q]), \quad P(\nu = [q] + 1) = q - [q], \tag{6.2}$$

причем справедливо² представление $\nu = [q + \alpha]$.

²Замечание С.А. Роженко.

Доказательство леммы следует³ непосредственно из хорошо известного "центрированного" представления дисперсии

$$D\nu = E(\nu - ([q] + 1/2))^2 - (E\nu - ([q] + 1/2))^2,$$

так как первое слагаемое для распределения (6.2) здесь равно 1/4, а для любого другого распределения из Σ_q оно больше 1/4.

7. Параметрические весовые оценки

7.1. Весовые алгоритмы моделирования здесь рассмотрим на примере решения задач односкоростной теории переноса частиц. Вероятностная модель односкоростного процесса переноса частиц определяется плотностью $\sigma e^{-\sigma x}$ ($\sigma > 0, x > 0$) распределения случайной длины χ "свободного пробега", плотностью w(y) ($-1 \le y \le 1$) распределения косинуса μ угла рассеяния и вероятностью "выживания" q в точке "столкновения" (см., напр., [5]). Функция w(y) обычно называется индикатрисой рассеяния. Для решения задач теории переноса методом Монте-Карло численно моделируется цепь Маркова столкновений частицы с элементами вещества соответственно вспомогательной радиационной модели и строится "оценка по столкновениям". При этом используется вспомогательный вес, который после очередного случайного перехода домножается на величину

$$\frac{q}{q_0} \frac{\sigma e^{-\sigma\chi}}{p(\chi)} \frac{w(\mu)}{r(\mu)},$$

где p(x) — моделируемая плотность распределения χ , r(y) — моделируемая индикатриса, а q_0 — моделируемая вероятность выживания.

В работе [8] использовано значение $q_0 = 1$, причем обрыв траектории реализуется вследствие вылета из среды. В рассмотренных условиях средний квадрат оценки по столкновениям (для функционалов от плотности "физических" столкновений) определяется интегральным уравнением 2-го рода с оператором K_p , спектральный радиус которого в случае бесконечной среды равен

$$\rho(K_p) = q^2 \int_0^\infty \frac{\sigma^2 e^{-2\sigma x}}{p(x)} dx \int_{-1}^{+1} \frac{w^2(y)}{r(y)} dy,$$
(7.1)

а в случае конечной среды мажорируется этой величиной [5].

Будем предполагать, что индикатриса $w(y) = w_s(y)$ достаточно регулярно зависит от некоторого параметра *s*, причем $s_1 \leq s \leq s_2$. Например, в [8] рассматривается индикатриса Хеньи–Гринстейна, определяемая средним косинусом рассеяния $\bar{\mu}$. Коэффициент σ рассматривается в интервале $0 < \sigma_1 \leq \sigma \leq \sigma_2 < +\infty$.

Из (7.1) следует, что для глобальной оптимизации параметрической весовой оценки по столкновениям целесообразно определять моделируемую плотность путем решения минимаксной задачи вида

$$p^* = \arg \min_{p \in P} \max_{\beta_1 \le \beta \le \beta_2} \int \frac{g_{\beta}^2(x)}{p(x)} dx, \qquad (7.2)$$

где P — семейство непрерывных плотностей, β — параметр, $g_{\beta} \in P$, $\beta_1 \leq \beta \leq \beta_2$.

³Замечание А.И. Саханенко.

Введем обозначение

$$J(p;g) = \int \frac{g^2(x)}{p(x)} \, dx.$$

В [8] показано, что в случаях, когда g — плотность распределения длины пробега или индикатриса, решение задачи (7.2) при определенных условиях совпадает с решением более простой задачи:

$$p^* = \arg \min_{p \in P} \max_{i=1,2} J(p; g_i),$$
 (7.3)

где $p_i \equiv p_{\beta_i}, i = 1, 2.$

Лемма 7.1 [8]. Решение минимаксной задачи (7.3) определяется выражением

$$p_0^*(x) = C(\lambda^*) \sqrt{\lambda^* g_1^2(x) + (1 - \lambda^*) g_2^2(x)},$$

где величина λ^* является единственным решением относительно λ уравнения

$$J(\tilde{p}_{\lambda}; g_1) = J(\tilde{p}_{\lambda}; g_2), \quad 0 \le \lambda \le 1.$$

Рассмотрим теперь семейство *P*₁, удобно моделируемое методом "суперпозиции" плотностей вида

$$p_1(x) = \lambda g_1(x) + (1 - \lambda)g_2(x), \quad 0 \le \lambda \le 1,$$

в предположении, что $g_1 \not\equiv g_2$.

