УДК 534.222.2

РЕПТАЦИОННОЕ ДВИЖЕНИЕ КРУПНЫХ ЖИВОТНЫХ В ЖИДКОСТИ

В. М. Шаповалов

Волгоградский государственный технический университет, 400103 Волгоград E-mail: vtm@volpi.ru

В длинноволновом приближении выполнен асимптотический анализ плоской задачи рептационного движения животного в жидкости. Рассмотрен турбулентный режим движения. Получены асимптотические оценки для осевого и перерезывающего усилий, затрачиваемой энергии, траектории движения. Представлены результаты численного анализа.

Ключевые слова: турбулентность, рептационное движение, упругая линия.

Для анализа рассматриваемой задачи в работах [1, 2] использовался принцип, сформулированный М. А. Лаврентьевым [3]. Согласно принципу Лаврентьева тело животного рассматривается как упругий стержень, помещенный в твердый канал переменной кривизны. Роль твердых стенок канала выполняет среда, окружающая тело. При движении в жидкой среде стенками канала служит жидкость, которая в силу своей инерционности при достаточно быстром воздействии практически не смещается относительно первоначального положения за время, в течение которого происходит существенное перемещение самого организма.

В работе [2] рассмотрено безвихревое движение в идеальной жидкости, что эквивалентно движению в свободно смещающемся твердом канале, масса которого зависит от формы. При поперечном обтекании цилиндра потенциал определялся методом плоских сечений. Осевая сила трения не учитывалась, поскольку в идеальной жидкости касательное напряжение на поверхности тела равно нулю.

В работе [4] исследовано рептационное движение животных в ламинарном режиме. Полученные результаты применимы к движению микроорганизмов. Данная работа является развитием подхода [4] для описания движения животных в турбулентном режиме. При этом речь идет о животных достаточно крупных размеров, таких как уж, угорь, мурена и др.

В длинноволновом приближении поставлена и решена задача плоского рептационного движения крупных животных в жидкости. Определены энергосиловые и кинематические характеристики движения. Приведены результаты численного анализа.

1. Постановка задачи. Рассматривается развитый турбулентный режим, которому соответствует квадратичный закон сопротивления.

Исследуется движение животных, имеющих достаточно сильно вытянутое тело (рыбы типа угря, водяные змеи и т. п.), так что выполняется условие $l \gg d$ (l, d — длина тела в вытянутом состоянии и его диаметр). Упругая ось проходит вдоль позвоночника. Позвоночник можно рассматривать как шарнирную систему стержней. Количество позвонков будем считать бесконечным, а упругую ось — монотонной гладкой кривой.

Центральная нервная система посылает управляющие сигналы мышцам тела, так что формируется бегущая волна, близкая к синусоидальной. Число мышц будем считать бесконечным, а управляющий сигнал — монотонной непрерывной функцией.

Рис. 1. Схема рептационного движения

Выталкивающая сила не учитывается, поскольку плотность тела животного близка к плотности окружающей жидкости. Поперечное сечение тела по длине постоянно. Если условно считать окружающую жидкость неподвижной, то рассеивание механической энергии локализовано в области, соизмеримой с поперечными размерами животного, т. е. в области гидродинамического пограничного слоя.

На элементарный участок тела длиной ds действуют продольная dP и поперечная dF силы трения. Имеет место случай наклонного обтекания цилиндра. В работе [5] на основе теории турбулентного пограничного слоя в случае неподвижного цилиндра для продольной силы трения получено выражение $dP = 0.325 \operatorname{Re}_l^{-0.7} \pi d\rho v_l^2 ds$ (v_l — осевая скорость движения цилиндра; $\operatorname{Re}_l = v_l d\rho/\mu$ — число Рейнольдса; ρ , μ — плотность и вязкость жидкости), которое хорошо согласуется с экспериментальными данными.

Согласно [6] поперечная сила трения описывается выражением $dF = 0.5\xi d\rho v_n^2 ds$, где v_n — нормальная составляющая скорости движения цилиндра; ξ — коэффициент сопротивления, зависящий от числа Рейнольдса $\text{Re}_n = v_n d\rho/\mu$. В работе [7] для развитого турбулентного режима приведена подобная зависимость $dF = 0.48d\rho v_n^2 ds$. За исключением критического режима, коэффициент сопротивления слабо зависит от числа Рейнольдса. Так, в диапазоне $\text{Re}_n = 10 \div 10^4$ значения ξ монотонно уменьшаются от 1,3 до 1. В критическом режиме ($\text{Re}_n = 5 \cdot 10^5$) $\xi = 0.3$ [6].

