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Abstract—Possible manifestations of the Hall effect in the Earth’s magnetic field during magnetotelluric sounding are considered. 
Numerical calculations of the magnitude the effect for a three-dimensional heterogeneous earth, using modifications of the Trefftz method 
suitable for accounting for anisotropy are made for. Versions of the measurement that allow easy detection of manifestations of the Hall 
effect are analyzed.
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INTRODUCTION

Many minerals are semiconductors according to the 
physical mechanism of electrical conduction in them (Shuey, 
1975). Host rocks above petroleum deposits penetrated by 
hydrocarbon fluid flow are also a semiconducting medium 
(Gololobov and Malevich, 2005). One of the main experi-
mental methods for determining the electrical conductivity 
parameters of semiconducting minerals (density and mobil-
ity of current carriers) is based on the Hall effect. Therefore, 
due to the presence of the Earth’s magnetic field during 
electromagnetic sounding, it is quite possible to expect man-
ifestations of this effect for minerals occurring in rocks un-
der natural conditions. Interest in this phenomenon first 
arose in connection with the results of controlled-source 
electromagnetic sounding in areas of hydrocarbon accumu-
lations (Mogilatov, 2013).

A difficulty is that the electrical conductivity of semicon-
ductors varies widely depending on the presence of lattice 
impurities and heterogeneities and temperature and acoustic 
oscillations (Bush, 1952). The experimental results of labo-
ratory measurements reported in the literature depend on the 
method of sample preparation. All these factors greatly 
complicate the preliminary evaluation of the magnitude of 
the presumed effect.

An important issue for the detection of the Hall effect 
under natural conditions is the magnitude of the Hall con-
ductivity of the medium. In laboratory experiments with 
samples, it is common to measure the conductivity σ and the 
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Hall constant RH of semiconductors. Simultaneous measure-
ments of conductivity and the Hall effect are required to elu-
cidate the conduction mechanism. They allow a determina-
tion of the Hall mobility μe, the current carrier density, and 
the type of conductivity (electronic, hole or mixed) and a 
rough estimation of the Hall conductivity σH ≈ σμeB (B is 
the geomagnetic field induction). We note that the latter re-
lation is suitable only for laboratory experiments where the 
results of simultaneous measurements of σ and RH are ob-
tained and the measured semiconductor is known. Since the 
conductivity of semiconductors depends on the type of cur-
rent carriers, the Hall mobility μe may differ from the ordi-
nary drift mobility used in practice to evaluate the electrical 
conductivity of rocks σ. An arbitrary rock should be consid-
ered only as some new sample for which simultaneous mea-
surements of conductivity and the Hall effect are also re-
quired. Formal application of the relation σH ≈ σμeB to an 
earth with specified electrical conductivity without simulta-
neous measurements of σ and σH may lead to incorrect esti-
mates of the current carrier mobility μe and the dimensionless 
parameter μeB and, ultimately, to manifestations of the Hall 
effect in order of magnitude. Therefore, the question arises as 
to how to carry out simultaneous measurements of σ and σH 
in practice and which methods are preferred for this.

It is also important that in the absence of direct experi-
mental measurements of the indicated earth parameters, it is 
only possible to speak of particular assumptions on the 
physical nature of mobility. In this regard, we can recall the 
flow of a viscous conductive fluid in a magnetic field (Hart-
mann flow). There is some analogy with the movement of 
fluids in a porous medium. It is difficult to say what the 
characteristics of this process are. For the time being, it is 
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better to speak of the effective mobility of current carriers in 
the earth. Estimates of its magnitude will be made possible by 
simultaneous experimental field measurements of σ and σH.

Analysis of the results of laboratory experimental mea-
surements of the conductivity of various ore minerals (Park-
homenko, 1967; Shuey, 1975) shows that in some cases, it is 
possible to expect values σH 

 ≤ 0.001 S/m. For example, for 
galena samples with an average conductivity of ~ 1000 S/m 
and mobilities μe ~200 cm2/V·s and B ~5×10–5 T, the Hall 
conductivity σH = 0.001 S/m. Pyrite has somewhat lower 
Hall conductivity as many published values of the electron 
mobility are in the range 10–50 cm2/V·s at the same average 
conductivity of the samples. Pyrite determines the electrical 
conductivity of sulfur pyrite, whose value varies widely de-
pending on the amount of pyrite. The wide range of electri-
cal conductivity of rocks (about twenty orders of magnitude) 
is due to the properties and composition of the various min-
erals contained in them. The same is true for the possible 
values of the Hall conductivity of rocks. Therefore, the use 
of any of its reliable values will be possible only after ex-
perimental measurements of σH under natural conditions.