Теорема 7.1 [8]. Для семейства P_1 решение минимаксной задачи вида (7.3) определяется выражением

$$p_1^*(x) = \frac{g_1(x) + g_2(x)}{2}$$

В [7] также показано, что с удовлетворительной точностью в рассматриваемых задачах выполняется соотношение $G(p_1^*) \approx G(p_0^*)$, где $G(p) = \max_{i=1,2} J(p, g_i)$. Таким образом, для оптимизации параметрических оценок в задачах теории переноса целесообразно использовать вспомогательные плотности вида p_1 , которые удобно моделируются модифицированным методом суперпозиции:

если
$$\alpha < 1/2$$
 то $\xi := \psi_1(2\alpha)$ иначе $\xi := \psi_2(2(\alpha - 1/2)),$

где ψ_i — моделирующая функция для плотности p_i , i = 1, 2.

В заключение отметим, что физическая векторная модель переноса поляризованного излучения, по-существу, является весовой, так как предполагает преобразование ассоциируемого с "фотоном" вектора Стокса матрицей рассеяния. Реализацию (в качестве вспомогательной) скалярной модели для единичной матрицы рассеяния с вычислением соответствующего матричного веса естественно рассматривать как аналоговое моделирование. Оно позволяет эффективно оценивать влияние поляризации на интенсивность излучения, а также допускает весовые параметрические и локальные оценки (см., напр., [9]).

8. Экспоненциально коррелированные случайные поля и асимптотические "функции пропускания"

Обозначим через \boldsymbol{n} нормаль к плоскости, а через p — расстояние до этой плоскости от центра координат О. Для ограниченной области $D \subset R^3$ пуассоновское поле плоскостей (т. е. параметрических точек $\{p_i, \boldsymbol{n}_i\}$) реализуется следующим образом [10]. Определяется шар Ω радиуса d с центром О такой, что $D \subset \Omega$. Пуассоновская параметрическая мера предполагается равной $\Lambda(\Omega) = (4\pi d)\lambda$, соответственно этому моделируется пуассоновский точечный ансамбль $\{p_i, \boldsymbol{n}_i\}, i = 1, 2, \dots, \nu$, интенсивности λ в "цилиндре"

$$A_d = \{ 0 \leqslant p \leqslant d, \boldsymbol{n} \in S^{(3)} \},\$$

где $S^{(3)}$ — единичная центральная сфера в R^3 , причем случайная величина ν имеет пуассоновское распределение с параметром $\Lambda(\Omega)$. Известно, что с этой целью можно для реализованного значения $\nu = k$ выбирать независимо точки $\{p_i, n_i\}, i = 1, ..., k$, соответственно равномерному распределению в цилиндре A_d . Переход от параметрического множества к пространству R^3 приводит далее к множеству точек $\{0 + p_i n_i\}, i = 1, ..., k$, причем $\{p_i\}$ независимы и равномерно распределены в интервале (0, d), а $\{n_i\}$ — независимые реализации изотропного единичного вектора (a_1, a_2, a_3) :

$$a_1 = 1 - 2\alpha_1,$$
 $a_2 = \sqrt{1 - a_1^2} \cos(2\pi\alpha_2),$ $a_3 = \sqrt{1 - a_1^2} \sin(2\pi\alpha_2),$

Отметим, что в [10] была установлена однородность и изотропность такого ансамбля путем символьного вычисления якобиана преобразования меры при отображении $T \to T'$, где T' — параметрическое пространство, связанное с центром O', этот якобиан оказался равным единице.