При движении поперечные и продольные компоненты скорости изменяются по периодическому закону. В качестве первого приближения для продольной и поперечной составляющих сил трения примем квадратичный закон сопротивления, соответствующий развитому турбулентному режиму. Нередко тело водных животных имеет эллиптическое сечение, что улучшает его гидродинамические свойства. В этом случае составляющие силы трения различаются лишь постоянными множителями. Рассмотрим тело, имеющее круглое поперечное сечение, постоянное по длине. Лобовое сопротивление не учитывается.

Запишем составляющие силы трения в виде

$$dP = A_m v_l^2 \, ds, \qquad dF = B_m v_n^2 \, ds,$$

где $A_m = 0.325 \operatorname{Re}_l^{-0.7} \pi d\rho$; $B_m = 0.5\xi d\rho$. Параметры A_m , B_m имеют постоянное значение.

При направленном перемещении животное совершает плоское рептационное движение, например в горизонтальной плоскости (рис. 1). В процессе движения упругая ось и действующие силы лежат в плоскости xOy. Введем неподвижную в пространстве систему координат (x, y, z), где x, y, z — координаты точек упругой линии тела s. Векторную параметризацию кривой s выполняет вектор-функция $\mathbf{r}(s, t), 0 \leq s \leq l$ (t — время). Направлениям x, y, z соответствует правосторонне ориентированный триэдр $(\mathbf{i}, \mathbf{j}, \mathbf{k})$. Обозначим через l $(l = r_s, |l| = 1)$ вектор касательной к упругой линии, $\mathbf{n} = \mathbf{b} \times \mathbf{l}$ — вектор нормали, \mathbf{b} — вектор бинормали.

Животному необходимо преодолевать не только сопротивление внешней среды, но и силу инерции собственного тела. Плотность тела примем равной плотности окружающей жидкости ρ .

Уравнения равновесия имеют вид

$$oldsymbol{F}_s = -oldsymbol{K}, \qquad oldsymbol{M}_s + oldsymbol{m} = oldsymbol{F} imes oldsymbol{l},$$

где M — момент; $F = (F \cdot l) l + (F \cdot n) n = Nl + Qn$ — сила; K — линейная плотность внешних сил включая силы инерции; m — распределенный момент внешней нагрузки; N — продольная сила; Q — перерезывающая сила; нижним индексом отмечены соответствующие производные.

Выражение для вектора внешних сил, учитывающее квадратичный закон сопротивления и силы инерции тела, имеет вид (окружающая жидкость неподвижна)

$$\boldsymbol{K} = A_m |\boldsymbol{r}_t| \, \boldsymbol{l} \left(\boldsymbol{r}_t \cdot \boldsymbol{l} \right) + B_m |\boldsymbol{r}_t| \, \boldsymbol{n} \left(\boldsymbol{r}_t \cdot \boldsymbol{n} \right) - \rho(\pi d^2/4) \, \boldsymbol{l} \left(\boldsymbol{r}_{tt} \cdot \boldsymbol{l} \right) - \rho(\pi d^2/4) \, \boldsymbol{n} \left(\boldsymbol{r}_{tt} \cdot \boldsymbol{n} \right)$$

где $|\mathbf{r}_t| = \sqrt{x_t^2 + y_t^2}$ — модуль вектора скорости упругой оси животного. Распределенный момент внешней нагрузки \mathbf{m} обусловлен моментом инерции вращения сечения [8]: $\mathbf{m} = -\rho J \varphi_{tt} \mathbf{b}$, где $J = \pi d^4/64$ — момент инерции поперечного сечения тела (постоянный по его длине).

В скалярной форме имеем уравнения

$$N_{s} - Q\varphi_{s} = -A_{m}\sqrt{x_{t}^{2} + y_{t}^{2}} \left(x_{t}\cos\varphi + y_{t}\sin\varphi\right) + \rho(\pi d^{2}/4)(x_{tt}\cos\varphi + y_{tt}\sin\varphi),$$

$$N\varphi_{s} + Q_{s} = -B_{m}\sqrt{x_{t}^{2} + y_{t}^{2}} \left(-x_{t}\sin\varphi + y_{t}\cos\varphi\right) + \rho(\pi d^{2}/4)(-x_{tt}\sin\varphi + y_{tt}\cos\varphi), \quad (1.1)$$

$$M_{s} - \rho J\varphi_{tt} = -Q.$$

При этом учитывались соотношения $\boldsymbol{r}_t \cdot \boldsymbol{l} = x_t \cos \varphi + y_t \sin \varphi$, $\boldsymbol{r}_t \cdot \boldsymbol{n} = -x_t \sin \varphi + y_t \cos \varphi$, $\boldsymbol{r}_{tt} = x_{tt} \boldsymbol{i} + y_{tt} \boldsymbol{j}$, $\boldsymbol{M} = M \boldsymbol{b}$.

