УДК 536.46:629.782

Моделирование системы тепловой защиты, основанной на термоэмиссионной технологии

В.П. Зимин¹, К.Н. Ефимов², В.А. Керножицкий³, А.В. Колычев³, В.А. Овчинников², А.С. Якимов²

¹Томский политехнический университет

²Томский государственный университет

³Балтийский государственный технический университет «ВОЕНМЕХ» им. Д.Ф. Устинова

E-mail: ziminvp55@gmail.com; yakimovas@mail.ru; vakern@mail.ru

Численно исследуется математическая модель процесса нестационарного теплообмена системы термоэмиссионной тепловой защиты при высокоэнтальпийном нагреве. Показано влияние испарения электронов с поверхности эмиттера на понижение температуры многослойной оболочки термоэмиссионной тепловой защиты. Исследовано влияние некоторых теплоносителей в составной оболочке на режимы теплообмена в теле. Получено качественное согласование результатов расчета с известными данными.

Ключевые слова: тепловая защита, термоэмиссионный преобразователь, эмиттер, коллектор, теплообмен, охладитель.

Введение

При создании гиперзвуковых летательных аппаратов (ГЛА) важным аспектом является проведение исследований, связанных с созданием систем тепловой защиты от аэродинамического нагрева. Температура некоторых участков тела при полете может достигать 2500–3000 К [1, 2]. Известно много различных методов пассивной, активной и комбинированной тепловой защиты [1-7]. Перспективным направлением разработки тепловой защиты может быть способ, основанный на термоэмиссионном методе [8-10]. Такой метод позволяет преобразовать тепловую энергию, полученную при нагреве оболочки ГЛА, непосредственно в электрическую. При этом испарение тепловых электронов с эмиттера сопровождается понижением температуры последнего [11]. В системе тепловой защиты, основанной на термоэмиссионном методе, протекает множество взаимосвязанных процессов [11]: эмиссионных, электрических, плазменных, тепловых, адсорбционных и др. Экспериментальные исследования на термоэмиссионных установках довольно сложны и дорогостоящи [12, 13], поэтому уделяется большое внимание математическому моделированию протекающих в них процессов [11, 14-17]. В настоящей работе представлена и исследована модель термоэмиссионной тепловой защиты (ТЭТЗ). Показано, что путем выбора параметров защиты возможно существенно уменьшить температуру ее конструкций.

© Зимин В.П., Ефимов К.Н., Керножицкий В.А., Колычев А.В., Овчинников В.А., Якимов А.С., 2020

1. Постановка задачи

Пусть имеется многоэлементная конструкция из электрогенерирующих элементов (ЭГЭ) с воздушной прослойкой, у каждого из которых существует своя зона влияния. С целью упрощения анализа будем считать, что элементы ЭГЭ представляют собой слоеный конус, затупленный по сфере. На рис. 1 схематично представлены слои тепловой защиты для фиксированного аксиального угла со своей зоной влияния и характерным поперечным размером $L_k = s_k - s_A$. Исследуем задачу о теплообмене внутри типичного ЭГЭ, под которым будем понимать составную область с теплоизолированной стенкой: $0 \le n \le L_2$ при $s = s_A$ (за исключением области коллектора $L_4 \le n \le L_5$) и $L_5 < n \le L_8$ при $s = s_k$ (за исключением области эмиттера $L_2 \le n \le L_3$). Координата n направлена от поверхности вглубь оболочки (см. рис. 1), где слой 1 — внешняя поверхность оболочки, состоящей из тантала [18, 19] или его сплава с вольфрамом, слой 2 — эмиттерная изоляция из карбида циркония; слой 3 включает изолятор 2, эмиттер из вольфрама 3 и вольфрамовый токоввод 3; слой 4 состоит из молибденового токовывода 4, коллектора из молибдена 4 и изолятора 5; 5, 7 слои — емкость теплоносителя из Al₂O₃, слой 6 — охлаждающий теплоноситель (воздух или гелий), слой 8 — потребитель электрический энергии (электрическая нагрузка), эмиттер 3 и коллектор 4 составляют термоэмиссионный элемент, через d обозначена величина межэлектродного зазора; L_j, j = 1,...,8 — расстояния от начала координат по *n* областей 1-3, зазора и областей 4-7; δ_i , j = 1,...,7 — толщины областей 1,...,7, приведенных на рис. 1; п и s — поперечная и продольная составляющие естественной системы координат.

Исследование характеристик ЭГЭ основывается на вольт-амперных характеристиках (ВАХ) изотермического термоэмиссионного преобразователя (ТЭП) [11–14, 16], которые, в свою очередь, являются интегральными характеристиками многообразных процессов в межэлектродном зазоре и на электродах [11, 15–17] и определяются переносом частиц и энергии в плазме, ионизационными, адсорбционными и другими процессами. Для изучения процессов в ТЭТЗ необходимо решать самосогласованную задачу, состоящую из электрической и тепловой моделей. В результате ее решения получим

Рис. 1. Схема конструкции ТЭТЗ с электрогенерирующим элементом. *r* и *z* — поперечная и продольная составляющие в цилиндрической системе координат.

распределения потенциальных, токовых, тепловых и прочих полей конструкции защиты. Электрическая модель взята из работы [14], но в настоящем исследовании рассмотрен общий случай, когда коллектор не эквипотенциален и электропроводность электродов и коммутационных деталей зависит от их температуры.

Для нахождения прототипов ГЛА, на которых может быть оправдана установка ТЭТЗ, желательно определить уровень тепловых потоков, снимаемых с внешней открытой оболочки эмиттера (область 3 на рис. 1) и внешней поверхности коллектора (область 4 на рис. 1) за счет электронного охлаждения и процессов излучения. Кроме того, надо найти величину высокоэнтальпийных потоков от аэродинамического нагрева внешней части тугоплавкого металла (область 1 на рис. 1). Тепловые потоки для внешних открытых частей областей 3 и 4 рассчитываются следующим образом [11, 14]:

$$q_{L_3} = -(q_1 + q_{\varepsilon} + q_{\rm Cs}), \quad q_{L_4} = q_2 + q_{\varepsilon} + q_{\rm Cs},$$
 (1)

$$q_{1} = J(T_{2,4}, T_{1,3}, \Delta V) \Big[\varphi_{1}(T_{1,3} / T_{Cs}) / e + 2kT_{1,3} / e \Big],$$
⁽²⁾

$$q_2 = J(T_{2,4}, T_{1,3}, \Delta V) \left[\varphi_2(T_{2,4} / T_{\rm Cs}) / e + 2kT_{1,3} / e \right], \tag{3}$$

$$q_{\varepsilon} = \sigma \varepsilon_{s} (T_{1,3}^{4} - T_{2,4}^{4}), \quad q_{\rm Cs} = (\lambda_{\rm Cs} / d) (T_{1,3} - T_{2,4}), \tag{4}$$