Теперь определим кусочно-постоянное "мозаичное" случайное поле $\sigma(x), x \in \mathbb{R}^3$, следующим образом: в подобластях, образованных пересечениями плоскостей, поле имеет независимые постоянные случайные значения, одинаково распределенные соответственно $F_{\sigma}(u) = P(\sigma < u)$ со средним значением $E\sigma$ и дисперсией $D\sigma$. Ясно, что каждая подобласть будет полностью определяться набором

$$(\gamma_1,\ldots,\gamma_k,\ldots), \quad \gamma_k = \operatorname{sign}(F_k(x)),$$

где

$$\boldsymbol{F}_k(x) = (\boldsymbol{n}_k, [p_k \boldsymbol{n}_k - x]) = 0$$

есть уравнение соответствующей плоскости, а x — произвольная точка подобласти.

Лемма 8.1 [10]. Построенное поле $\sigma(x)$, $x \in \mathbb{R}^3$, является однородным и изотропным с корреляционной функцией

$$\mathbf{K}(\overline{\Delta x}) = e^{-\pi\lambda\overline{\Delta x}}\mathbf{D}\sigma, \quad \overline{\Delta x} = |x - x'|.$$

Лемма 8.1 устанавливает существование экспоненциально коррелированного изотропного случайного поля в R^3 , и тем самым, соответствующая экспонента положительно определена.

В работе [11] для случайных сред такого типа дана асимптотическая (по толщине слоя среды) оценка функции пропускания излучения. Эта оценка экспоненциальна с коэффициентом $\tilde{\sigma}_c$, который представляет собой эффективно осредненное значение ко-эффициента поглощения. При определенных в [11] условиях

$$\tilde{\sigma}_c \approx \mathrm{E}\sigma_{\mathrm{c}} \left(1 - \frac{\rho \mathrm{D}\sigma_{\mathrm{c}}}{\mathrm{E}\sigma_{\mathrm{c}}} \right),$$

где ρ — корреляционная длина в случайном поле σ_c . На этой основе можно сформулировать и апробировать модельными расчетами алгоритм решения обратной задачи определения $\tilde{\sigma}_c$ и ρ по наблюдениям интенсивности проходящего излучения.

9. Простейшая функциональная оценка типа гистограммы

В задачах переноса частиц с ветвлением и взаимодействием траекторий (см. пункты 3, 6) статистическое моделирование дает реализацию точечного поля размещения ансамбля частиц (или столкновений) объема N в фазовом пространстве X размерности l. Исходя из этого оценивается плотность $\varphi(x)$ частиц (или столкновений), как правило, путем построения гистограммы. Для этого определяются частоты $\{n_i/N\}$, где n_i — число случайных точек в *i*-й кубической ячейке Δ_i (области $D \subset X$), фазовый объем которой будем полагать равной h_i^l , $i = 1, 2, \ldots$. Ставится задача равномерной (по номеру ячейки *i*) минимизации погрешности рассматриваемой оценки плотности $\varphi(x)$ путем выбора $\{h_i\}$ в зависимости от N. Известно (и достаточно ясно), что практически удовлетворительное решение этой задачи достигается в случае, когда вероятностная погрешность приближенно равна детерминированной, т. е. когда

$$D\left(\frac{n_i}{Nh_i^l}\right) \approx \sup_{x \in \Delta_i} \left(\varphi(x) - \mathcal{E}\left(\frac{n_i}{Nh_i^l}\right)\right)^2.$$
(9.1)

В предположении слабой зависимости величин n_i для оптимизации гистограммы можно рассматривать данное точечное поле как пуассоновское с интенсивностью $\varphi(x)$. Отсюда

$$\mathbf{E}(n_i) = D(n_i) = N \int_{\Delta_i} \varphi(x) \, dx, \qquad D\left(\frac{n_i}{Nh_i^l}\right) \approx \frac{\int_{\Delta_i} \varphi(x) \, dx}{Nh_i^{2l}} \approx \frac{\tilde{\varphi}_i}{Nh_i^l}$$

где $\tilde{\varphi}_i = h_i^{-l}$, $\int_{\Delta_i} \varphi(x) dx$ — среднеинтегральное значение $\varphi(x)$ в Δ_i . Следовательно, (9.1) можно переписать в виде

$$\frac{\varphi_i}{Nh_i^l} \approx c_i h_i^2$$

где $c_i \approx \sup_{x \in \Delta_i} |\operatorname{grad} \varphi(x)|^2 l/4.$

Таким образом, приближенно оптимальное (для *i*-й ячейки) значение *h* выражается формулой

$$h_i \approx \left(\frac{\tilde{\varphi}_i}{Nc_i}\right)^{\frac{1}{l+2}}.$$

Для равномерной оптимизации гистограммы с $h_i \equiv h$ это значение следует эффективно осреднять по *i*, т.е. здесь желательна не слишком сильная флуктуация величины $\tilde{\varphi}_i/c_i$. Отметим, что это выполняется, в частности, для экспоненциальных плотностей $\varphi(x)$.