Имеем систему с распределенными параметрами. Согласно последнему уравнению в (1.1) мышцы, расположенные симметрично относительно позвоночника животного, создают момент, который затрачивается на преодоление сил инерции, обусловленных поворотом поперечного сечения тела, и создание перерезывающей силы. В свою очередь перерезывающая сила затрачивается на преодоление сил инерции, обусловленных поперечным перемещением тела, и сил гидродинамического сопротивления внешней среды.

Перейдем к безразмерным параметрам и переменным, приняв в качестве масштаба силы наибольшее значение перерезывающего усилия Q ($Q_0 = |\max Q|$):

$$\{X, Y, S\} = \{x, y, s\}l^{-1}, \quad e = \frac{A_m}{B_m}, \quad n = \frac{N}{Q_0}, \quad q = \frac{Q}{Q_0}, \quad \tau = t\sqrt{\frac{Q_0}{A_m l^3}},$$
$$In = \frac{\rho \pi d^2}{4A_m l}, \quad \Omega = \omega \sqrt{\frac{A_m l^3}{Q_0}}, \quad K = kl, \quad w = W\sqrt{\frac{A_m l}{Q_0^3}}.$$

Здесь ω — частота сокращения мышц; w — затрачиваемая энергия; In — параметр инерции.

В безразмерном виде уравнения (1.1), дополненные геометрическими соотношениями и краевыми условиями, имеют вид

$$n_{s} - q\varphi_{s} = f_{1}, \qquad f_{1} = -\sqrt{X_{\tau}^{2} + Y_{\tau}^{2}} \left(X_{\tau} \cos \varphi + Y_{\tau} \sin \varphi\right) + \ln\left(X_{\tau\tau} \cos \varphi + Y_{\tau\tau} \sin \varphi\right),$$

$$n\varphi_{s} + q_{s} = f_{2}, \qquad f_{2} = -e^{-1}\sqrt{X_{\tau}^{2} + Y_{\tau}^{2}} \left(-X_{\tau} \sin \varphi + Y_{\tau} \cos \varphi\right) + \ln\left(-X_{\tau\tau} \sin \varphi + Y_{\tau\tau} \cos \varphi\right),$$

$$X_{s} = \cos \varphi, \qquad Y_{s} = \sin \varphi,$$

$$\tau = 0; \qquad X = X^{0}(S), \qquad Y = Y^{0}(S),$$

$$\tau > 0, \ S = 0; \qquad n = q = 0, \qquad S = 1; \qquad n = q = 0.$$

$$(1.2)$$

Функции X^0, Y^0 описывают начальную конфигурацию.

Нервные импульсы, поступающие к мышцам животного, формируют бегущую волну, обеспечивающую поступательное движение. В уравнениях (1.2) необходимо априорно задать одну из функций n, q, φ . Для плоской бегущей волны примем выражение

$$\varphi = \varepsilon \sin \left(KS - \Omega \tau \right), \tag{1.3}$$

где Ω — безразмерная частота сокращения мышц; ε — безразмерный параметр: $|\varepsilon| \leq \pi/2$; $K = 2\pi i, i = 1, 2, 3 \dots$ Согласно последнему равенству длина тела кратна целому числу волн, что значительно упрощает расчетные выражения.

При d = 0.05 м, v = 1 м/с, $\rho = 10^3$ кг/м³, $\mu = 10^{-3}$ Па·с значение параметра инерции In = 74,86. Следовательно, необходимо учитывать последние слагаемые в правой части первых двух уравнений (1.2).

В уравнениях (1.2) сомножители не содержат момент инерции поперечного сечения. Следовательно, силы инерции, обусловленные инерцией поворота сечений, не оказывают влияния на траекторию движения тела животного, а лишь определяют момент (1.1).

Согласно [4] энергию W можно определить интегралом

$$W = \int_{0}^{l} \boldsymbol{r}_{t} \cdot \boldsymbol{K} \, ds.$$

С учетом соотношений

$$N_s - Q\varphi_s = -A_m |\boldsymbol{r}_t| (\boldsymbol{r}_t \cdot \boldsymbol{l}) + \rho \, \frac{\pi d^2}{4} \, (\boldsymbol{r}_{tt} \cdot \boldsymbol{l}), \quad N\varphi_s + Q_s = -B_m |\boldsymbol{r}_t| (\boldsymbol{r}_t \cdot \boldsymbol{n}) + \rho \, \frac{\pi d^2}{4} \, (\boldsymbol{r}_{tt} \cdot \boldsymbol{n}),$$
$$\boldsymbol{r}_t = x_t \boldsymbol{i} + u_t \boldsymbol{j}$$

и уравнений (1.2) выражение для безразмерной мощности принимает вид

$$w = \int_{0}^{1} \left\{ \sqrt{X_{\tau}^{2} + Y_{\tau}^{2}} \left[(x_{t} \cos \varphi + y_{t} \sin \varphi)^{2} + e^{-1} (-x_{t} \sin \varphi + y_{t} \cos \varphi)^{2} \right] \right\} dS.$$
(1.4)