To properly plan experimental work and select appropri-
ate electromagnetic methods, it is necessary to obtain nu-
merical estimates of the contribution of the Hall effect to the 
measurement results. This will allow a priori determination 
of Hall conductivity values that can be detected by modern 
electromagnetic methods under natural conditions. Methods 
for the experimental determination of σH are also needed.

A method for calculating the contribution of the Hall ef-
fect in magnetotelluric sounding (MTS) of a horizontally 
layered earth was proposed in (Plotkin, 2017). It involves 
determining mode impedances when calculating the re-
sponse to the excitation of the earth by waves with different 
polarization. Due to the Hall effect, the response of the earth 
may be different in the cases where the earth is excited by 
only one of the normal waves occurring in the anisotropic 
case. By choosing experimental sessions with different di-
rections of rotation of the electric or magnetic field vectors, 
it is possible to determine the impedance tensor separately 
for these waves. It has also been shown how to convert from 
the total impedance tensor to mode impedances without 
separating the sessions according to different modes.

In practice, the situation is complicated by the presence 
of lateral conductivity heterogeneities. In this study, numer-
ical estimates of the contribution of the Hall effect were ob-
tained for a three-dimensional heterogeneous earth using the 
Trefftz method to calculate the magnetotelluric field 
(Egorov, 2011).

TREFFTZ METHOD FOR A MEDIUM  
IN THE GEOMAGNETIC FIELD

We will consider the possible influence of the Earth’s 
magnetic field on MTS results, taking into account the Hall 
conductivity of the medium σH. We use Cartesian coordi-

nates with the OX axis pointing to the north magnetic pole, 
the OZ axis pointing downward into the medium, and the 
OY axis perpendicular to the plane of the magnetic meridian. 
In this coordinate system, the conductivity tensor σ  has the 
form
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where σ is the ordinary electrical conductivity of the medi-
um and ϑ is the angle between the magnetic field vector and 
the vertical direction. The tensor reciprocal to (1) is given by
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where ξ = σH/σ. Depending on the value of ξ , there may be 
different versions of the application of the Trefftz method to 
the study of manifestations of the Hall effect in a three-di-
mensional heterogeneous anisotropic earth.

As is known, in the Trefftz method, the computational 
domain is represented by a set of parallelepiped finite ele-
ments in which the medium is homogeneous. For the isotro-
pic case, the solutions of the Maxwell equations in the form 
of transverse counter-propagating waves moving along each 
of the coordinate axes are used in each parallelepiped. With 
consideration of the polarization, there are 12 such waves, 
whose unknown amplitudes are found from the matching 
conditions on all faces of the above-mentioned parallelepi-
peds and from the boundary conditions.

In an anisotropic medium, the wave polarization degen-
eracy is removed. The waves called normal in optics propa-
gate along the coordinate axes at different speeds depending 
on polarization. Let us consider how these waves can be 
used to numerically solve the Maxwell equations using the 
Trefftz method.

Modification of the Trefftz method with normal 
waves. We consider a horizontally layered earth—a normal 
section σ0(z) with parameters σn, hn, n = 1, …, N, hN → ∞. 
Let E0(z) be the normal field that occurs in this medium dur-
ing magnetotelluric sounding. Suppose further that the 
Earth’s constant magnetic field in this medium gives rise to 
the Hall conductivity, and the electrical conductivity of the 
medium becomes the tensor quantity (1).

To study manifestation of the Hall effect in the three-di-
mensional heterogeneous medium, we assume that in (1) 
and (2), all quantities (except for ϑ ) depend not only on z 
but also on the horizontal coordinates. In this situation, it is 
more convenient to perform calculations for the anomalous 
field E that occurs due to the anisotropy and 3D heterogene-
ity of the medium, in addition to the normal field E0(z). Con-
sidering that
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for the anomalous field E, we obtain an equation with the 
right side