Отметим также, что в [1] предложена среднеквадратическая параметрическая оптимизация глобальной статистической оценки решения кинетического уравнения на основе предположения о пуассоновости модельного ансамбля частиц в фазовом пространстве.

10. Векторная локальная оценка интенсивности поляризованного излучения

10.1. Настоящий пункт посвящен оценке векторных функционалов вида

$$J(\boldsymbol{r}^*, \omega^*, \tau) = \int_0^\infty \Phi(\boldsymbol{r}^*, \omega^*, t) \chi_\tau(t) \ dt, \quad \boldsymbol{r}^* \in \mathbb{R}^3,$$
(10.1)

где t — время, ω^* — направление скорости кванта, а $\Phi = (\Phi^{(1)}, \Phi^{(2)}, \Phi^{(3)}, \Phi^{(4)})$ — векторная интенсивность поляризованного излучения [5, 12]. Функция $\chi_{\tau}(t)$ соответствует выбранной "конечно-элементной" аппроксимации по времени. Например, функция

$$\chi_{\tau}(t) = \begin{cases} 1, & \text{если} \quad t \in [\tau, \tau + \Delta \tau], \\ 0, & \text{если} \quad t \notin [\tau, \tau + \Delta \tau] \end{cases}$$

определяет элемент гистограммы. Заметим, что функционалы (10.1) представляют собой показания детектора излучения, ориентированного вдоль ω^* в точке r^* с нулевой "апертурой": $\gamma = 0$.

Векторную двойную локальную оценку метода Монте-Карло с использованием вспомогательной точки x' можно представить формулами (в обозначениях из [5, 12]):

$$J = \mathsf{E}\xi_{2}, \qquad \xi_{2} = \sum_{n=0}^{N} Q_{n}^{T} H_{2}(x_{n}) \,\chi_{\tau} \left(t_{n} + \frac{|\mathbf{r}_{n} - \mathbf{r}'|}{v} + \frac{|\mathbf{r}' - \mathbf{r}^{*}|}{v} \right),$$
$$H_{2}(x_{n}) = q(\mathbf{r}_{n}) \frac{P(\omega_{n}, \omega'; \mathbf{r}_{n})}{|\mathbf{r}' - \mathbf{r}_{n}|^{2}} \sigma(\mathbf{r}') \exp(-\tau_{\mathrm{op}}(l_{1}, \mathbf{r}_{n}, \omega')) \frac{\sigma_{s}(\mathbf{r}')}{\sigma(\mathbf{r}')} \frac{P(\omega', \omega^{*}; \mathbf{r}')}{|\mathbf{r}^{*} - \mathbf{r}'|^{2}} \frac{\exp(-\tau_{\mathrm{op}}(l_{2}, \mathbf{r}', \omega^{*}))}{p(\mathbf{r}')}.$$
$$H_{1} = |\mathbf{r}' - \mathbf{r}_{n}|, \quad \omega' = \frac{(\mathbf{r}' - \mathbf{r}_{n})}{|\mathbf{r}' - \mathbf{r}_{n}|}, \quad l_{2} = |\mathbf{r}^{*} - \mathbf{r}'|, \quad \omega^{*} = \frac{\mathbf{r}^{*} - \mathbf{r}'}{|\mathbf{r}^{*} - \mathbf{r}'|},$$

32

а вспомогательная промежуточная точка
$$r'$$
 моделируется согласно плотности

$$p(\mathbf{r}') = \frac{\sigma(\mathbf{r}') \exp(-\tau_{\rm op}(l_2, \mathbf{r}^*, -\omega^*))}{|\mathbf{r}^* - \mathbf{r}'|^2} \ \delta\left(\frac{\mathbf{r}^* - \mathbf{r}'}{|\mathbf{r}^* - \mathbf{r}'|} - \omega^*\right). \tag{10.2}$$

Для этого вдоль направления $-\omega^*$ из точки r^* моделируется длина вспомогательного пробега l_2 и определяется $\mathbf{r}' = \mathbf{r}^* - \omega^* l_2$.