2. Решение задачи. Положим, что осевое усилие и перерезывающая сила являются функциями φ , т. е. $n = n(\varphi)$, $q = q(\varphi)$, где $\varphi = \varphi(S, \tau)$. В этом случае первые два уравнения в (1.2) принимают вид

$$n_{\varphi} - q = f_1 \varphi_s^{-1}, \qquad n + q_{\varphi} = f_2 \varphi_s^{-1}.$$
 (2.1)

Исключив из этих уравнений функцию q, получим неоднородное линейное уравнение второго порядка для функции n

$$n_{\varphi\varphi} + n = f_2 \varphi_s^{-1} + (f_1 \varphi_s^{-1})_{\varphi}$$

Решение имеет вид

$$n = C_1 \sin \varphi + C_2 \cos \varphi - \cos \varphi \int [f_2 \varphi_s^{-1} + (f_1 \varphi_s^{-1})_{\varphi}] \sin \varphi \, d\varphi + \\ + \sin \varphi \int [f_2 \varphi_s^{-1} + (f_1 \varphi_s^{-1})_{\varphi}] \cos \varphi \, d\varphi, \quad (2.2)$$

где C_1, C_2 — постоянные.

Интегрируя по частям подынтегральные функции, получим равенства

$$\int (f_1 \varphi_s^{-1}) \varphi \sin \varphi \, d\varphi = f_1 \varphi_s^{-1} \sin \varphi - \int f_1 \cos \varphi \, dS,$$
$$\int (f_1 \varphi_s^{-1})_\varphi \cos \varphi \, d\varphi = f_1 \varphi_s^{-1} \cos \varphi + \int f_1 \sin \varphi \, dS.$$

С учетом этих соотношений выражение (2.2) принимает вид

$$n = C_1 \sin \varphi + C_2 \cos \varphi - \cos \varphi \left(\int_0^S f_2 \sin \varphi \, dS - \int_0^S f_1 \cos \varphi \, dS \right) + \\ + \sin \varphi \left(\int_0^S f_2 \cos \varphi \, dS + \int_0^S f_1 \sin \varphi \, dS \right).$$
(2.3)

Согласно первому уравнению в (1.2) перерезывающее усилие $q = \varphi_s^{-1}(n_s - f_1)$. С учетом выражения (2.3) можно записать

$$q = C_1 \cos \varphi - C_2 \sin \varphi + \sin \varphi \left(\int_0^S f_2 \sin \varphi \, dS - \int_0^S f_1 \cos \varphi \, dS \right) + \cos \varphi \left(\int_0^S f_2 \cos \varphi \, dS + \int_0^S f_1 \sin \varphi \, dS \right).$$
(2.4)

Постоянные в выражениях (2.3), (2.4) найдем из условия отсутствия сил на левом конце (S = 0, n = q = 0) тела (1.2). При этом получим систему уравнений

$$C_1 \sin \varphi_0 + C_2 \cos \varphi_0 = 0, \qquad C_1 \cos \varphi_0 - C_2 \sin \varphi_0 = 0,$$

где $\varphi_0(\tau) = \varphi \big|_{S=0}$. Решение системы имеет вид $C_1 = C_2 = 0$.

С учетом граничного условия для правого конца (S = 1, n = q = 0) тела животного (1.2) имеем следующую систему уравнений:

$$-\cos\varphi_0\left(\int_0^1 f_2\sin\varphi\,dS - \int_0^1 f_1\cos\varphi\,dS\right) + \sin\varphi_0\left(\int_0^1 f_2\cos\varphi\,dS + \int_0^1 f_1\sin\varphi\,dS\right) = 0,$$
$$\sin\varphi_0\left(\int_0^1 f_2\sin\varphi\,dS - \int_0^1 f_1\cos\varphi\,dS\right) + \cos\varphi_0\left(\int_0^1 f_2\cos\varphi\,dS + \int_0^1 f_1\sin\varphi\,dS\right) = 0.$$

Здесь учитывалось свойство функции (1.3) $\varphi_0 = \varphi|_{S=0} = \varphi|_{S=1}$. Система тригонометрических уравнений имеет нулевое решение:

$$\int_{0}^{1} (f_2 \sin \varphi - f_1 \cos \varphi) \, dS = 0, \qquad \int_{0}^{1} (f_2 \cos \varphi + f_1 \sin \varphi) \, dS = 0. \tag{2.5}$$

