УДК 546.659:536.212:536.221

Теплопроводность и температуропроводность самария в интервале температур 293-1773 К*

Д.А. Самошкин, И.В. Савченко*, С.В. Станкус, А.Ш. Агажанов

Институт теплофизики им. С.С. Кутателадзе СО РАН, Новосибирск

E-mail: savchenko@itp.nsc.ru

Лазерно-импульсным методом измерены коэффициенты теплопроводности и температуропроводности самария в температурном интервале 293–1773 К в твердом и жидком состояниях, включая области фазовых превращений. Погрешности измерения коэффициентов переноса тепла составили ±(3–6) %. Получены аппроксимирующие уравнения и представлена таблица справочных данных для температурной зависимости свойств. Проведено сопоставление результатов измерений с известными литературными данными.

Ключевые слова: теплопроводность, температуропроводность, самарий, конденсированное состояние, лазерно-импульсный метод, высокие температуры, фазовые переходы.

Введение

Исследование фазовых превращений было и остается одной из важнейших задач материаловедения. Для изучения этого процесса металлический самарий представляет собой уникальный материал. Для него, кроме плавления ($T_f = 1347$ K), известны [1] два магнитных фазовых перехода при низких температурах ($T_{\text{Curie}} = 13,3 \text{ K}, T_{\text{Neel}} = 105 \text{ K}$) и два структурных фазовых перехода при $T_{\alpha\beta} = 1007$ K, $T_{\beta\gamma} = 1195$ K. Расчет зонной структуры самария [2] показал, что при увеличении его объема на 8 % в нем должен произойти электронный фазовый переход с изменением металлической валентности от Z = 3 до Z = 2. Объем расплава самария при температуре плавления превышает его объем при абсолютном нуле на 7 % и, соответственно, предсказанное в работе [2] изменение электронной структуры металла должно происходить в жидком состоянии. Наличие этого электронного фазового перехода в жидком самарии косвенно подтверждено экспериментами [3, 4]. В ряде работ были также обнаружены аномалии физических свойств самария в области 600-700 К, однако в указанном интервале температур не происходит изменений кристаллической структуры или магнитного порядка, поэтому данные высокотемпературные превращения, вероятно, представляют собой самостоятельное явление, природа которого остается неясной и требует более глубокого исследования.

Следует также отметить, что коэффициенты теплопроводности и температуропроводности самария требуют уточнения, т.к. разброс экспериментальных данных для них превышает погрешности измерений, а данные о коэффициентах переноса тепла для жидкого самария, по-видимому, отсутствуют.

^{*} Работа выполнена при финансовой поддержке РНФ (проект № 17-79-10237).

[©] Самошкин Д.А., Савченко И.В., Станкус С.В., Агажанов А.Ш., 2018

Цель настоящей работы заключается в получении новых достоверных экспериментальных данных по теплопроводности и температуропроводности самария в широком интервале температур (293–1773 К) конденсированного состояния, включая области фазовых переходов.

Методика измерений и экспериментальная техника

Для определения теплопроводности (λ) и температуропроводности (a) использовался лазерно-импульсный метод измерений. Основные эксперименты проводились на установке LFA-427 [5]. Образцы вырезались из слитка самария марки СмМ-1, чистотой 99,9 % по массе. Результаты химического анализа, выполненные методами атомно-эмиссионной спектроскопии и масс-спектроскопии, показали наличие в исходном самарии следующих примесей: Ca — 0,02 %, Ce — 0,004 %, Cr — 0,0003 %, Cu — 0,0013 %, Eu — 0,031 %, Fe — 0,0028 %, La — 0,001 %, Mo — 0,0008 %, Nb — 0,0005 %, Nd — 0,024, Ni — 0,0008 %, Pd — 0,0009 %, Ta — 0,002 %, Pr — 0,00037 %. Анализ на неметаллические примеси не проводился.

При температурах ниже температуры структурного фазового перехода ($T < T_{\beta\gamma}$ = = 1195 К) опыты проводились по стандартной методике, уже опробованной авторами для твердых редкоземельных материалов [6, 7]. Использовался образец, имеющий форму диска, диаметром 12,6 мм и толщиной около 2 мм. Перед началом измерений образец механически очищался от окислов, затем выполнялись контрольные измерения массы и линейных размеров, после которых образец устанавливался на игольчатый держатель, находящийся внутри высокотемпературной электропечи установки. Объем, в котором размещался образец, герметизировался и вакуумировался. Опыты, в ходе которых использовался держатель, изготовленный из тантала, проводились в безмасляном вакууме при ~2.10⁻⁵ мбар. Нижняя поверхность образца нагревалась лазерным импульсом длительностью 0,8 мс с энергией до 4 Дж, после чего регистрировалась температура верхней поверхности образца с помощью инфрокрасного детектора, изготовленного на основе антимонида индия, охлаждаемого жидким азотом. Из полученной термограммы рассчитывался коэффициент температуропроводности. Измерения проводились после длительного термостатирования образцов при постоянной температуре в серии из трех «выстрелов». Интервал времени между выстрелами составлял 5 мин. Расчет коэффициента температуропроводности проводился с учетом тепловых потерь со всех поверхностей образца по модели [8]. Вводилась поправка на конечную длительность лазерного импульса и его реальную форму [9]. При определении температуропроводности не учитывалось тепловое расширение образцов.

