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Abstract

Structure formation processes were considered during polymorphic transformations in metals. A model of 
polymorphic transitions in metals with face-centered cubic (fcc), hexagonal closed-packed (hcp), and body-cen-
tered cubic (bcc) lattices was proposed from the standpoint of the cluster approach. The model is based on the 
idea of preserving the volume of octahedral cluster elements of the corresponding lattices. It was found that 
calculation data were in good agreement with the model representations proposed in the paper.
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INTRODUCTION

Peculiarities of polymorphic transitions in met-
als have already been attracting the attention of 
researchers for centuries. Understanding and pre-
dicting peculiarities of these processes are of great 
practical importance, as the latter are carried out 
in more than a dozen of metals [1–3]. The list of 
metals able to undergo polymorphic transforma-
tions under non-equilibrium conditions is being 
expanded [4]. Upon research on polymorphic 
transitions, particular attention is paid to so-called 
martensite transformation that plays a determin-
ing part in the quenching phenomenon [5, 6]. 

Currently, models of relative shifts of planar 
grids are generally being attracted to describe 
changing the type of crystal lattices upon poly-
meric transitions [7–9]. Similarly to authors of a 
number of publications on peculiarities of amor-
phic transformations, we ran into the difficulty to 
describe structure evolution due to the diversity 
of designations of atomic planes and vectors of 
the direct and reverse lattices for structures with 
different symmetries.

In parallel with a model of plane grids, there 
was the approach of geometric volumes [10]. The 
simulation method of cooperative atom move-
ment in symmetric systems with the preservation 
of their coherency based upon representing each 
structural state as a combination of elementary 
crystal clusters is known [11–21]. Let us consider 
the description of the most common crystal lat-
tices in metals within the cluster model. 

Pierson [11] describes the structure of the 
body-centered cubic (bcc) lattice as a system con-
sisting of six irregular octahedra (Fig. 1, a). This 
octahedron has a height equal to the edge of the 
cube of the bcc lattice (a) and two other heights 
equal to a . Six irregular octahedra make up a 
dodecahedron with twelve faces with a shape of 
rhombs (rhombidodecahedron). One height of the 
diamond is equal to the edge of the body-cen-
tered cubic (bcc) lattice, a, whereas another one 
is a . Therefore, the described irregular octahe-
dron may be represented as an elementary clus-
ter of the bcc lattice.

According to [13], the face-centered cubic (fcc) 
lattice may be presented as a combination of one 
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regular octahedron surrounded by regular tetra-
hedra linked by common triangle faces (see 
Fig. 1, b). The hexagonal closed-packed (hcp) lat-
tice may be represented as a combination of in-
terconnected pairs of regular octahedra alternat-
ing with pairs of regular tetrahedra (see Fig. 1, c). 
Thus, elementary clusters of fcc and hcp lattices 
are a regular octahedron (all faces of which are 
equal to cube edge a, edges are a/ ) and a regu-
lar tetrahedron (all heights of which are a/ , 
edges a/ ) [13].

The fcc and hcp lattices are notable for the 
arrangement of tetrahedra and octahedra. Thus, 
the interplanar distance, d

200
 of the hcp lattice is 

equal to d
111

 of the fcc lattice. Therefore one lat-
tice may readily move to another one with minor 
displacements of individual atoms. Their maxi-
mum value is a/ , as demonstrated, for exam-
ple, in [22].

Let us emphasize that faces of octahedral and 
tetrahedral clusters making up the fcc or hcp lat-
tice are equal within a crystal lattice of one type 
(see Fig. 1, b, c). A great number of transitions 
from hcp into fcc when increasing temperature 
are known in the literature; they are easily ex-
plainable [13].

Let us emphasize that faces of octahedral and 
tetrahedral clusters making up the fcc or hcp lat-
tice are equal within a crystal lattice of one type 
(see Fig. 1, b, c). A great number of transitions 
from hcp into fcc when increasing temperature 
are known in the literature; they are easily ex-
plainable [13]. It is known that the space fill den-
sity in hcp and fcc lattices is identical and amounts 

to 0.74. The grid model of crystal structures as-
sumes the location of triangular grids in the fcc 
lattice according to the system АВСАВС, whereas 
in the hcp lattice – in accordance with АВАВАВ. 
Thus, in order to pass to the fcc lattice from the 
hcp one, it is sufficient to transfer one planar tri-
angular grid from the ABC series by a value of 
a/ . Nevertheless, in reality, this operation is 
impossible, whereas shifting separate atoms is 
quite likely.