где φ_j , j = 1, 2 — эффективная работа выхода электрона материалов эмиттера и коллектора соответственно; $J = J(T_{2,4}, T_{1,3}, \Delta V)$ — ВАХ изотермического ТЭП, ΔV — разность потенциалов между эмиттером и коллектором, k — постоянная Больцмана, e — заряд электрона. Джоулево тепловыделение коммутационных деталей эмиттера и коллектора вычисляется как

$$G_{\rm Ec} = I_R^2 \int_{s_2}^{s_k} \xi_1 ds, \quad G_{\rm Cc} = I_R^2 \int_{s_4}^{s_1} \xi_2 ds.$$
(5)

Погонное джоулево тепловыделение эмиттера и коллектора находится из соотношений

$$G_1(s) = \frac{\xi_1 I_1^2(s)}{S_1}, \quad G_2(s) = \frac{\xi_2 I_2^2(s)}{S_2}.$$
 (6)

Объемное джоулево тепловыделение эмиттера и коллектора, являющееся источником тепла в уравнении теплопроводности для соответствующего электрода, запишется как

$$G_1^V(s) = \frac{\xi_1 I_1^2(s)}{S_1^2}, \quad G_2^V(s) = \frac{\xi_2 I_2^2(s)}{S_2^2}, \tag{7}$$

где $I_1(s) = 2\pi R_1 \int_{s_1}^s J(T_{2,4}, T_{1,3}, \Delta V) ds$, $I_2(s) = 2\pi R_1 \int_{s_1}^{s_2} J(T_{2,4}, T_{1,3}, \Delta V) ds$ — силы токов, теку-

щих по эмиттеру и коллектору, $I_1(s) + I_2(s) = I_R$ — сила тока внешней цепи, S_1, S_2 — площади поперечных сечений эмиттера и коллектора: $S_1 = 2\pi\delta_3(R_1 + \delta_3/2), R_1 = R_N - L_3$ и $S_2 = 2\pi\delta_4(R_2 - \delta_4/2), R_2 = R_N - L_4, R_N$ — радиус сферического затупления.

При постановке тепловой модели задачи сделаем следующие допущения:

 — число Рейнольдса в набегающем гиперзвуковом потоке воздуха достаточно велико (Re_∞ >>1), и в окрестности поверхности тела сформировался пограничный слой;

— воздух на внешней границе пограничного слоя находится в состоянии термохимического равновесия, явления переноса здесь рассматриваются при упрощающих предположениях о равенстве коэффициентов диффузии; число Льюиса Le = 1;

— тепловое состояние конической части оболочки (рис. 1) определяется из решения (двухмерного по пространству) нестационарного уравнения сохранения энергии. На основании перечисленных допущений задача расчета характеристик теплообмена с использованием естественных координат и с учетом (7) сводится к решению системы уравнений [3] при $s_A < s < s_k$:

$$c_{pj}(T_{1,j})\rho_{j}\frac{\partial T_{1,j}}{\partial t} = \frac{\partial}{\partial n} \left[\lambda_{j}(T_{1,j})\frac{\partial T_{1,j}}{\partial n}\right] + \frac{\partial}{\partial s} \left[\lambda_{j}(T_{1,j})\frac{\partial T_{1,j}}{\partial s}\right] + \frac{\lambda_{j}(T_{1,j})}{r} \left(\frac{\partial T_{1,j}}{\partial s}\sin\theta - \frac{\partial T_{1,j}}{\partial n}\cos\theta\right),$$

$$j = 1, 2, \quad 0 < n < L_{2}, \quad s_{A} < s < s_{k},$$
(8)

$$c_{p2}(T_{1,3})\rho_{2}\frac{\partial T_{1,3}}{\partial t} = \frac{\partial}{\partial n} \left[\lambda_{2}(T_{1,3})\frac{\partial T_{1,3}}{\partial n} \right] + \frac{\partial}{\partial s} \left[\lambda_{2}(T_{1,3})\frac{\partial T_{1,3}}{\partial s} \right] + \frac{\lambda_{2}(T_{1,3})}{r} \left(\frac{\partial T_{1,3}}{\partial s}\sin\theta - \frac{\partial T_{1,3}}{\partial n}\cos\theta \right), \qquad (9)$$
$$L_{2} < n < L_{3}, \quad s_{A} < s < s_{1},$$

$$c_{p3}(T_{1,3})\rho_3 \frac{\partial T_{1,3}}{\partial t} = \frac{\partial}{\partial n} \left[\lambda_3(T_{1,3}) \frac{\partial T_{1,3}}{\partial n} \right] + \frac{\partial}{\partial s} \left[\lambda_3(T_{1,3}) \frac{\partial T_{1,3}}{\partial s} \right] + \frac{\lambda_3(T_{1,3})}{r} \left(\frac{\partial T_{1,3}}{\partial s} \sin \theta - \frac{\partial T_{1,3}}{\partial n} \cos \theta \right) + G_1^V,$$
(10)

$$L_2 < n < L_3, \quad s_1 < s < s_k,$$

$$c_{p4}(T_{2,4})\rho_{4}\frac{\partial T_{2,4}}{\partial t} = \frac{\partial}{\partial n} \left[\lambda_{4}(T_{2,4})\frac{\partial T_{2,4}}{\partial n} \right] + \frac{\partial}{\partial s} \left[\lambda_{4}(T_{2,4})\frac{\partial T_{2,4}}{\partial s} \right] + \\ + \frac{\lambda_{4}(T_{2,4})}{r} \left(\frac{\partial T_{2,4}}{\partial s} \sin \theta - \frac{\partial T_{2,4}}{\partial n} \cos \theta \right) + G_{2}^{V}, \tag{11}$$
$$L_{4} < n < L_{5}, \ s_{A} < s < s_{2},$$

$$c_{p5}(T_{2,4})\rho_5 \frac{\partial T_{2,4}}{\partial t} = \frac{\partial}{\partial n} \left[\lambda_5(T_{2,4}) \frac{\partial T_{2,4}}{\partial n} \right] + \frac{\partial}{\partial s} \left[\lambda_5(T_{2,4}) \frac{\partial T_{2,4}}{\partial s} \right] + \frac{\lambda_5(T_{2,4})}{r} \left(\frac{\partial T_{2,4}}{\partial s} \sin \theta - \frac{\partial T_{2,4}}{\partial n} \cos \theta \right),$$
(12)
$$L_4 < n < L_5, \quad s_2 < s < s_k,$$

$$c_{pj}(T_{2,j})\rho_{j}\frac{\partial T_{2,j}}{\partial t} = \frac{\partial}{\partial n} \left[\lambda_{j}(T_{2,j})\frac{\partial T_{2,j}}{\partial n}\right] + \frac{\partial}{\partial s} \left[\lambda_{j}(T_{2,j})\frac{\partial T_{2,j}}{\partial s}\right] + \frac{\lambda_{j}(T_{2,j})}{r} \left(\frac{\partial T_{2,j}}{\partial s}\sin\theta - \frac{\partial T_{2,j}}{\partial n}\cos\theta\right),$$
(13)

$$L_5 < n < L_8$$
, $s_A < s < s_k$, $j = 5, 6, 7$,

230

где $r = (R_N - n)\cos\theta + (s - s_A)\sin\theta$, T — температура, t — время; c_{pj} , λ_j , ρ_j , j = 1,...,7 — коэффициенты удельной теплоемкости, теплопроводности и плотность слоев конструкций ТЭТЗ соответственно, r — коэффициент Ламэ.