Высокая пластичность самария в высокотемпературной γ -фазе не позволяла проводить измерения на «свободных» образцах. По этой причине эксперименты при температуре выше 1195 К выполнялись на образцах, заплавленных в танталовую ячейку. Ее конструкция и геометрические размеры были аналогичны ячейке, использованной в работе [10]. Предварительно очищенный образец самария, представляющий собой плоский слой толщиной около 2 мм, сформировавшийся между дном тигля и вставкой, вместе с ячейкой отжигались в вакууме (~ $2 \cdot 10^{-5}$ мбар) при температуре ~900 К в течении 4 часов и помещались в перчаточный бокс с аргоновой атмосферой. Внутри бокса проводились измерения масс образца и деталей ячейки, после чего ячейка герметизировалась с помощью дуговой сварки. Такой подход позволял максимально исключить влияние окислов на результаты опытов. Измерения начинались при наличии контакта образца с деталями ячейки, т.е. от максимальной температуры, существенно превышающей температуру плавления (1292 К). Для получения значений теплопроводности и температуропроводности использовалась расчетная модель, подробно описанная в работе [10]. Оцененная по методике [10] погрешность измерения температуропроводности «свободных» образцов составила 2–3 %, а заплавленных — 4–6 %. Погрешность теплопроводности расплава и γ -фазы практически совпадает с погрешностью температуропроводности, а для α и β -фаз возрастает до 3–4 % из-за погрешности представленных в литературных источниках данных по плотности и теплоемкости самария, которые используются при пересчете α в λ .

Результаты и обсуждение

Измеренные значения температуропроводности представлены на рис. 1. Видно, что температурная зависимость температуропроводности самария при ~ 600 К имеет экстремум, характерный для фазового перехода второго рода. В работе [3] было показано, что температура, при которой наблюдается экстремум на температурной зависимости теплоемкости, зависит от чистоты образца, однако физическая причина его появления остается неопределенной. Для аппроксимации результатов область существования α -фазы была разбита на 2 интервала. В температурном интервале 293–600 К экспериментальные данные аппроксимированы полиномом второй степени:

$$\lambda_{\alpha 1} = 6,19 + 1,63 \cdot 10^{-2} \cdot T - 6,1 \cdot 10^{-6} \cdot T^2, \tag{1}$$

$$a_{\alpha 1} = 6,98 + 1,73 \cdot 10^{-3} \cdot T - 2,67 \cdot 10^{-6} \cdot T^{2},$$
(2)

здесь и везде далее T — температура, K; λ — теплопроводность, Bt/(м·K); a — температуропроводность, 10^{-6} м²/с. Среднеквадратичное отклонение экспериментальных точек от зависимости (1) не превосходит 0,5 %. В области более высоких температур, вплоть до 963 K, результаты аппроксимировались линейной функцией

$$\mathcal{R}_{\alpha 2} = 7,42 + 8,75 \cdot 10^{-3} \cdot T,\tag{3}$$

$$a_{\alpha 2} = 6,13 + 1,56 \cdot 10^{-3} \cdot T.$$
⁽⁴⁾

Рис. 1. Измеренные значения температуропроводности самария.

I — результаты экспериментов со свободным образцом,
 2 — результаты опытов с ячейкой № 1, 3 — результаты опытов с ячейкой № 2,
 4 — результаты аппроксимации.

Среднеквадратичное отклонение экспериментальных точек от аппроксимации также составило менее 0,5 %.

Следует обратить внимание, что на температурной зависимости теплопроводности самария, представленной на рис. 2, в области существования α -фазы при 600 К присутствует скачок λ вместо минимума, наблюдаемого на температурной зависимости температуропроводности (рис. 1). По-видимому, это связано с тем, что при расчете теплопроводности использовались данные по теплоемкости самария, полученные дифференцированием температурной зависимости энтальпии, которая была измерена на массивном калориметре смешения с достаточно большим шагом по температуре и не учитывала особенностей изменения энтальпии непосредственно в области фазового перехода. Не исключено, что при более детальных исследованиях теплоемкости самария в этом интервале температур скачок теплопроводности трансформируется в кривую, подобную температурной зависимости температуропроводности.