The bcc–hcp transition is explained ambigu-
ously [11]. In our view [22], upon phase transfor-
mation, atoms of the bcc lattice may become shift-
ed onto a distance of 0.15 × а of the fcc lattice (this 
distance is shown by the arrows in Fig. 2).

A similar approach may be suggested for a tran-
sition of the bcc lattice into fcc. To that end, it is 
similarly required to transfer the irregular octahe-
dron of the bcc lattice into the regular octahedron 
of the bcc one.

Upon great stresses, lengths of all interatomic 
bonds tend to “align”, which is easily explained 
by the repulsion energy, which is usually de-
scribed by В/rn potentials where r is the intera-
tomic distance; n is a natural series of numbers; 
B is a constant [23]. 

As demonstrated by the author of [23], repul-
sion in symmetric structures, such as fcc lattice 
clusters, is of a much smaller role. Upon high pres-
sures, when system energy is mainly determined 
by repulsion forces, structures with almost the 
same bond length turn out to be most stable [23].

As demonstrated in Fig. 2, the green octahe-
dral cluster of bcc is significantly inferior to the 

Fig. 1. Cluster representation of crystal structures: a – octahedral clusters of the body-centered cubic (bcc) lattice [11], b – rhom-
bohedral cluster unit of the face-centered cubic (fcc) lattice [13] consisting of tetrahedral clusters, and c – cluster unit of the 
face-centered close-packed (fcp) lattice 
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red octahedral fcc one according to its volume. 
Nevertheless, according to our hypothesis, the 
volumes of these two cluster elements should be 
similar. This may be reached by small displace-
ments of cluster atoms from their idealised posi-
tions (see Fig. 2).

In order to analyse an opportunity for this 
transition, the calculation of geometric parame-
ters for the regular octahedron of the fcc or hcp 

lattice and for the irregular octahedron was 
made. Figure 3 gives the volume of the regular 
and irregular octahedra of the bcc lattice vs edge 
length, and also a parameter of irregular octahe-
dron of the fcc lattice made of regular octahedra 
with a given edge length.

Let us give an example of the use of a nomo-
graph. Cobalt undergoes the β-Со → α-Со transi-
tion at 450 °С (Table 1); β-Со has the crystal bcc 
lattice with parameter а = 3.554 Å, α-Со – the 
hcp lattice with parameter a = 2.514 Å. According 
to the cluster model of structure formation, the 
β-Co → α-Co transition is a small displacement of 
atoms of elementary crystal clusters at a distance 
less than the interatomic one in such a way that 
the order of the octahedra and tetrahedra in the 
initial hcc and finite hcp lattices is changed (see 
Fig. 1, b and c). An important point is that elemen-
tary octahedral and tetrahedral clusters should 
preserve their volume during transformation in 
accordance with our hypothesis.

In order to analyse this transition, let us use 
the nomograph in Fig. 3. Find a parameter of the 
crystal fcc lattice corresponding to β-Со and draw 
arrow 1 onto the line that describes the volume of 
the initial octahedron of the fcc phase. Knowing 

Fig. 3. Nomograph for determination of lattice parameters upon polymorphic transitions in metals, I and II are volumes of the 
regular octahedron of fcc or fcp lattice (I) and the irregular octahedron of the bcc lattice (II) with a given edge. 1–10 are aux-
iliary lines (see text).

Fig. 2. Formation of the face-centered cubic (fcc) lattice based 
on the octahedral cluster of the body-centered cubic (bcc) one 
(errors indicate a shift of bcc atoms and the position of fcc 
species) [22]. 
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that the volumes of octahedra of the initial and 
final phases should match, and therefore their 
verges have to coincide, too, we draw an arrow 
that describes the verge length of the hcp phase 
octahedron. Parameter а of this phase is equal to 
the edge length of the regular octahedron (and 
tetrahedron) of the hcp lattice (see Fig. 1, c), 
therefore arrow 2 is likely to indicate its value. In 
fact, this characteristic is 2.514 Å (see Fig. 3 and 
Table 1 data).