Систему уравнений (8)-(13) необходимо решать с учетом следующих начальных и граничных условий.

Начальные условия:

$$T_1\Big|_{t=0} = T_0, \quad 0 \le n \le L_3, \quad T_2\Big|_{t=0} = T_0, \quad L_4 \le n \le L_8.$$
 (14)

Граничные условия на обтекаемой внешней поверхности оболочки (n = 0):

$$q_{\rm w} - \varepsilon_1 \sigma T_{\rm 1w}^4 = -\lambda_1 \frac{\partial T_{1,1}}{\partial n} \Big|_{\rm w} \,, \quad s_A \le s \le s_k \,, \tag{15}$$

на поверхности третьего слоя — изолятора ($n = L_3$, $s_A \le s \le s_1$) — выставляется условие теплообмена по закону Ньютона и учитывается отвод тепла от излучения поверхности карбида циркония:

$$-\lambda_2 \frac{\partial T_{1,3}}{\partial n}\Big|_{n=L_3} = \Delta_1 \Big(T_{1,3} \Big|_{n=L_3} - T_{1^*} \Big) - \varepsilon_2 \sigma T_1^4 \Big|_{n=L_3}, \quad s_A \le s \le s_1, \tag{16}$$

на поверхности третьего слоя — эмиттера ($n = L_3$) — согласно первой формулы (1) ставится условие

$$q_{L_3} = -\lambda_3 \frac{\partial T_{1,3}}{\partial n}\Big|_{n=L_3}, \quad s_1 < s < s_2,$$
(17)

на поверхности третьего слоя — эмиттера ($n = L_3$, $s_2 \le s \le s_k$) — выставляется граничное условие третьего рода и учитывается отвод тепла от излучения поверхности вольфрама:

$$-\lambda_3 \frac{\partial T_{1,3}}{\partial n}\Big|_{n=L_3} = \Delta_1 (T_{1,3} \Big|_{n=L_3} - T_{1^*}) - \varepsilon_3 \sigma T_1^4 \Big|_{n=L_3}, \quad s_2 \le s \le s_k,$$
(18)

на внешней поверхности четвертого слоя — коллектора ($n = L_4$, $s_A \le s < s_1$) — имеет место теплообмен по закону Ньютона:

$$-\lambda_4 \frac{\partial T_{2,4}}{\partial n}\Big|_{n=L_4} = \Delta_2 (T_{2,4}\Big|_{n=L_4} - T_{2^*}), \quad s_A \le s < s_1, \tag{19}$$

на внешней поверхности четвертого слоя — коллектора ($n = L_4$, $s_1 \le s < s_2$) — из второй формулы (1) следует условие

$$q_{L_4} = -\lambda_4 \frac{\partial T_{2,4}}{\partial n} \Big|_{n=L_4}, \ s_1 \le s < s_2,$$
(20)

на внешней поверхности четвертого слоя — изолятора Al_2O_3 ($n = L_4$, $s_2 \le s \le s_k$) — имеет место граничное условие третьего рода

$$-\lambda_5 \frac{\partial T_{2,4}}{\partial n}\Big|_{n=L_4} = \Delta_2 (T_{2,4}\Big|_{n=L_4} - T_{2^*}), \quad s_2 \le s \le s_k,$$
(21)

на поверхности седьмого слоя — подложке ($n = L_8$) — выставляется условие теплообмена по закону Ньютона:

$$-\lambda_7 \frac{\partial T_{2,7}}{\partial n}\Big|_{n=L_8} = \delta(T_{2,7}\Big|_{n=L_8} - T_0), \quad s_A \le s \le s_k.$$
(22)

231

На линиях сопряжения $n = L_j$, j = 1, 2 и $n = L_i$, i = 5, 6, 7 выписываются условия идеального контакта и равенства температур:

$$\lambda_{i} \frac{\partial T_{1,i}}{\partial n}\Big|_{n=L_{i}=0} = \lambda_{i+1} \frac{\partial T_{1,i+1}}{\partial n}\Big|_{n=L_{i}=0}, \quad i = 1, 2, \quad \lambda_{i-1} \frac{\partial T_{2,i-1}}{\partial n}\Big|_{n=L_{i}=0} = \lambda_{i} \frac{\partial T_{2,i}}{\partial n}\Big|_{n=L_{i}=0}, \quad i = 5, 6, 7,$$

$$T_{1,i}\Big|_{n=L_{i}=0} = T_{1,i+1}\Big|_{n=L_{i}=0}, \quad i = 1, 2, \quad T_{2,i-1}\Big|_{n=L_{i}=0} = T_{2,i}\Big|_{n=L_{i}=0}, \quad i = 5, 6, 7.$$
(23)

На левом торце слоев 1–3 $(s = s_A)$ и правом торце слоев 1, 2, 4–7 $(s = s_k)$ имеет место условие тепловой изоляции

$$\frac{\partial T_{1,i}}{\partial s}\Big|_{s=s_A} = 0, \quad i = 1, 2, 3, \quad \frac{\partial T_{1,i}}{\partial s}\Big|_{s=s_k} = 0, \quad i = 1, 2,$$

$$\frac{\partial T_{2,i}}{\partial s}\Big|_{s=s_A} = 0, \quad i = 5, 6, 7, \quad \frac{\partial T_{2,i}}{\partial s}\Big|_{s=s_k} = 0, \quad i = 4, 5, 6, 7, \quad (24)$$

на левом торце четвертого слоя $(s = s_A)$ осуществляется теплообмен по закону Ньютона:

$$-\lambda_4 \frac{\partial T_{2,4}}{\partial s}\Big|_{s=s_A} = \Delta_2 \left(T_{2,4} \Big|_{s=s_A} - T_{2^*} \right), \tag{25}$$