Подставив в (2.5) выражения для функций f_1 и f_2 из (1.2), запишем уравнения в развернутом виде:

$$\int_{0}^{1} \left(\sqrt{X_{\tau}^{2} + Y_{\tau}^{2}} \left\{ X_{\tau} [1 + (e^{-1} - 1)\sin^{2}\varphi] + 0.5(1 - e^{-1})Y_{\tau}\sin 2\varphi \right\} - \ln X_{\tau\tau} \right) dS = 0,$$

$$\int_{0}^{1} \left(\sqrt{X_{\tau}^{2} + Y_{\tau}^{2}} \left\{ 0.5(e^{-1} - 1)X_{\tau}\sin 2\varphi - Y_{\tau} [e^{-1} + (1 - e^{-1})\sin^{2}\varphi] \right\} + \ln Y_{\tau\tau} \right) dS = 0.$$
(2.6)

Используя геометрические соотношения для упругой оси из (1.2), а также выражение (1.3), для функций X, Y получим следующие уравнения:

$$X_S = \cos \varphi = 1 - \varphi^2 / 2! + \ldots = 1 - (\varepsilon^2 / 2) \sin^2(KS - \Omega\tau) + \ldots,$$

$$Y_S = \sin \varphi = \varphi - \varphi^3 / 3! + \ldots = \varepsilon \sin(KS - \Omega\tau) - (\varepsilon^3 / 6) \sin^3(KS - \Omega\tau) + \ldots.$$
(2.7)

Задачу будем анализировать методом малого параметра, в качестве которого примем амплитуду "геометрического" возмущения ε в (1.3). Функции X, Y найдем в виде прямых разложений по степеням малого параметра. В соответствии с разложениями (2.7) для искомых функций запишем выражения

$$X = X_0 + \varepsilon^2 X_2 + \dots, \qquad Y = \varepsilon Y_1 + \varepsilon^3 Y_3^3 + \dots, \qquad |\varepsilon| \ll 1.$$
(2.8)

Развернутый анализ задачи показал, что члены с нечетными степенями ε в X и с четными в Y равны нулю. Ограничиваясь двумя первыми членами разложения для функции X и одним — для Y, в результате интегрирования уравнений (2.7) в пределах от 0 до S с учетом (2.8) получим

$$X_{0} = S + C_{3}(\tau), \qquad X_{2} = -\frac{1}{2K} \left(\frac{KS}{2} - \frac{\sin 2(KS - \Omega\tau)}{4} - \frac{\sin 2\Omega\tau}{4} \right) + C_{4}(\tau),$$

$$Y_{1} = -(\cos (KS - \Omega\tau) - \cos \Omega\tau)/K + C_{5}(\tau),$$
(2.9)

где C_3, C_4, C_5 — неизвестные функции времени.

Функция C_3 характеризует перемещение животного вдоль оси X. Однако, поскольку составляющая X_0 не зависит от амплитуды возмущения ε , следует положить $C_3 = 0$.

Пусть в начальный момент левый конец тела животного находится в сечении X = 0, а упругая ось расположена "симметрично" относительно оси X (статический момент упругой оси относительно оси X равен нулю). При этом имеем условия

$$\tau = 0, \quad S = 0; \qquad X = 0;$$
 (2.10)

$$\tau = 0: \qquad \int_{0}^{1} Y \, dS = 0. \tag{2.11}$$

С учетом соотношений (2.8), (2.9) и условия (2.10) получим равенство $\varepsilon^2 C_4|_{\tau=0} + \ldots = 0$, из которого следует начальное условие для неизвестной функции времени

$$\tau = 0, \qquad C_4 = 0.$$
 (2.12)

Подставив (2.8) и (2.9) в (2.11), для любого момента времени получим

$$\varepsilon(K^{-1}\cos\Omega\tau + C_5) + \ldots = 0.$$

Здесь учитываются равенства $K = 2\pi n, n = 1, 2, 3..., \sin K = 0, \cos K = 1$. Таким образом, функция C_5 имеет вид

$$C_5 = -K^{-1}\cos\Omega\tau. \tag{2.13}$$

Согласно (2.8), (2.9), (2.13) для функции У можно записать

$$Y = -(\varepsilon/K)\cos(KS - \Omega\tau) + O(\varepsilon^3).$$
(2.14)

Для нахождения функции $C_4(\tau)$ используем уравнения (2.6). Подставив разложения (2.8) в (2.6) (учитываются только члены рассматриваемых порядков), получим

$$\int_{0}^{1} \left[\left(\varepsilon |Y_{1\tau}| + \frac{\varepsilon^3}{2} \frac{X_{2\tau}^2}{Y_{1\tau}} \right) \left\{ \varepsilon^2 X_{2\tau} [1 + (e^{-1} - 1)(\varepsilon\varphi_1)^2] + (1 - e^{-1})\varepsilon^2 Y_{1\tau}\varphi_1 \right\} - \ln \varepsilon^2 X_{2\tau\tau} \right] dS = 0,$$

$$\int_{0}^{1} \left[\left(\varepsilon |Y_{1\tau}| + \frac{\varepsilon^3}{2} \frac{X_{2\tau}^2}{Y_{1\tau}} \right) \left\{ (e^{-1} - 1)\varepsilon^3 X_{2\tau}\varphi_1 - \varepsilon Y_{1\tau} [e^{-1} + (1 - e^{-1})\varepsilon^2 \varphi_1^2] \right\} + \ln \varepsilon Y_{1\tau\tau} \right] dS = 0.$$