�E E E E� � � �graddiv i i�� � �� � �  ( ) ( )0 0I z ,	 (4)

where 


I  is the unit tensor. Next, we will need the particular 
solution (4) associated with the presence of the right side. 
Neglecting the dependence of the field E0(z) on z inside the 
parallelepipeds and taking into account the homogeneity of 
the medium in them, we can write this particular solution in 
the form
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In an anisotropic medium, we need to use the solutions of 
equation (4). They can be found by sequentially assuming 
that the field depends on only one coordinate. The combina-
tion of these solutions contains waves with 12 unknown am-
plitudes, and for any of the parallelepipeds, it has the form 
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As can be seen, the general solution for the anomalous 
field (6) consists of the solution of the homogeneous equa-
tion (4) and the particular solution which appears due to the 
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presence of the right-hand side in (4). For the electric field, 
it is obtained from (5), and for the magnetic field, it is found 
using the equation rotE0 � �i��  H0 and taking into ac-
count the dependence of the field E0(z) on only one coordi-
nate z. The particular solution determines the contribution to 
the anomalous field from the Hall conductivity σH (the pa-
rameter ξ) and the 3D-deviations of the electrical conductiv-
ity σ from the normal section σ0(z) (the parameter η). Ex-
pressions (6) take into account the polarization of the fields 
of the anisotropic components (the relation between the 
components of the fields). Changes in the fields of anisotro-
pic components along the corresponding coordinate axes 
relative to the centers of the parallelepipeds xm, yn, and zl are 
characterized by the wavenumbers k x x1 2, , k y y1 2, , and k z z1 2, . 
Calculations of the field E0(z) as a function of the depth are 
performed using the method described in (Aleksandrov, 
2001; Plotkin, 2017).

To determine the unknown amplitudes a1, …, a12 (6) in 
all parallelepipeds, it is necessary to solve the system of al-
gebraic equations obtained from the boundary conditions 
and the matching conditions of solutions (6) between adja-
cent parallelepipeds. For this, the continuity conditions for 
the tangential components of the electric and magnetic fields 
are specified at the central points of all the inner faces of the 
adjacent parallelepipeds constituting the computational do-
main.

On the outer surface of the computational domain, we 
specify external boundary conditions (BC) that correspond 
to the decay of the anomalous field outside this region. The 
BCs at the upper and lower boundaries of the computational 
domain can be specified using two-dimensional Fourier 
transforms of the field along horizontal coordinates (Plotkin 
and Gubin, 2015).

There may also be another version of BCs: in those paral-
lelepipeds one face of which is adjacent to the outer bound-
ary of the computational domain, the amplitudes of all 
waves coming from the outside, i.e., increasing toward the 
outer boundary of the region, are set equal to zero. This im-
plies the absence of anomalous field sources outside the 
computational domain. In addition to the parallelepipeds at 
the lateral boundaries (in which the earth model is assumed 
to correspond to the normal section), the computational do-
main also includes two additional homogeneous layers: the 
upper atmospheric layer and the lower underlying layer. In 
all the mentioned boundary parallelepipeds of the computa-
tional domain, it is assumed that η = 1 and ξ = 0. These 
boundary conditions simplify the matrix of the system of 
algebraic equations for determining the unknown wave am-
plitudes in (6). Naturally, the number of equations taking 
into account all the matching conditions and external BCs is 
equal to the total number of unknown amplitudes.

Experience has shown that the modification of the Trefftz 
method described above works well for fairly large values 
of ξ as long as the differences between the characteristics of 
the normal waves propagating in the same direction are sig-
nificant. Depending on the earth model, the matrix of the 

system of equations for determining the amplitudes a1, …, 
a12 in (6) may turn out to be close to singular as ξ decreases. 
Therefore, for a small value of ξ, it is preferred to use a dif-
ferent approach.