на правом торце эмиттера $(s = s_k)$ выставляется граничное условие третьего рода и учитывается отвод тепла от излучения поверхности вольфрама:

$$-\lambda_3 \frac{\partial T_{1,3}}{\partial s}\Big|_{s=s_k} = \Delta_1 \Big(T_{1,3} \Big|_{s=s_k} - T_{1^*} \Big) - \varepsilon_3 \sigma T_{1,3}^4 \Big|_{s=s_k} , \qquad (26)$$

на линиях сопряжения областей 2, 3 на эмиттере $(s = s_1)$ и областей 4, 5 на коллекторе $(s = s_2)$ имеет место условие идеального контакта и равенства температур:

$$\lambda_{2} \frac{\partial T_{1,3}}{\partial s}\Big|_{s=s_{1}-0} = \lambda_{3} \frac{\partial T_{1,3}}{\partial s}\Big|_{s=s_{1}+0}, \quad \lambda_{4} \frac{\partial T_{2,4}}{\partial s}\Big|_{s=s_{2}-0} = \lambda_{5} \frac{\partial T_{2,4}}{\partial s}\Big|_{s=s_{2}+0},$$

$$T_{1,3}\Big|_{s=s_{1}-0} = T_{1,3}\Big|_{s=s_{1}+0}, \quad T_{2,4}\Big|_{s=s_{2}-0} = T_{2,4}\Big|_{s=s_{2}+0}.$$
(27)

Эффективность ТЭТЗ оценивается как по степени снижения температуры ее конструкций, так и традиционным способом — через коэффициент полезного действия (КПД) электрогенерирующих элементов преобразования тепловой энергии в электрическую [14]. Отметим, что оцениваемый КПД ЭГЭ — это нестационарная величина, существующая только во время полета ГЛА в атмосфере, т.е. когда существуют значительные по величине температурные поля конструкций ТЭТЗ.

КПД ЭГЭ вычисляется для эмиттера как отношение полезной электрической мощности $G_M = U_R I_R$ к общим энергетически затратам, которые включают общую тепловую мощность Q_{Σ} и суммарную генерируемую электрическую мощность G_{Σ} :

$$\eta = G_M / (G_\Sigma + Q_\Sigma). \tag{28}$$

Общая тепловая мощность эмиттера содержит четыре составляющие (см. формулы (5)–(7)):

$$Q_{\Sigma} = Q_{1} + Q_{2} + Q_{\varepsilon} + Q_{Cs},$$

$$Q_{1} = 2\pi R_{1} \int_{s_{1}}^{s_{2}} q_{1} ds, \quad Q_{2} = 2\pi R_{1} \int_{s_{1}}^{s_{2}} q_{2} ds, \quad Q_{\varepsilon} = 2\pi R_{1} \int_{s_{1}}^{s_{2}} q_{\varepsilon} ds, \quad Q_{Cs} = 2\pi R_{1} \int_{s_{1}}^{s_{2}} q_{Cs} ds.$$

232

Суммарная генерируемая электрическая мощность ЭГЭ включает нагрев электродов и их коммутационных деталей за счет джоулева тепловыделения (формулы (5), (6)) и полезную электрическую мощность

$$G_{\Sigma} = G_{\Sigma Ec} + G_{\Sigma Cc} + G_{\Sigma 1} + G_{\Sigma 2} + G_{M},$$

$$G_{\Sigma Ec} = \int_{s_{2}}^{s_{k}} G_{Ec} ds, \quad G_{\Sigma Cc} = \int_{s_{A}}^{s_{1}} G_{Cc} ds, \quad G_{\Sigma 1} = \int_{s_{1}}^{s_{2}} G_{1} ds, \quad G_{\Sigma 2} = \int_{s_{1}}^{s_{2}} G_{2} ds.$$

2. Метод расчета и исходные данные

Краевая задача (8)–(27) решалась численно локально-одномерным методом расщепления [20]; использовалась неявная, абсолютно устойчивая, монотонная разностная схема с суммарной погрешностью аппроксимации O ($\tau + H_n^2 + H_s^2$), $H_n = \max H_i$, i = 1-7. Для проверки программы численного расчета использовалась последовательность сгущающихся сеток по пространству для тела: $H_1 = 2 \cdot 10^{-4}$ м, $H_2 = 10^{-4}$ м, $H_3 = 10^{-4}$ м, $H_j = 10^{-4}$ м для j = 4-7; $H_s = 10^{-2}$ м; также выбиралось $h_{s_1} = 2 \cdot H_s$, $h_{s_2} = H_s$, $h_{s_3} = H_s/2$, $h_{s_4} = H_s/4$; $h_{1i} = 2 \cdot H_{1i}$, $h_{2i} = H_{1i}$, $h_{3i} = H_{1i}/2$, $h_{4i} = H_{1i}/4$, i = 1-7. Температура слоев фиксировалась по глубине и ширине тела в различные моменты времени: $T_{1,i}$, i = 1-3, $T_{2,j}$, j = 4-7. Во всех вариантах задача решалась с переменным шагом по времени, который выбирался из условия заданной точности, одинаковой для всех шагов по пространству. Разница относительной погрешности по температуре падала, и к моменту времени $t = t_z$ она соответствовала значению ψ_3 : $\psi_1 = 8,7$ %, $\psi_2 = 4,8$ %, $\psi_3 = 2,3$ %. Представленные ниже результаты расчета получены для шагов по пространству $h_{3i} = H_{1i}/2$, i = 1-7, $h_{s_3} = H_s/2$.

Важным элементом электрической модели ЭГЭ являются вольт-амперные характеристики изотермического термоэмиссионного преобразователя, которые определяют диапазон генерируемого элементом тока. Для расчета ВАХ ТЭП использовался алгоритм [15], модификация которого в исследовании [16] состояла в аппроксимации характеристик в области плотностей токов $J \le 6 \text{ A/m}^2$. Это позволило приближенно описать диффузионную ветвь ВАХ и автоматизировать расчеты вплоть до напряжения холостого хода. Данный алгоритм расчета ВАХ изотермического ТЭП использовался для изучения характеристик распределенных термоэмиссионных систем [12, 16, 17, 21, 22] и было получено удовлетворительное согласование модельных и экспериментальных ВАХ распределенных термоэмиссионных и то моделировалась только обратная ветвь ВАХ ТЭП, т.е. явления поджига дуги не моделировались.