Здесь $\varphi_1 = \sin (KS - \Omega \tau)$. При этом использовались соотношения

$$\sin^2 \varphi \approx \varepsilon^2 \varphi_1^2 + \dots, \quad \sin 2\varphi \approx 2\varepsilon \varphi_1 + \dots, \quad \sqrt{(\varepsilon^2 X_{2\tau})^2 + (\varepsilon Y_{1\tau})^2} \approx \varepsilon |Y_{1\tau}| + \frac{\varepsilon^3}{2} \frac{X_{2\tau}^2}{Y_{1\tau}} + \dots$$

Выделив множители при одинаковых степенях ε , получим следующие уравнения:

$$\varepsilon^{1}$$
: $\int_{0}^{1} Y_{1\tau\tau} \, dS = 0;$ (2.15)

$$\varepsilon^2$$
: $\int_{0}^{1} X_{2\tau\tau} dS = 0, \qquad \int_{0}^{1} Y_{1\tau}^2 dS = 0;$ (2.16)

$$\varepsilon^{3}: \qquad \int_{0}^{1} \left[|Y_{1\tau}| X_{2\tau} + |Y_{1\tau}| (1 - e^{-1}) Y_{1\tau} \varphi_{1} \right] dS = 0.$$
(2.17)

Уравнение (2.15) и второе уравнение в (2.16) являются тождествами. Из первого уравнения в (2.16) с учетом (2.9) находим функцию C_4 :

$$C_4 = -\frac{1}{8K}\sin 2\Omega\tau + C_{40}\tau + C_{41} \tag{2.18}$$

 $(C_{40}, C_{41}$ — постоянные). Из условия (2.12) следует $C_{41} = 0$. Постоянную C_{40} найдем, используя уравнение (2.17). Интегрируя это уравнение с учетом выражений (2.9), (2.14), (2.18), получим

$$C_{40} = -\frac{\Omega}{12K} \frac{8-7e}{e}.$$

С учетом соотношений (2.8), (2.9), (2.18) для функции Х запишем выражение

$$X = S\left(1 - \frac{\varepsilon^2}{4}\right) + \frac{\varepsilon^2}{8K}\sin 2(KS - \Omega\tau) - \frac{\varepsilon^2\Omega(8 - 7e)\tau}{12Ke} + O(\varepsilon^4).$$
(2.19)

После несложных преобразований выражения (2.3), (2.4) принимают вид

$$\begin{split} n &= -\cos\varphi \int_{0}^{S} \left(\sqrt{X_{\tau}^{2} + Y_{\tau}^{2}} \left\{ X_{\tau} [1 + (e^{-1} - 1)\sin^{2}\varphi] + 0.5(1 - e^{-1})Y_{\tau}\sin 2\varphi \right\} - \ln X_{\tau\tau} \right) dS + \\ &+ \sin\varphi \int_{0}^{S} \left(\sqrt{X_{\tau}^{2} + Y_{\tau}^{2}} \left\{ 0.5(e^{-1} - 1)X_{\tau}\sin 2\varphi - Y_{\tau} [e^{-1} + (1 - e^{-1})\sin^{2}\varphi] \right\} + \ln Y_{\tau\tau} \right) dS, \\ q &= \sin\varphi \int_{0}^{S} \left(\sqrt{X_{\tau}^{2} + Y_{\tau}^{2}} \left\{ X_{\tau} [1 + (e^{-1} - 1)\sin^{2}\varphi] + 0.5(1 - e^{-1})Y_{\tau}\sin 2\varphi \right\} - \ln X_{\tau\tau} \right) dS + \\ &+ \cos\varphi \int_{0}^{S} \left(\sqrt{X_{\tau}^{2} + Y_{\tau}^{2}} \left\{ 0.5(e^{-1} - 1)X_{\tau}\sin 2\varphi - Y_{\tau} [e^{-1} + (1 - e^{-1})\sin^{2}\varphi] \right\} + \ln Y_{\tau\tau} \right) dS. \end{split}$$