Consider another example of work with a 
nomogram. It is known that upon cooling, stron-
tium undergoes two equilibrium phase transi-
tions: γ-Sr → β-Sr and β-Sr → α-Sr at 605 and 
215 °С, respectively. Table 1 presents character-
istics of the corresponding phases. Let us explore 
lattice parameters of strontium upon phase tran-
sitions. The γ-Sr (bcc) → β-Sr (hcp) transition 
may be monitored on the basis of the hypothesis 
regarding the equality of the volumes of the ini-
tial irregular octahedron of bcc and the final, 
regular octahedron of hcp. To that end, let us find 
the parameter that corresponds to the verge 
length of the irregular octahedron of the bcc lat-
tice (is in agreement with parameter a of the 
crystal bcc lattice, see Fig. 1, a). Let us determine 
the volume of the irregular octahedron of the bcc 
lattice according to arrow 3 in Fig. 3. According to 

arrow 4, define the volume of the regular octahe-
dron of the hcp lattice corresponding to the initial 
irregular bcc octahedron by volume, whereas in 
accordance to arrow 5 – the verge length of the 
regular octahedron of the hcp lattice (coinciding 
with parameter a). Again, as in case with cobalt, 
there is a close agreement of parameters of the 
actual phase transition and the description made 
on the basis of the cluster model. The β-Sr (hcp) → 
α-Sr (fcc) transition is monitored according to 
arrow 6 and demonstrates a close agreement with 
the experiment (see Fig. 3 and Table 1). 

Based upon this model, calculations of crystal 
lattices parameters for elements that undergo 
phase transitions in the equilibrium state were 
made (see Table 1). Experimental data regarding 
types and parameters of crystal lattices taken 
from [24] are listed here, too.

It can be seen that the proposed method makes 
it possible to model lattice parameters for phases 
formed upon polymorphic transformations for 
most pure metals with an error not exceeding 1 %.

Satisfactory results were acquired upon anal-
ysis of not only pure metals but also some alloys. 
Let us consider the phase transition in iron-man-
ganese alloys with a manganese content of 15 %. 
According to the data of [25], there may be solid 
solutions of manganese in crystal lattices based 

TABLE 1

Experimental and calculated lattice parameters of phases experiencing polymorphic transformations

Transformation Lattice type Lattice parameter а, Å
Initial Final Initial Final

Experimental Calculated Difference, %

β-Co → α-Co fcc fcp 3.554 2.514 2.513 0.04

d-Fe → γ-Fe bcc fcc 2.93 3.671 3.692 –0.56

γ-Fe → α-Fe fcc bcc 3.65 2.89 2.897 –0.24

d-Mn → γ-Mn bcc fcc 3.08 3.862 3.881 –0.48

β-Ca → α-Ca fcp fcc 3.94 5.56 5.572 –0.22

β-Li → α-Li bcc fcp 3.5093 3.086 3.126 –1.31

β-Th → α-Th bcc fcc 4.12 5.0843 5.191 –2.10

γ-Sr → β-Sr bcc fcp 4.85 4.32 4.321 –0.02

β-Sr → α-Sr fcp fcc 4.32 6.085 6.109 –0.40

γ-La → β-La bcc fcc 4.26 5.296 5.367 –1.35

β-La → α-La fcc fcp 5.296 3.754 3.745 0.24

β-Tl → α-Tl bcc fcp 3.882 3.456 3.458 –0.07

β-Ti → α-Ti bcc fcp 3.28 2.951 2.922 0.98

β-Zr → α-Zr bcc fcp 3.62 3.232 3.225 0.21

β-Hf → α-Hf bcc fcp 3.615 3.195 3.221 –0.80

d-Ce → γ-Ce bcc fcc 4.12 5.143 5.191 –0.93

γ-Ce → β-Се fcc fcp 5.143 3.65 3.637 0.37

Note. Data of the first five columns are given according to [24].
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on α-(bcc), γ-(fcc), and и ε-(hcp) of iron present 
therein with а parameters of 2.868, 3.586, and 
2.535 Å, respectively. One may monitor the fcc → 
hcp → bcc transition in this alloy according to 
lines 7–10 (see Fig. 3).

When decoding the electronic diffraction pat-
tern obtained from the neck of the titanium nick-
elide sample stretched until the fracture, paper [26] 
determined the following phases with а parame-
ters: austenite with the bcc-structure, B2, 3.28 Å; 
martensite with the hcp structure, B19′, 2.89 Å, 
and the phase with the fcc structure, 4.10 Å. 
Paper [22] proved an opportunity to carry out the 
martensitic transition in titanium nickelide via an 
intermediate phase of the fcc structure with a 
parameter of 4.10 Å. Mutual transitions of the in-
dicated phases may be monitored according to 
the nomograph presented in Fig. 3.

CONCLUSION

It has been demonstrated that within the clus-
ter structure formation approach originally out-
lined in papers by Laves and Pierson and contin-
ued in those by Bulienkov, Kraposhnin, etc., it is 
possible to elaborate cluster schemes. The latter 
make it possible to adequately simulate crystal lat-
tice parameters of phases upon polymorphic trans-
formations in both metals and some metal alloys.
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