В настоящей работе рассчитывалось семейство ВАХ изотермического ТЭП (рис. 1) для величины межэлектродного зазора $d = 2,5 \cdot 10^{-4}$ м и давления насыщенных паров цезия $p_{\rm Cs} = 666,61$ Па ($p_{\rm Cs} = 5$ мм рт. ст.), что соответствует температуре резервуара с цезием $T_{\rm Cs} = 606,9$ К. Температура эмиттера изменялась в диапазоне $1400 \le T_1 \le 2700$ К, коллектора — $600 \le T_2 \le 2400$ К, напряжение между электродами находилось в диапазоне $-0,4 \le \Delta V \le 1,6$ В. Эффективная работа выхода электрона представлялась в виде кривых Рейзора [23], т.е. в виде соотношений $\varphi_i = \varphi_i (T_i / T_{\rm Cs})$ для материала i = 1, 2. Для эмиттера задавалась кривая Рейзора, соответствующая вакуумной работе выхода материала электрода (монокристалл W(110)) $\varphi_1^0 = 5,0$ эВ [24, 25]. Для коллектора задавалась кривая Рейзора, соответствующая Мо, — $\varphi_2^0 = 4,32$ эВ. Кривая Рейзора эмиттера и температура резервуара с цезием выбирались таким образом, чтобы в диапазоне температур эмиттера $1400 \le T_1 \le 2300$ К его эмиссионная плотность тока соответствовала диапазону $J \sim 10^5 - 10^6$ A/m², т.е. плотностям тока, когда существенен эффект термо-эмиссионного охлаждения.

Отметим, что кривые Рейзора эмиттера в области больших значений $T_1/T_{\rm Cs}$ и коллектора в области малых значений $T_2/T_{\rm Cs}$ выходят на насыщение. Такое поведение кривой Рейзора коллектора приводит к тому, что вольт-амперные характеристики перестают изменяться для $T_2 \leq 700$ К. Для используемого в данной работе семейства ВАХ изотермического ТЭП область насыщения для кривой Рейзора эмиттера не достигалась.

Коэффициент теплопроводности паров цезия в уравнении (4) принимался равным $\lambda_{\rm Cs} = 1,65 \cdot 10^{-4} \sqrt{T}$ Вт/(м К) [11, 12]. Как отмечалось выше, коэффициенты электропроводности электродов ЭГЭ зависят от температуры, и эта зависимость имеет вид

$$\xi_i = \xi_{i0} [1 + \xi_{i\alpha} (T - T_0)], \quad i = 1, 2.$$

Так, для экспериментальных результатов из работы [26] были найдены их линейные аппроксимации для эмиттера и для коллектора, которые составили соответственно $\xi_{10} = 3,82 \cdot 10^{-8}$ Ом·м, $\xi_{i\alpha} = 8,14 \cdot 10^{-3}$ 1/К и $\xi_{20} = 3,284 \cdot 10^{-8}$ Ом·м, $\xi_{i\alpha} = 9,0138 \cdot 10^{-3}$ 1/К. Указанная формула справедлива для диапазона 350 К $\leq T \leq 2500$ К.

При низких температурах эмиттера и коллектора дуговой режим работы ТЭП может отсутствовать. При повышении температур эмиттера и коллектора дуговые вольтамперные характеристики ТЭП существенно сдвинуты в непреобразовательную область и электронное охлаждение электродов неэффективно. В этой связи в настоящей работе на начальном интервале времени велся расчет только с использованием тепловой части модели, а электрическая модель могла подключаться при температурах эмиттера $T_{L_3} \ge 1350 - 1400$ К и температурах коллектора $T_{L_4} \ge 350 - 400$ К. Исследования показали, что в диапазоне $T_{L_3} \approx 1350 - 1700$ К момент подключения к расчету электрической модели слабо влияет на процессы в ТЭТЗ. Поэтому дальнейшие исследования проводились для $T_{L_4*} = 1700$ К.

При задании конвективного теплового потока из газовой фазы на конической части тела q_w воспользуемся формулами для пространственного случая при турбулентном режиме течения в пограничном слое [27]:

$$\begin{aligned} q_{\rm w} &= \alpha_{\rm w} (h_{\rm e0} - h_{\rm w}), \quad h_{\rm w} = T_{\rm 1w} c_1 + c_2 T_{\rm 1w}^2 / 2, \\ \alpha_{\rm w} &= \frac{16.4 v_{\infty}^{1.25} \rho_{\infty}^{0.8}}{R_N^{0.2} (1 + h_{\rm w} / h_{\rm e0})^{2/3}} \cdot \frac{2.2 \overline{p} (u_{\rm e} / v_m)}{\varsigma^{0.4} \overline{r_2}^{0.2}}. \\ \overline{p} &= P_{\rm e} / P_{\rm e0}, \quad u_{\rm e} / v_m = (1 - \overline{p}^{\chi})^{0.5}, \quad \chi = (\gamma_{\rm ef} - 1) / \gamma_{\rm ef}, \\ \overline{r_2} &= \cos\theta + (\overline{s} - \overline{s}_A) \sin\theta, \quad \varsigma = (\gamma_{\rm ef} - 1 + 2/M_{\infty}^2) / (\gamma_{\rm ef} + 1) \end{aligned}$$

Расчеты обтекания конуса с углом полураствора $\theta = 5^{\circ}$ потоком химически равновесного воздуха проводились для следующих условий, которые соответствуют высоте полета: $H_{\infty} = 3,0\cdot10^4$ м, $h_{e0} = 5,92\cdot10^6$ Дж/кг, $v_{\infty} = 3,36\cdot10^3$ м/с, $P_{\infty} = 1,197\cdot10^3$ H/м², $\rho_{\infty} = 1,84\cdot10^{-2}$ кг/м³, $g_{\infty} = 9,73$ м/с², $a_{\infty} = 257$ м/с, $M_{\infty} = 13,07$, а безразмерное давление $\overline{p} = P_e / P_{e0}$ и эффективный показатель адиабаты γ_{ef} определялись согласно [28].