Подставив в эти выражения формулы (2.14) и (2.19), для осевой силы и перерезывающего усилия получим асимптотические оценки

$$n = \varepsilon^{2} \frac{\Omega^{2}}{K^{2}} \cos\left[\varepsilon \sin\left(KS - \Omega\tau\right)\right] \left[\frac{2 - e}{3e} J_{1} + \left(\frac{1}{2} - e^{-1}\right) J_{3}\right] + \varepsilon^{2} \frac{\Omega^{2}}{eK^{2}} \sin\left[\varepsilon \sin\left(KS - \Omega\tau\right)\right] J_{2} - \varepsilon^{2} \frac{\Omega^{2}}{4K^{2}} \ln\left[\cos 2(KS - \Omega\tau) - \cos 2\Omega\tau\right] \cos\left[\varepsilon \sin\left(KS - \Omega\tau\right)\right] + \varepsilon^{2} \frac{\Omega^{2}}{eK^{2}} \ln\left[\sin\left(KS - \Omega\tau\right) - \sin\Omega\tau\right] \sin\left[\varepsilon \sin\left(KS - \Omega\tau\right)\right] + O(\varepsilon^{4}),$$

$$(2.20)$$

$$q = -\varepsilon^2 \frac{\Omega^2}{K^2} \sin\left[\varepsilon \sin\left(KS - \Omega\tau\right)\right] \left[\frac{2-e}{3e} J_1 + \left(\frac{1}{2} - e^{-1}\right) J_3\right] + \varepsilon^2 \frac{\Omega^2}{eK^2} \cos\left[\varepsilon \sin\left(KS - \Omega\tau\right)\right] J_2 + \varepsilon^2 \frac{\Omega^2}{4K^2} \ln\left[\cos 2(KS - \Omega\tau) - \cos 2\Omega\tau\right] \sin\left[\varepsilon \sin\left(KS - \Omega\tau\right)\right] + \varepsilon^2 \frac{\Omega^2}{eK^2} \ln\left[\sin\left(KS - \Omega\tau\right) - \sin\Omega\tau\right] \cos\left[\varepsilon \sin\left(KS - \Omega\tau\right)\right] + O(\varepsilon^4),$$

где

$$J_{1} = \int_{0}^{S} |\sin(KS - \Omega\tau)| \, dS =$$
$$= \frac{2}{\pi K} \Big(KS - 2\sum_{n=1}^{\infty} \frac{1}{2n(4n^{2} - 1)} \left\{ \sin\left[2n(KS - \Omega\tau)\right] + \sin\left(2n\Omega\tau\right) \right\} \Big),$$

$$J_{2} = \int_{0}^{S} |\sin (KS - \Omega\tau)| \sin (KS - \Omega\tau) dS =$$

= $\frac{1}{2K} \{ |\sin (KS - \Omega\tau)| \cos (KS - \Omega\tau) - |\sin (\Omega\tau)| \cos (\Omega\tau) +$
+ $\arcsin [\cos (KS - \Omega\tau)] - \arcsin [\cos (\Omega\tau)] \},$

$$J_{3} = \int_{0}^{S} |\sin(KS - \Omega\tau)| \sin^{2}(KS - \Omega\tau) dS =$$

$$= \frac{1}{2} J_{1} - \frac{1}{2\pi K} \left(-\frac{2}{3} KS + \sin[2(KS - \Omega\tau)] + \sin(2\Omega\tau) - \right)$$

$$- \sum_{n=1}^{\infty} \frac{1}{(n+1)(4n^{2} - 1)} \left\{ \sin[2(n+1)(KS - \Omega\tau)] + \sin[2(n+1)\Omega\tau] \right\} - \left[-\sum_{n=2}^{\infty} \frac{1}{(n-1)(4n^{2} - 1)} \left\{ \sin[2(n-1)(KS - \Omega\tau)] + \sin[2(n-1)\Omega\tau] \right\} \right\}.$$

С учетом (2.14), (2.19) можно записать асимптотическую оценку потребляемой мощности (1.4)

$$w = \varepsilon^3 \frac{\Omega^3}{eK^3} \int_0^1 |\sin(KS - \Omega\tau)| \sin^2(KS - \Omega\tau) \, dS + O(\varepsilon^5).$$

Выполнив интегрирование, получим

$$w = 4\Omega^3 \varepsilon^3 / (3\pi e K^3) + O(\varepsilon^5).$$

Расчетную формулу для энергии запишем в размерном виде:

$$W = 2\omega^3 y_m^3 l\xi \rho d/(3\pi) + O(\varepsilon^5), \qquad (2.21)$$

где $y_m = \varepsilon/k$ — размерная амплитуда отклонения упругой оси тела от оси x.