Modification of the Trefftz method for small ξ. In the 
previous case, the entire field occurring in addition E0(z)—
the normal field in a horizontally layered earth—was con-
sidered anomalous. For low Hall conductivity and small dif-
ferences between the normal waves, the use of the Trefftz 
method is more reliable only when using the solutions for 
the isotropic case in the parallelepipeds. For this purpose, 
we now assume that the perturbations of the fields Ed and Hd 
due only to the Hall effect are anomalous. Let E0(x, y, z) and 
H0(x, y, z) be numerical solutions for an isotropic three-di-
mensionally heterogeneous earth with electrical conductivi-
ty σ(x, y, z). Then the Maxwell equations the anomalous 
fields can be written as
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Given the smallness ξ = σH/σ << 1, the solutions for the 
isotropic case can be used on the left sides of the equations 
for Ed and Hd as the main solutions in the parallelepipeds 
when using the Trefftz method. In this case, the contribution 
of the Hall conductivity is determined by the right-hand 
sides of equations (7) with the help of approximate particu-
lar solutions added to the main ones in the parallelepipeds 
for the isotropic case:
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The particular solutions for Hp and Ep in (8) are obtained 
from (7) neglecting the dependence of the field E0 on the 
coordinates inside the parallelepipeds and taking into acco
unt the homogeneity of the medium in them. The tensor in 
(9) is written up to terms linear in ξ. Experience has shown 
that the use of spatial derivatives of E0 in (8) is not possible 
because of their unsatisfactory approximation in numerical 
calculations by the Trefftz method. However, the solution 
for Hp can be reduced to the form (10). As can be seen from 
(10), the solution without the above derivatives is valid if we 
neglect the component of E0 longitudinal along the Earth’s 
magnetic field. For MTS and approximate estimation of the 
contribution of σH, this is quite acceptable. Then the particu-
lar solutions Ep and Hp added to the main solutions in the 
parallelepipeds for the isotropic case have a very simple 
form and are calculated in the same way using the tensor (9) 
(it is interesting to compare them with those given in (6) for 
η = 1 with consideration of only terms linear in ξ).

As regards the matching and boundary conditions, the 
above remains true in this version of the application of the 
Trefftz method. Note that in the latter version, it was more 
convenient to implement the software using boundary con-
ditions based on two-dimensional Fourier transforms (Plot-
kin and Gubin, 2015).

RESULTS OF NUMERICAL CALCULATIONS  
AND THEIR DISCUSSION

To verify the performance of software based on the Tre-
fftz method, we first performed numerical calculations for 
the horizontally layered earth model (upper layers of the 
Earth’s crust) taken from (Plotkin, 2017). It uses a matrix 
numerical method to solve Maxwell’s equations as a system 
of first-order equations (Aleksandrov 2001). The horizon-
tally layered model is represented by four layers with top-to-
bottom thicknesses of 0.7, 5, 2, and 9 km and resistivities of 
100, 1000, 300 and 100 Ohm·m, respectively, and an under-
lying medium with a resistivity of 20 Ohm·m. The Hall con-
ductivity was set equal to 1/1000 S/m, and the angle be-
tween the magnetic field and the vertical direction � � �25 .

The procedure of numerical calculations described in 
(Aleksandrov, 2001) yields the standard impedance tensor 
independent of the directions of rotation of the field vectors. 
To take this into account, it has been proposed (Plotkin, 
2017) to use the mode impedances Zxy
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where g1,2 are the polarization coefficients of the normal 
waves 1 and 2. As can be seen from (11), to calculate the 
mode impedances for the components of the standard im-
pedance tensor, it is necessary to know the coefficients g1,2. 
Generally speaking, for a horizontally layered earth, they 
vary from layer to layer. However, it can be shown and con-
firmed by calculations that in mid-latitudes and for a weak 
effect, when σH << σn, these coefficients are close to the val-
ues of g1,2 = ±i used in the calculations. To display the re-
sults, all the impedances in (11) were converted by the usual 
formulas into apparent resistivity curves and phase curves.

In the calculations using the Trefftz method, the test site 
had dimensions of 15 × 15 km and was divided into five par-
allelepipeds along the OX and OY axes (the dimensions of 
the parallelepipeds in the horizontal section were 3 × 3 km; a 
total of 25 parallelepipeds in each layer). In the version of 
the Trefftz method with normal waves, we added homoge-
neous layers: an atmospheric layer 1 m thick at the top and an 
underlying layer 1 km thick with a resistivity of 20 Ohm·m 
at the bottom. In this case, the total number of parallelepi-
peds increased to 150 (in the version for small ξ to 100).

The calculation results are shown in Fig. 1. One can see 
good qualitative agreement between the dependences of the 
curves on the time period obtained by different numerical 
methods. At the same time, the approximate nature of the 
calculations allows only rough estimation of the magnitude 
of the effect. For more accurate calculations using the Tre-
fftz method, it is necessary to increase the number of paral-
lelepipeds in the computational domain, which will require 
a corresponding increase in computational costs. However, 
some conclusions can be drawn now. Comparison of the 
standard curves and the mode curves (only the curves of ρxy 
for both normal waves are given since the curves of ρxy differ 
from them only slightly) shows that the latter are much more 
significantly affected by the Hall effect. We note that the ef-
fect will remain noticeable even for smaller (by one or two 
orders of magnitude) values of the Hall conductivity.