Таблица

		пекон	phie reomerp	n iceane n iei	лофизи исски	те характери		11	
	№ слоя	1	2	3	4	5	6	7	8
ĺ	$\delta_i \cdot 10^3$, м	2	1	1	1	1	1	1	-
ſ	$L_i \cdot 10^3$, м	2	3	4	4,25	5,25	6,25	7,25	8,25
	<i>ρ</i> , кг/м ³	$\rho_1 = 16650$	$\rho_2 = 6600$	$\rho_3 = 19200$	$\rho_4 = 10200$	$\rho_5 = 3920$	_	$\rho_7 = 3920$	_

Некоторые геометрические и теплофизические характеристики ТЭП

Расстояния слоев оболочки вглубь по *n*, их толщины и плотности даны в таблице. Теплофизические характеристики первого слоя отвечают танталу ($\rho_1 = 16650 \text{ kr/m}^3$) и приведены в исследованиях [18, 19]. Теплофизические характеристики третьего слоя (эмиттер на рис. 1) отвечают вольфраму, второго — карбиду циркония, четвертого (коллектор на рис. 1) — молибдену, пятого и седьмого слоев (подложка) соответствуют Al₂O₃ и взяты из работ [29, 30], шестого слоя (гелия, воздушной среды) — из [30, 31]. Приводимые ниже результаты получены при $c_1 = 965,5 \text{ Дж/(kr-K}), c_2 = 0,147 (\text{Дж/kr-K}^2),$ $T_0 = 283 \text{ K}, \varepsilon_1 = 0,203, \varepsilon_2 = 0,302, \varepsilon_3 = 0,31, \varepsilon_8 = 0,25, s_A = 0,1484 \text{ м}, s_1 = 0,1584 \text{ м}, s_2 = 0,1984 \text{ м},$ $s_k = 0,2084 \text{ м}, \Delta_1 = 10^3 \text{ Br/(m}^2 \cdot \text{K}), \Delta_2 = 200 \text{ Br/(m}^2 \cdot \text{K}), \delta = 10^4 \text{ Br/(m}^2 \cdot \text{K}), T_{1*} = 1800 \text{ K},$ $T_{2*} = 700 \text{ K}, \sigma = 5,67 \cdot 10^{-8} \text{ Br/(m}^2 \cdot \text{K}^4), k = 1,38 \cdot 10^{-23} \text{ Дж/K}, e = 1,6 \cdot 10^{-23} \text{ Кл}, R_N = 0,1 \text{ м},$ $d = 2,5 \cdot 10^{-4} \text{ м}, L_k = 0,04 \text{ м}.$

3. Результаты численного решения и их анализ

На рис. 2, 3 приведены зависимости внешней температуры поверхности тела T_w и эмиттера T_{L_3} вдоль оболочки по s. Кривые l-5 отвечают моментам времени t = 20 (l), 25 (2), 30 (3), 40 с (4) и $t = t_z$ (5) ($t_z = 60$ с соответствует стационарному режиму процесса нагрева тела) и получены для опорного режима прогрева, когда в шестом слое составной оболочки (см. рис. 1) в качестве теплоносителя используется воздух. Штриховые кривые на указанных рисунках отвечают варианту, когда в те же самые моменты времени термоэмиссионное охлаждение эмиттера отсутствует. Видно, что наличие термоэмиссионного охлаждения снижает максимальную температуру поверхности оболочки T_w на 170 К при t = 30 с, а температура поверхности эмиттера уменьшается на некоторых участках

Рис. 2. Зависимость внешней температуры поверхности тела от продольной координаты для опорного режима теплообмена в различные моменты времени при наличии ЭГЭ (сплошные кривые) и в его отсутствие (штриховые кривые).

$$t = 20 (1), 25 (2), 30 (3), 40 (4) c, t = t_z (5).$$

Рис. 3. Зависимость температуры поверхности эмиттера от продольной координаты для опорного режима прогрева. Обозначения см. на рис. 2.

Зимин В.П., Ефимов К.Н., Керножицкий В.А., Колычев А.В., Овчинников В.А., Якимов А.С.

Рис. 4. Зависимость температуры поверхности
коллектора от продольной координаты
в те же моменты времени, что и на рис. 2.
Сплошные кривые — опорный режим прогрева,
штриховые — теплоноситель гелий
в шестом слое составной оболочки.

траектории на 166–223 К. Уменьшение температуры внешней оболочки, связанное с электронным охлаждением эмиттера, качественно согласуется с данными работ [8–11]. Отметим также, что в области больших величин плотности эмиссионного тока *J* распределения

внешней температуры поверхности T_w и эмиттера T_{L_3} имеют вогнутость (см. сплошные кривые 1-3 на рис. 2, 3), а распределение температуры поверхности коллектора T_{L_4} (см. рис. 4) — выпуклость в области действия термоэмиссионного охлаждения, при этом максимальная температура коллектора достигает $T_{L_4} = 1992$ К для $t = t_z$.

Если в качестве теплоносителя в шестом слое рассматривать гелий с начальной температурой $T_2(\delta_6) = 200$ К, теплофизические характеристики которого известны [30], то температура поверхности коллектора (рис. 4, штриховые кривые) при $t = t_z$ не превышает $T_{L_4} = 1522$ К, а эмиттера — $T_{L_3} = 2140$ К. Как известно [1], гелий как теплоноситель оказывается более эффективным с точки зрения тепловой защиты.

Снижение температуры внешней поверхности тела при работающем ТЭП обусловлено дополнительным переносом тепла через межэлектродный зазор (слой 4 на рис. 1). В этом случае температура коллектора (слой 5) становится выше (рис. 4), а температура эмиттера (слой 3) ниже (рис. 3), чем при неработающем ТЭП. При неработающем ТЭП в межэлектродном зазоре происходит незначительный перенос тепла, связанный с разницей излучений с внешних поверхностей эмиттера и коллектора. В результате этого тепло, поступающее вследствие аэродинамического нагрева, в основном аккумулируется в трех верхних слоях. При включении ТЭП через межэлектродный зазор посредством электронной эмиссии осуществляется дополнительный перенос тепла от эмиттера к коллектору и вглубь ТЭП. Аккумуляция тепла происходит в большем объеме ТЭП. За счет этого температура внешней поверхности тела снижается на некоторых участках траектории более, чем на 100 К. В целом ТЭП позволяет таким образом управлять тепловыми режимами и вырабатывать некоторое количество электрической энергии.

В практическом аспекте представляет интерес величина температуры внутренней стенки $T_{L_{e}}$ конструкции для коллектора.

На рис. 5 сплошные кривые отвечают распределению температуры по глубине n в центре тела ($s_* = (L_k - s_A)/2$) для опорного режима прогрева, штриховые — теплоносителю гелию в те же самые моменты времени, что и на рис. 2.

в те же моменты времени, что и на рис. 2. Обозначения см. на рис. 4.

Рис. 5. Зависимость температуры коллектора от глубины *n* в центре тела *s**

Рис. 6. Распределения плотности
тока эмиссии (сплошные кривые)
и силы тока (штриховые кривые)
в области 3 от продольной координаты
для опорного режима прогрева
в те же моменты времени, что и на рис. 2.

Видно, что температура внутренней стенки подложки увеличилась незначительно в момент $t = t_z$: до $T_{L_8} = 298$ K.

На рис. 6 приведены распределения плотности эмиссионного тока J (сплошные кривые) и силы тока I_1 (штриховые кривые), текущего по эмиттеру в облас-

ти 3 для воздушного теплоносителя в шестом слое (см. рис. 1) вдоль координаты s в те же самые моменты времени, что и на рис. 2. Из сравнения рис. 3 и 6 видно, что наибольший эффект охлаждения эмиттера на рассматриваемой траектории отвечает максимальным значениям J и I_1 при t = 25-30 с.