3. Анализ решения. Первое слагаемое в правой части выражения (2.19) в совокупности с выражением (2.14) описывает упругую ось тела животного, второе — осевые пульсации тела в процессе движения. Сомножитель третьего слагаемого $\Omega \varepsilon^2 (8 - 7e)/(12Ke)$ характеризует среднюю скорость движения животного вдоль оси X. Скорость движения не зависит от инерции тела (параметра In). При априорно заданном законе движения (функция φ) силы инерции оказывают влияние на осевое усилие и перерезывающую силу. Размерная скорость движения \bar{v}_x определяется выражением $\bar{v}_x = -(8 - 7e)y_m^2 k\omega/(12e)$. Скорость существенно зависит от соотношения компонент силы трения (параметра e). Полученный результат подтверждает идею М. А. Лаврентьева о необходимости учета вязких свойств жидкости [9].

На рис. 2 представлены конфигурации упругой оси в различные моменты времени. Расчеты выполнены по формулам (2.14), (2.19) при $\varepsilon = 0,3$, $\Omega = 2\pi$, $K = 4\pi$, e = 0,1. Животное перемещается влево ($\Omega > 0$, K > 0) вдоль оси X. На каждой линии упругой оси стрелкой показана голова животного.

Из результатов численного анализа уравнений (2.14), (2.19) следует, что для обеспечения правильного направления движения должно выполняться условие e < 8/7. Параметр e характеризует соотношение продольной и поперечной сил трения и определяется формулой $e = 0.65\pi \operatorname{Re}_l^{-0.7}$. Число Рейнольдса должно удовлетворять условию $\operatorname{Re}_l^{0.7} > 0.568\pi$. При уменьшении продольного трения (параметра e) скорость движения увеличивает-

При уменьшении продольного трения (параметра e) скорость движения увеличивается, поэтому на скорость движения большое влияние оказывает гидродинамический пограничный слой.

Если организовать движение животного без трения в стеклянной трубке, имеющей форму $Y = -(\varepsilon/K) \cos KS$, $X = S(1 - \varepsilon^2/4)$, то оно будет иметь предельно возможную скорость осевого перемещения, равную скорости бегущей волны Ω/K . Реальная скорость меньше. Параметры ε и e должны удовлетворять условию "предельной скорости" $\varepsilon^2(8 - 7e)/(12e) \leq 1$.

Рис. 2. Упругая сила в различные моменты времени: 1 — $\tau = 0; 2 - \tau = 0.25; 3 - \tau = 0.5; 4 - \tau = 0.75; 5 - \tau = 1; 6 - \tau = 1.25$

Из выражений (2.20) следует, что осевое усилие и перерезывающая сила имеют циклический характер и пропорциональны комплексу $\varepsilon^2 \Omega^2 / K^2$. Составляющая, обусловленная силами инерции, пропорциональна In $\varepsilon^2 \Omega^2 / K^2$.

В турбулентном режиме движения потребляемая мощность (2.21) существенно отличается от мощности в ламинарном режиме [4]. В первом приближении силы инерции не влияют на затрачиваемую мощность. Частоту сокращения мышц ω можно определить через среднюю скорость движения: $\omega = |-12e\bar{v}_x/[(8-7e)y_m^2k]|$.

Управляющее уравнение (1.3) не во всех случаях соответствует реальной картине движения. Например, водяные змеи во время движения сохраняют осевую ориентацию головы. Кроме того, размах поперечных колебаний увеличивается от головы к хвосту. В этом случае можно использовать управляющее уравнение $\varphi = \varepsilon [\exp(aS) - 1] \sin(KS - \Omega\tau)$, где a — постоянная.

ЛИТЕРАТУРА

- 1. Кузнецов В. М., Луговцов Б. А., Шер Е. Н. О механизме движения рыб и ужей // Динамика сплошной среды / АН СССР. Сиб. отд-ние. Ин-т гидродинамики. 1969. Вып. 1. С. 207–233.
- Шер Е. Н. О механизме движения ужей и рыб // Некоторые проблемы математики и механики. Л.: Наука. Ленингр. отд-ние, 1970. С. 267–276.
- 3. Лаврентьев М. А., Лаврентьев М. М. Об одном принципе создания тяговой силы движения // ПМТФ. 1962. № 4. С. 3–9.
- Шаповалов В. М. Рептационное движение животных в жидкости // ПМТФ. 2005. Т. 46, № 5. С. 106–115.
- 5. Зябицкий А. Теоретические основы формования волокон. М.: Химия, 1979.
- 6. Шлихтинг Г. Теория пограничного слоя. М.: Наука, 1969.
- 7. Кочин Н. Е., Кибель И. А., Розе Н. В. Теоретическая гидромеханика. М.; Л.: Гостехтеоретиздат, 1948. Ч. 2.
- Тимошенко С. П., Янг Д. Х., Уивер У. Колебания в инженерном деле. М.: Машиностроение, 1985.
- 9. **Лаврентьев М. А.** Модель движения рыб, ужей // ПМТФ. 1973. № 2. С. 164, 165.

Поступила в редакцию 27/IV 2005 г.