Двойная локальная оценка имеет бесконечную дисперсию, так как содержит в знаменателе величину $|r' - r_n|^2$, которая может быть как угодно близкой к нулю. Для того, чтобы дисперсия была конечной, практикуется не учитывать в оценке те точки r', которые в какой-то степени близки к r_n . Это дает небольшое смещение оценки, которое оценивается далее. Заметим, что точку r' можно случайно выбирать для каждой точки столкновения, но можно фиксировать и для всех точек одной реализации траектории цепи Маркова, при этом различаются лишь дисперсии соответствующих оценок.

Рассмотрим теперь смещенную векторную двойную локальную оценку ξ_{ρ} , которая получается путем "зануления" вкладов от точек столкновения x_n внутри сферы $S_{
ho}(r')$ радиуса ρ с центром r', т. е. $H_2(x_n) = 0$, если $|r_n - r'| < \rho$. Введем обозначение $\delta_{\rho} = J - J_{\rho}$, где $J_{\rho} = \mathrm{E}\xi_{\rho}$, т. е. $\delta_{\rho} = (\delta_{\rho}^{(1)}, \delta_{\rho}^{(2)}, \delta_{\rho}^{(3)}, \delta_{\rho}^{(4)})^{\top}$ — векторное смещение модифицированной двойной локальной оценки.

Переходя к оценке δ_{ρ} , отметим, что особое значение имеет так называемый "лидарный" вариант оптического зондирования (см., напр., [5]), в котором апертура весьма мала, а "узкоколлимированный" источник излучения испускает кванты в направлении $-\omega^*$, т. е. плотность начальных столкновений $f_0(x)$ скалярна и определяется выражением (10.2). Поэтому практически важным является следующее утверждение, скалярный вариант которого доказан в [12].

Лемма 10.1. Для лидарного варианта задачи при $\gamma = 0$ имеем

$$|\delta_{\rho}^{(i)}| < 2\sigma_s \rho |J^{(i)}| + o(\rho), \quad \rho \to 0, \quad i = 1, 2, 3, 4.$$

Доказательство леммы 10.1 строится почти дословно так же, как доказательство ее скалярного варианта, с тем отличием, что вместо скалярной "функции ценности" $\varphi^*(x')$ (см., напр., [5]) следует использовать векторную "ценность" столкновения, введя вектор Стокса S = (I, Q, U, V) "налетающего" кванта [5] в число фазовых координат точки столкновения. При этом векторная функция ценности $\Phi^*(x', S)$ совпадает с показанием детектора J при условии, что источник определяется векторной плотностью $\delta(x - x')S$. Расчеты, проведенные при выполнении работы [12], показали, что данная в лемме 10.1 оценка имеет практически достаточную точность.

Таким образом, справедливо следующее практически важное утверждение: относительное смещение локальной оценки ξ_{ρ} для всех элементов гистограммы по времени оценивается величиной $2\sigma_s \rho$ как в скалярном [12], так и векторном случаях.

11. Распределительный способ использования базовых псевдослучайных чисел

Целесообразно определять различные подпоследовательности базовых псевдослучайных чисел для реализации соответствующих статистических испытаний — траекторий исследуемого случайного процесса. Такой способ можно назвать распределительным, так как он особенно удобен для распределенных вычислений [13]. Как указано, например в последнем замечании из текста монографии [2], для реализации этого способа можно использовать вспомогательный генератор, который дает начальные числа указанных выше базовых подпоследовательностей, вполне их определяя. Если в качестве базового используется мультипликативный конгруентный генератор (см., напр., [2]) с множителем M, то в качестве вспомогательного целесообразно использовать аналогичный генератор с множителем M^{μ} , где μ — длина базовой подпоследовательности. Фактически при этом осуществляется разбиение базовой последовательности на части длины μ , которая должна быть достаточно большой.