Важным моментом исследований процессов в ТЭТЗ является выбор рабочей точки на вольт-амперных характеристиках ЭГЭ. Эффективность ТЭТЗ прямо пропорциональна силе тока ЭГЭ, поэтому рабочая точка на ВАХ ЭГЭ выбиралась в области максимальной мощности. Напряжение на нагрузке (на выходе ЭГЭ) фиксировалось на уровне $U_R = 0,6$ В и сохранялось в течение времени полета ГЛА. На рис. 7 представлены ампер-секундные характеристики ЭГЭ для разных типов теплоносителя — $I_{1\text{max}} = I_R$ (кривые 1). Обе кривые имеют подобную асимметричную форму с максимумом в районе t = 20-25 с. Асимметричность формы характеристики ЭГЭ объясняется как различной чувствительностью ВАХ ТЭП к температуре эмиттера, так и разной скоростью нарастания последней. При $T_{L_3} \ge 2100$ K крутизна характеристик ТЭП и скорость нарастания температуры эмиттера ЭГЭ (кривые 2) заметно уменьшаются, поэтому правая часть характеристик ЭГЭ имеет более пологий вид. Кроме этого, ампер-секундная характеристика ЭГЭ с воздушным охлаждением имеет большее значение максимума, чем характеристика ЭГЭ с воздушным охлаждением, что объясняется уменьшением на 200–500 K температуры коллектора (см. рис. 4).

Эффективность ТЭТЗ также оценивалась с помощью коэффициентов неравномерности распределений ее параметров, т.е. оценки однородности условий работы разных частей электродов ЭГЭ. Например, для температуры эмиттера коэффициент неравномерности рассчитывался как и в работах

[12, 14]:

$$k_{T_1} = T_{1\max} / \left[(s_2 - s_1)^{-1} \int_{s_1}^{s_2} T_1(s) ds \right].$$

Рис. 7. Зависимость ампер-секундных характеристик $I_{1, \max} = I_R(1)$ и максимальных температур поверхности эмиттера (2) от времени.

Сплошные кривые — опорный режим прогрева, штриховые — теплоноситель гелий в шестом слое составной оболочки. Коэффициенты неравномерности остальных распределенных параметров ТЭТЗ находились аналогичным образом. Исследования показали, что наибольшие изменения соответствует коэффициенту неравномерности распределения плотности тока по сечениям ЭГЭ k_J . Так, при изменении времени полета ГЛА в интервале 20–60 с он изменяется более чем в 4 раза: от 1,09 до 4,6. Вследствие этого, согласно выражениям (2), (3), аналогично изменяются коэффициенты неравномерности плотностей тепловых потоков электронных составляющих с эмиттера на коллектор. Коэффициенты неравномерности остальных распределений параметров ТЭТЗ меняются в пределах 10 %. Таким образом, для выбранной длины электродов неравномерность параметров ЭГЭ оказывается существенной, что влияет на эффективность тепловой защиты.

КПД ЭГЭ, полученный по (28), уменьшается в процессе полета ГЛА с $\eta = 1,6\%$ в момент времени t = 20 с до $\eta = 0,48\%$ при $t = t_z$. Отдельный интерес представляет модельное исследование влияния параметров ЭГЭ на генерацию им электрической энергии в составе ТЭТЗ.

Выводы

Разработана и исследована математическая модель системы термоэмиссионной тепловой защиты при высокотемпературном обтекании многослойной коаксиальной оболочки. Обнаружено понижение внешней температуры поверхности оболочки и температуры поверхности эмиттера в результате тепловой эмиссии электронов с поверхности эмиттера. Исследовано влияние различных теплоносителей на режимы теплообмена в многослойной оболочке. Результаты численных расчетов качественно согласуются с известными данными [11].

Обозначения

 a_{∞} — скорость звука, м/с,

- c_i , i = 1, 2 постоянные, Дж/(кг·К), Дж/(кг·К²),
- е заряд электрона, Кл,
- G электрическая мощность, Bт,
- g_{∞} ускорение свободного падения, м/с²,
- h энтальпия, Дж/(кг·К),
- *H_n* максимальный шаг по пространству вдоль координаты *n*, м,
- H_{∞} высота полета, м,
- H_{s} шаг по пространству вдоль координаты *s*, м,
- $I_{i}, j = 1, 2$ сила тока, текущего по электродам, А,
- I_{R} сила тока внешней цепи, А,
- k постоянная Больцмана, Дж/К,
- *М*_∞ число Маха,
- *n* нормальная составляющая естественной системы координат, м,
- P давление, H/m^2 ,
- $q_{\rm w}, q_i, i = 1, 2$ тепловые потоки, Вт/ м²,
- *О* тепловая мощность, Вт,

и внешний радиус коллектора, м, *s* — продольная составляющая естественной

r — коэффициент Ламэ, м,

- системы координат, м, S₁, S₂ — площади поперечных сечений эмиттера
- и коллектора, м²,

 R_i , *i* = 1, 2 — внутренний радиус эмиттера

- U_{R} падение напряжения во внешней цепи, В,
- v_{∞} скорость набегающего потока, м/с,
- $\alpha_{\rm w}$ коэффициент теплообмена, кг/(м²·с),
- є_i, i = 1, 2, 3 интегральная излучательная способность поверхностей тантала, карбида циркония и вольфрама,
- *є_s* приведенная излучательная способность поверхностей электродов,
- θ угол конусности, град,
- σ постоянная Стефана–Больцмана, Вт·(м²·K⁴),
- τ шаг по времени, с,
- ξ_i , *i* = 1, 2 коэффициенты электропроводности эмиттера и коллектора, Ом·м.