В областях температур, соответствующих β (963–1220 K) и γ (1220–1360 K) фазам, температуропроводность в пределах случайного разброса данных не зависела от температуры и была принята постоянной:

$$\lambda_{\beta} = 10,12 + 6 \cdot 10^{-3} \cdot T, \tag{5}$$

$$a_{\beta} = 7,5 \cdot 10^{-6} \,\mathrm{m}^2/\mathrm{c},\tag{6}$$

$$\lambda_{\gamma} = 17,46 \operatorname{Bt}/(\mathrm{M} \cdot \mathrm{K}), \tag{7}$$

$$a_{\gamma} = 7,72 \cdot 10^{-6} \,\mathrm{m}^2/\mathrm{c}.$$
 (8)

Среднеквадратичное отклонение точек от (5), (7) существенно меньше 1 %.

Рис. 2. Сопоставление результатов измерения теплопроводности самария с литературными данными.

 1 — рекомендации авторов настоящей работы, 2 — результаты расчета по закону Видемана-Франца, 3-6 — соответственно данные работ [14], [12], [16], [15], 7 — образец марки СмМ-1 [13], 8 — образец марки СмМ-1 (измерения выполнены в ортогональной плоскости) [13], 9 — образец марки СмМ-1 после дистилляции [13], 10 — данные работы [11].

Таблица

Температурные зависимости коэффициентов переноса тепла жидкого самария являются существенно нелинейными:

$$\lambda_m = 33,87 - 2,94 \cdot 10^{-2} \cdot T + 1,232 \cdot 10^{-5} \cdot T^2, \tag{9}$$

$$a_m = 11,05 - 7,37 \cdot 10^{-3} \cdot T + 3,14 \cdot 10^{-6} \cdot T^2$$
(10)

Среднеквадратичное отклонение опытных данных от данных, рассчитанных по (9), (10), составляет менее 0,5 %. Такое поведение хорошо коррелирует с результатами измерения теплоемкости [3] и теплового расширения [4], где так же было установлено нелинейное изменение исследуемых свойств в жидком состоянии. В обоих случаях аномалия температурной зависимости связывалась с размытым валентным превращением Sm⁺³ \rightarrow Sm⁺², предсказанным в работе [2]. Обнаруженное отклонение температурной зависимости температуропроводности от линейной функции качественно подтверждает это предположение. Рассчитанные по уравнениям (1)–(10) тепло- и температуропроводность самария во всем интервале измерений приведены в таблице совместно с имеющимися данными для плотности и теплоемкости из других работ.

Ранее коэффициенты переноса тепла в самарии экспериментально изучались в работах [11–16]. В исследовании [11] были выполнены измерения теплопроводности в низкотемпературной области (100–400 K), в работах [13, 15] — при более высоких температурах, в [12, 14, 16] — температуропроводность измерялась практически до температуры плавления.

На рис. 2 приведено сопоставление результатов настоящей работы по теплопроводности с данными [11–16]. Результаты [12, 14, 16] пересчитаны из данных о температуропроводности с использованием данных по плотности [4] и теплоемкости [3]. Эти же данные по плотности и теплоемкости использовались в представленном исследовании при определении температуропроводности и теплопроводности в опытах с заплавленным образцом. Видно, что если исключить температурные интервалы, близко примыкающие к фазовым переходам, то полученные результаты удовлетворительно согласуются с данными более ранних работ.

Т, К	$a \cdot 10^6$, m^2/c	λ , Bt/(M·K)	<i>ρ</i> , кг/м ³ [4]	<i>C_P</i> ·10 ³ , Дж/(г·К) [3]
300	7,26	10,52	7519	0,1927
400	7,25	11,73	7500	0,2156
500	7,18	12,80	7479	0,2384
600	7,06	12,67	7456	0,2410
700	7,22	13,55	7431	0,2525
800	7,38	14,42	7403	0,2640
900	7,53	15,30	7373	0,2755
963	7,63	15,85	7353	0,2827
963	7,50	15,91	7311	0,2900
1000	7,50	16,13	7297	0,2947
1100	7,50	16,73	7257	0,3073
1200	7,50	17,33	7218	0,3199
1220	7,50	17,45	7210	0,3224
1220	7,72	17,46	7215	0,3115
1300	7,72	17,46	7170	0,3158
1360	7,72	17,46	7137	0,3190
1360	6,83	16,67	7015	0,3478
1400	6,89	16,85	6982	0,3508
1500	7,06	17,49	6894	0,3596
1600	7,30	18,37	6798	0,3706
1700	7,60	19,50	6694	0,3837
1800	7,96	20,88	6582	0,3989

Рекомендованные значения теплофизических свойств самария в температурном интервале 300–1800 К.^{*}

Значения температур фазовых переходов заимствованы из работы [4].