Another earth model was also considered to evaluate the 
contribution of deeper crustal layers and lateral heterogene-
ities. Stable results for this model were obtained in calcula-
tions using the version of the Trefftz method for small ξ. In 
this case, the earth model was represented by four layers 
with top-to-bottom thicknesses of 0.01, 15, 10, and 45 km 
and resistivities of 1, 1000, 10, and 100 Ohm·m, respec
tively, and an underlying medium with a resistivity of 
10 Ohm·m. The upper layer was used to simulate the distor-
tions of MTS curves caused by near-surface lateral hetero-
geneities. For this purpose, the resistivity in the central par-
allelepiped of the upper layer was set equal to 0.2 Ohm·m. 
The model also included a crustal conductive layer 10 km 
thick with a roof at a depth of ~15 km with a resistivity of 
10 Ohm·m and a mantle a conductive layer with a roof at a 
depth of ~70 km with a resistivity of 10 Ohm·m. The Hall 
conductivity was set equal to 1/2000 S/m and the angle be-
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Fig. 1. MTS curves (on the left are the standard curves, on the right are the mode curves, and the dotted lines show the curves for σH = 0). The 
calculations were performed using the method of (Plotkin, 2017) (a) and the Trefftz method for small ξ (b) and with normal waves (c).
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tween the magnetic field and the vertical direction was 
� � �25 .

Figure 2 shows the results of calculation of MTS curves 
at the central station of the test site for an earth model with 
lateral heterogeneity. On time periods of more than 10 s, the 
MTS curves have distortions—the same static shift of the 
amplitude curves of ρxy and ρyx relative to the local curve of 
ρ0 at the sounding station (by the local curve is meant the 
curve for a horizontally layered earth with the electrical con-
ductivity dependent on depth at this station). In the case 
where the Hall effect is absent (Fig. 2a), the mode curves 
coincide with each other and with the standard curves (due 
to the symmetry of the lateral heterogeneity for the station 
under consideration, the additional impedances Zxx and Zyy 
are zero). However, with the occurrence of low Hall con-
ductivity (Fig. 2b), the difference of the mode curves for the 
normal waves becomes already noticeable. 

Consider now the polar diagrams in Fig. 3 for the stan-
dard impedances at the station under consideration. The dia-
grams for the principal impedances Zxy almost correspond to 
a horizontally layered earth. The same is true for the dia-
gram for the additional impedance Zxx for σH = 0 (Fig. 3а). 
Considering the Hall conductivity (Fig. 3b), the diagram for 
Zxx becomes similar to that for the case of two-dimensional 
heterogeneity, and the direction of the axes of symmetry 
also depends on the σH.

Thus, at the station above the center of the lateral hetero-
geneity studied, we can detect the influence of the Hall ef-
fect and estimate σH by analyzing the relation of the mode 
curves and considering the shape of the polar diagram for 
the additional impedance.

However, at other stations outside the lateral heterogene-
ity, where Zxx and Zyy are not zero even for σH = 0, they make 
their formal contribution to the mode impedances in accor-
dance with (11). At these stations, it is difficult to detect the 
influence of the Hall effect from the mode curves and the 
additional impedance polar diagram.

There is another opportunity to detect the Hall effect in 
the case of symmetric lateral heterogeneity. As shown by 
the calculations, at the stations located directly on the OX or 
OY axes, the impedances Zxx and Zyy are zero only when 
σH = 0. Therefore, the mode curves at them coincide only in 
this case. Their difference is completely determined by the 
value of σH. This also makes possible its experimental eval-
uation. To obtain more reliable results, it is necessary to 
make estimates for two symmetrically located stations, since 
the picture in them must coincide.

An interesting result is obtained in the case of two-dimen
sional lateral heterogeneity. To study it, the resistivity of the 
upper layer in the latter earth model was assumed to vary 
linearly along the OX axis between values of 0.8 and 
1.2 Ohm·m at the edges of the test site. Polar diagrams for 

Fig. 1 (continued). 
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Fig. 2. MTS curves for the station above the center of the lateral surface heterogeneity (on the left are the standard curves, on the right are the 
mode curves, and the dotted lines show local curves). Here and in Figs. 3 and 4, the calculations were performed for σH = 0 (a) and σH = 
1/2000 S/m (b).
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this case are shown in Fig. 4. It can be seen that the dia-
grams for the additional impedances with and without σH are 
noticeably different.