Индексы

- 1 и 2 отвечают параметрам эмиттера и коллектора соответственно,
- вторые индексы для температуры (см. рис. 1) отвечают слоям оболочки,
- А граница сопряжения сфера-конус на рис. 1,
- w поверхность обтекаемого тела,
- Cs пары цезия,
- Сс токовывод на аноде,
- Ес токоввод на катоде,

- \sum суммарная величина параметра,
- ∞ величина на бесконечности,
- черта «вверху» безразмерная величина,
- z время окончания теплового воздействия,
- 0 начальное значение,
- *k* конечное значение по координате *s*,
- * характерное значение,
 ef эффективная величина.
- 1 1

Список литературы

- 1. Полежаев Ю.В., Юревич Ф.Б. Тепловая защита. М.: Энергия, 1976. 392 с.
- 2. Никитин П.В. Тепловая защита. М.: Московский авиационный институт, 2006. 512 с.
- **3.** Гришин А.М., Голованов А.Н., Зинченко В.И., Ефимов К.Н., Якимов А.С. Математическое и физическое моделирование тепловой защиты. Томск: Изд-во ТГУ, 2011. 358 с.
- 4. Горский В.В. Теоретические основы расчета абляционной тепловой защиты. М.: Научный мир, 2015. 688 с.
- 5. Якимов А.С. Математическое моделирование тепловой защиты. Томск: Изд-во ТГУ, 2018. 164 с.
- 6. Зинченко В.И., Ефимов К.Н., Якимов А.С. Расчет характеристик сопряженного тепломассообмена при пространственном обтекании затупленного тела с использованием системы комбинированной тепловой защиты // Теплофизика высоких температур. 2011. Т. 49, № 1. С. 81–91.
- 7. Ефимов К.Н., Овчинников В.А., Якимов А.С. Математическое моделирование влияния вращения на характеристики сопряженного тепломассообмена при высокоэнтальпийном обтекании затупленного по сфере конуса под углом атаки // Теплофизика и аэромеханика. 2017. Т. 24, № 5. 677–689.
- 8. Пат. № 2404087 РФ, МПК⁵¹ В64С 1/38, В64С 1/50. Термоэмиссионный способ защиты частей летательного аппарата при их аэродинамическом нагреве / В.А. Керножицкий, А.В. Колычев, Д.М. Охочинский. Патентообладатель Балтийский гос-ный техн. ун-т «Военмех». № 2009140802/11; заявл. 03.11.2009; опубл. 20.11.2010, Бюл. 32.7 с.
- Колычев А.В. Активная тепловая защита элементов конструкций высокоскоростного летательного аппарата на новых физических принципах при аэродинамическом нагреве // Электронный журнал «Труды МАИ». 2012. Вып. 51. С. 1–18.
- 10. Колычев А.В., Керножицкий В.А., Макаренко А.В. Разработка методики расчета многоэлементной термоэмиссионной тепловой защиты гиперзвуковых летательных аппаратов // Электронный журнал «Труды МАИ». 2014. Вып. 75. С. 1–23.
- 11. Ушаков Б.А., Никитин В.Д., Емельянов И.Я. Основы термоэмиссионного преобразования энергии. Москва: Атомиздат, 1974. 288 с.
- Синявский В.В. Методы и средства экспериментальных исследований и реакторных испытаний термоэмиссионных электрогенерирующих сборок. М: Энерогоатомиздат, 2000. 375 с.
- Квасников Л.А., Кайбышев В.З., Каландаришвили А.Г. Рабочие процессы в термоэмиссионных преобразователях ядерных энергетических установках. М.: МАИ, 2001. 208 с.
- 14. Бровальский Ю.А., Рожкова Н.М., Синявский В.В. Юдицкий В.Д. Обобщенный расчет вольтамперных характеристик и полей температуры термоэмиссионных преобразователей на основе данных испытаний изотермического ТЭП. Термоэмиссионные преобразователи энергии. М.: ВНИИТ, 1969. С. 281–294.
- 15. Коноплев А.А., Юдицкий В.Д., Пушина Л.И. Эмпирический метод расчета вольт-амперных характеристик разрядного режима термоэлектронного преобразователя // Журнал техн. физики. 1975. Т. 45, вып. 2. С. 14–321.
- 16. Бабушкин Ю.В., Зимин В.П. Методы расчета вольт-амперных характеристик термоэмиссионных электрогенерирующих сборок // Изв. Томского политехнического университета. 2006. Т. 309, № 2. С. 135–139.
- 17. Бабушкин Ю.В., Зимин В.П., Хомяков Е.А. Программное обеспечение и результаты моделирования термоэмиссионных систем // Изв. Томского политехнического университета. 2006. Т. 309, № 3. С. 53–57.
- 18. Пелецкий В.Е., Воскресенский В.Ю. Теплофизические свойства тантала при температурах выше 1000° С // Теплофизика высоких температур. 1966. № 4. С. 336–342.
- 19. Бодряков В.Ю. Теплоемкость твердого тантала: самосогласованный расчет // Теплофизика высоких температур. 2013. № 2. С. 233–242.
- 20. Самарский А. А. Введение в теорию разностных схем. М.: Наука, 1971. 552 с.
- 21. Мендельбаум М.А., Савинов А.П., Синявский В.В. Метод расчета батарей термоэмиссионных преобразователей // Изв. АН СССР. Энергетика и транспорт. 1982. № 6. С. 140–147.
- 22. Бабушкин Ю.В., Мендельбаум М.А., Савинов А.П. Алгоритм расчета характеристик термоэмиссионных электрогенерирующих сборок // Изв. АН СССР. Энергетика и транспорт. 1981. № 2. С. 115–122.
- Rasor N.S., Warner C. Correlation of emission processes for adsorbed alkali films on metal surfaces // J. App. Physics. 1965. Vol. 35, No. 9. P. 2589–2599.
- 24. Смит Дж., Смит А. Простая эмпирическая формула для электронной эмиссии с поверхности металлов, покрытых цезием. Прямое преобразование тепловой энергии в электрическую и топливные элементы. М.: Изд-во ВИНИТИ, 1971. Вып. 6. С. 105–111.
- Миронов В.С., Сидельников В.Н. Предельные выходные характеристики ТЭП // Тезисы докладов Междунар. конференции «Ядерная энергетика в космосе». Обнинск, 1990. Ч. 1. С. 90–92.

- **26.** Рябиков С.В., Агеева В.С., Елисеев В.Б. Технология термоэмиссионных преобразователей. Справочник. М.: Атомиздат, 1974. 231 с.
- 27. Землянский Б.А., Степанов Г.И. О расчете теплообмена при пространственном обтекании тонких затупленных конусов гиперзвуковым потоком воздуха // Изв. АН СССР. Механика жидкости и газа. 1981. № 5. С. 173–177.
- **28.** Лунев В.В., Магомедов К.М., Павлов В.Г. Гиперзвуковое обтекание притупленных конусов с учетом равновесных физико-химических превращений. М.: ВЦ АН СССР, 1968. 203 с.
- **29.** Зиновьев В.Ф. Теплофизические свойства металлов при высоких температурах. Справочник. М.: Металлургия, 1989. 383 с.
- **30. Чиркин В.С.** Теплофизические свойства материалов ядерной техники. Справочник. М.: Атомиздат, 1968. 484 с.
- 31. Варгафтик Н.Б. Справочник по теплофизическим свойствам газов и жидкостей. М.: ФМГИ, 1963. 670 с.

Статья поступила в редакцию 15 февраля 2019 г., после доработки — 26 августа 2019 г., принята к публикации 6 ноября 2019 г.