На рис. 2 также представлены результаты расчета теплопроводности самария с использованием закона Видемана–Франца с классическим числом Лоренца $L_0 = 2,445 \cdot 10^{-8}$ Вт-Ом/К² и данными по электросопротивлению из работы [1]. Плотность и теплоемкость, как и в предыдущих расчетах, заимствовались из работ [3, 4] соответственно. Видно, что в области α -фазы вычисленные значения теплопроводности существенно ниже измеренных, в β -фазе — совпадают в пределах суммарных погрешностей, а в γ -фазе — превышают экспериментальные данные. Следует также заметить, для γ -фазы рассчитанная теплопроводность не является постоянной, а существенно возрастает с температурой. Тем не менее, использование закона Видемана-Франца позволило получить результаты, согласующиеся с экспериментом в пределах 10–15 %.

Заключение

Получены новые экспериментальные данные по теплопроводности и температуропроводности самария в твердом состоянии и впервые — в жидком. Установлено, что коэффициенты переноса тепла расплава самария нелинейно возрастают с температурой. Определены изменения теплопроводности и температуропроводности при твердофазных превращениях и плавлении. Показано, что закон Видемана–Франца выполняется для твердого самария с погрешностью 10–15 %.

Список литературы

- 1. Зиновьев В.Е. Теплофизические свойства металлов при высоких температурах: справ. изд. М.: Металлургия, 1989. 384 с.
- 2. Herbst J.F., Wilkins J.W. Lattice-constant dependence of 4f levels in Sm metal: evidence for a bulk valence transition // Physical review B. 1981. Vol. 24, No. 4. P. 1679–1686.
- 3. Багинский А.В., Ляпунов К.М., Станкус С.В. Калорические свойства самария при высоких температурах // Теплофизика высоких температур. 1996. Т. 34, № 4. С. 536–540.
- 4. Станкус С.В., Тягельский П.В. Электронный фазовый переход в жидком самарии // Теплофизика высоких температур. 2002. Т. 40, № 5. С. 714–719.
- 5. https://www.netzsch-thermal-analysis.com/en/products-solutions/thermal-diffusivity-conductivity/lfa-427/.
- 6. Самошкин Д.А., Агажанов А.Ш., Савченко И.В., Станкус С.В., Яцук О.С. Температуропроводность диспрозия в интервале температур 293-1273 К // Перспективные материалы. 2016. № 10. С. 76–80.
- 7. Самошкин Д.А., Агажанов А.Ш., Савченко И.В., Станкус С.В. Температуропроводность гадолиния в интервале температур 287-1277 К // Теплофизика высоких температур. 2017. Т. 55, № 2. С. 228-232.
- 8. Cape J.A., Lehman G.W. Temperature and finite pulse-time effects in the flash method for measuring thermal diffusivity // J. of Applied Physics. 1963. Vol. 34, No. 7. P. 1909–1913.
- 9. Blumm J., Opfermann J. Improvement of the mathematical modeling of flash measurements // High Temperatures High Pressures. 2002. Vol. 34, No. 5. P. 515–521.
- 10. Станкус С.В., Савченко И.В. Измерение коэффициентов переноса тепла жидких металлов методом лазерной вспышки // Теплофизика и аэромеханика. 2009. Т. 16, № 4. С. 625–632.
- Девяткова Е.Д., Жузе В.П., Голубков А.В., Сергеева В.М., Смирнов И.А. Теплопроводность Sm, Pr и их монохалькогенидов // Физика твердого тела. 1964. Т. 6. С. 430–435.
- 12. Зиновьев В.Е., Гельд П.В., Соколов А.Л. Кинетические свойства самария при высоких температурах // Физика твердого тела. 1974. Т. 16, № 9. С. 2745–2746.
- 13. Ведерников М.В., Кижаев С.А., Петров А.В., Морева Н.И. Магнитная восприимчивость и теплопроводность металлического самария при высоких температурах // Физика твердого тела. 1975. Т. 17, № 1. С. 340–342.
- 14. Kurichenko A.A., Ivliev A.D., Zinov'ev V.E. Thermal and kinetic properties of light rare earth metals near high temperature structural transition points // Solid State Communications. 1985. Vol. 56, No. 12. P. 1065–1068.
- 15. Binkele L. Transport properties of yttrium and six rare-earth metals in the temperature range 300-1000 K // High Temperatures — High Pressures. 1989. Vol. 21. P. 131–137.
- 16. Сафонов А.Н. Температуропроводность и теплоемкость легких редкоземельных металлов при высоких температурах: Дисс. канд. физ.-мат. наук. Специальность 01.04.14. Свердловск: Свердловский ордена трудового красного знамени горный институт имени В.В. Вахрушева, 1990. 172 с.

Статья поступила в редакцию 16 апреля 2017 г., после доработки — 4 мая 2018 г.