Some further explanation of the adopted value σH is in 
order. In the calculations, a Hall conductivity of 0.001 S/m 
was used only for the greater clarity of the figures and the 
description of the proposed technique. It is clear that with 
decreasing σH, it is more difficult to notice manifestations of 
the Hall effect. As an example, Fig. 5 shows the results of 

calculations for a model with layers with top-to-bottom 
thicknesses of 0.005, 15, 10, and 45 km and resistivities of 
10, 2000, 10, and 100 Ohm·m, respectively, and an underly-
ing medium with a resistivity of 1 Ohm·m. The magnitude 
of the Hall conductivity was set two orders of magnitude 
lower, σH = 0.00002 S/m. The calculations were performed 
for the cases of the Hall conductivity present (1) in all layers 
of the model and (2) only in the uppermost thin layer. The 
results for both cases are practically identical in magnitude. 

Fig. 3. Polar diagrams on a period T = 5.7×103 s for the station above the center of the lateral surface heterogeneity (for clarity, the amplitude of 
the curve of |Zxx| is increased tenfold).

Fig. 4. Polar diagrams on a period T = 5.7×103 s for the same station above the two-dimensional lateral surface heterogeneity (for clarity, the 
amplitude of the curve of |Zxx| is increased tenfold).
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Fig. 5. MTS curves for the station above the center of the lateral surface heterogeneity (on the left are the standard curves, on the right are the 
mode curves, and the dotted lines show local curves, σH = 0.00002 S/m). At the top, the curves are shown for all periods, and at the bottom, with 
an enlargement for large periods.
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This leads to the conclusion that for small values ​​of the Hall 
conductivity, the contribution of deeper layers to the magni-
tude of the effect significantly decreases in this model. It is 
also seen that for σH = 0.00002 S/m, the manifestations of 
the effect are less pronounced: they are present only on peri-
ods longer than 103 s and more pronounced in the behavior 
of the impedance phases.

CONCLUSIONS

One of the experimental methods for determining the 
electrical conductivity of semiconducting minerals is based 
on the Hall effect. Considering the presence of the Earth’s 
magnetic field, one can expect the Hall effect to manifest 
itself under the natural conditions of occurrence of these 
minerals when conducting electromagnetic soundings. Man-
ifestations of the Hall effect were considered and numerical 
estimates of its magnitude were obtained which can be used 
to experimentally detect the Hall effect in magnetotelluric 
sounding.

Electrical conductivity was expressed in tensor form to 
take into account the effect of the Hall conductivity on mea-
surement results. Since, in practice, there are lateral electrical 
conductivity heterogeneities, the calculations were carried 
out for a three-dimensional heterogeneous earth. For their 
implementation, the Trefftz method was chosen and its mod-
ifications suitable for an anisotropic earth were developed. In 
the numerical calculations, the anomalous field due to the 
earth anisotropy was determined. Numerical solutions for an 
isotropic three-dimensional heterogeneous earth were used 
as the normal field. The distortions of MTS curves due to 
near-surface lateral heterogeneities were taken into account. 
For different earth models, the standard impedance tensor 
was determined, which was converted to the mode imped-
ances for the normal components of the anisotropic case.

Methods of accounting for the Hall effect were described, 
and its magnitudes that can be detected by modern electro-
magnetic sounding methods were numerically estimated.

It is found that manifestations of the Hall effect are the 
easiest to detect in the case of symmetric lateral heterogene-
ity. When the Hall effect is absent, the mode curves at the 
station located above the center of such heterogeneity coin-
cide with each other. However, with the occurrence of low 
Hall conductivity, the difference of the mode curves for the 
normal waves becomes significant.

The influence of the Hall effect can also be detected by 
analyzing the shapes of additional impedance polar dia-

grams, including in the case of two-dimensional lateral het-
erogeneity.

In the calculations, a Hall conductivity of 0.001 S/m was 
only used for greater clarity of the figures and the descrip-
tion of the proposed method. Calculations have shown that 
the effect remains pronounced even at one or two orders of 
magnitude smaller values of the Hall conductivity. It cannot 
be ruled out that in practice this effect is even weaker. On 
the other hand, if everything were that simple, the Hall ef-
fect would have long been detected in both numerical and 
real experiments. Given the importance of earth parameters 
such as the mobility of current carriers and Hall conductiv-
ity, we would like this paper to draw greater attention of 
experts to this effect to perform specifically designed ex-
periments.
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