Распределительный способ коррелирует статистические оценки для различных вариантов задачи, улучшая параметрический анализ результатов. Кроме того, в рамках этого подхода особенно эффективно тестирование равномерности распределения соответствующих начальных *k*-мерных векторов, так как такое тестирование соответствует задаче оценки интегралов.

Возможны и дополнительные приемы коррелирования результатов при использовании распределительного способа. Пусть, например, для первого варианта задачи в некоторой малой подобласти значение параметра модели случайно, а во втором варианте фиксировано. Это фиксированное значение для коррелирования результатов следует рассматривать как случайное, искусственно используя на его реализацию столько же базовых чисел, сколько и на случайное значение для первого варианта задачи.

С точки зрения автора рассмотренный здесь распределительный способ совершенно необходимо использовать в практических серийных вычислениях, в частности, для дальнейшего совершенствования контроля используемого базового генератора псевдослучайных чисел. *Благодарности*. Автор благодарен своим соавторам, а также коллегам за критические замечания и директору ИВМиМГ СО РАН академику Б.Г. Михайленко за благожелательные обсуждения и помощь в работе.

Автор отмечает также, что его становление как научного работника в области методов Монте-Карло, как и успешное развитие этого научного направления в СССР и РФ, в значительной степени обязаны творческому и административному руководству и участию академика Г.И. Марчука.

Литература

- 1. Mikhailov G.A., Rogazinskii S.V. Probabilistic model of many-particle evolution and estimation of solutions to a nonlinear kinetic equation // Russ. J. Numer. Anal. Math. Modelling. 2012. Vol. 27, № 3. P. 229-242.
- Михайлов Г.А. Некоторые вопросы теории методов Монте-Карло. Новосибирск: Наука, 1974.
- 3. Аверина Т.А., Михайлов Г.А. Алгоритмы точного и приближенного статистического моделирования пуассоновских ансамблей // Журн. вычисл. матем. и мат. физики. 2010. Т. 50, № 6. С. 1005–1016.
- 4. Михайлов Г.А., Рогазинский С.В. Модифицированный метод мажорантной частоты для численного моделирования обобщенного экспоненциального распределения // Докл. РАН. 2012. Т. 444, № 1. С. 28–30.
- 5. Марчук Г.И., Михайлов Г.А., Назаралиев М.А., Дарбинян Р.А., Каргин Б.А., Елепов Б.С. Методы Монте-Карло в атмосферной оптике. — Новосибирск: Наука, 1976. — (Engl. transl.: Springer-Verlag, 1980).
- Михайлов Г.А. О методе "повторения" для моделирования случайных векторов и процессов (рандомизация корреляционных матриц) // Теория вероятностей и ее применения.—1974.— Т. 19, № 4.—С. 873–878.
- 7. Бреднихин С.А., Медведев И.Н., Михайлов Г.А. Оценка параметров критичности ветвящихся процессов методом Монте-Карло // Журн. вычисл. матем. и мат. физики. 2010. Т. 49, № 2. С. 21–31.
- 8. Михайлов Г.А., Роженко С.А. Минимаксная оптимизация численно-статистического "метода подобных траекторий" // Журн. вычисл. матем. и мат. физики. 2013. (В печати).
- Korda A.S., Mikhailov G.A., and Ukhinov S.A. Mathematical problems of statistical simulation of the polarized radiation transfer // Russ. J. Numer. Anal. Math. Modelling. - 2013. -Vol. 28, № 3. - P. 213-230.
- Ambos A.Ju., Mikhailov G.A. Statistical simulation of an exponentially correlated manydimensional random field // Russ. J. Num. Anal. Math. Modelling. - 2011. - Vol. 26, № 3. -P. 263-273.
- Михайлов Г.А. Асимптотические оценки средней вероятности прохождения излучения через экспоненциально коррелированную стохастическую среду // Изв. РАН. Серия "Физика атмосферы и океана". — 2012. — Т. 48, № 6. — С. 691–697.
- 12. Михайлов Г.А., Лотова Г.З. Численно-статистическая оценка потока частиц с конечной дисперсией // Докл. РАН. 2012. Т. 447, № 1. С. 18–21.
- 13. Марченко М.А., Михайлов Г.А. Распределенные вычисления по методу Монте-Карло // Автоматика и телемеханика. 2007. № 5. С. 157–170.

Поступила в редакцию 2 июля 2013 г.