УДК 620.179.1:662.215

ИССЛЕДОВАНИЕ ЗАВИСИМОСТИ ПАРАМЕТРОВ АКУСТИЧЕСКОЙ ЭМИССИИ И УДАРНО-ВОЛНОВОЙ ЧУВСТВИТЕЛЬНОСТИ ПЛАСТИФИЦИРОВАННОГО ОКТОГЕНА ОТ ДИСПЕРСНОСТИ НАПОЛНИТЕЛЯ

Е. Н. Костюков, М. С. Никифорова, И. А. Спирин, И. И. Никифоров, С. Н. Баранов, О. В. Шевлягин, В. А. Бурнашов

РФЯЦ, ВНИИ экспериментальной физики, 607190 Capob, postmaster@ifv.vniief.ru

Проведено исследование зависимости параметров акустической эмиссии, регистрируемых при квазистатическом сжатии, и характеристик ударно-волновой чувствительности деталей из пластифицированного октогена от дисперсности наполнителя. С использованием зависимости параметров акустической эмиссии от дисперсности октогена описаны возможные варианты процесса деградации структуры взрывчатого вещества при ударно-волновом воздействии, которые рассматриваются в качестве причины различия ударно-волновой чувствительности.

Ключевые слова: акустическая эмиссия, ударно-волновая чувствительность, пластифицированный октоген, дисперсность, сумма импульсов, длительность, энергия, время задержки детонации, глубина возбуждения детонации, деградация структуры, ударная волна, взрывное превращение.

DOI 10.15372/FGV20230311

ВВЕДЕНИЕ

Как показано в [1], на физико-механические свойства и характер разрушения деталей из порошковых композитных материалов, имеющих в своем составе полидисперсный наполнитель, существенное влияние оказывает распределение различных его фракций по объему детали.

В значительной степени это относится и к изделиям из энергетических материалов, в качестве наполнителя для которых используется полидисперсное индивидуальное взрывчатое вещество (ВВ) октоген [2]. В этом случае фракционный состав наполнителя оказывает влияние и на газодинамические характеристики ВВ, в частности на ударно-волновую чувствительность (УВЧ) [3, 4].

Влияние дисперсности кристаллов октогена на чувствительность к ударно-волновому воздействию приведены в работе [5]. Представленные в ней данные свидетельствуют о значимом различии параметров, характеризующих чувствительность ВВ к ударной волне (УВ), в частности ВВ на основе октогена крупной и мелкой фракций. Также в работе [5] приведен подробный анализ возможных механизмов инициирования взрывного превращения в ВВ, основные из которых обусловлены взаимодействием УВ с порами в образце ВВ; фрикционным нагревом ВВ на контактных границах при ударном сжатии; структурными изменениями на микроуровне (например, при аннигиляции дислокаций). Однако при этом отмечается, что изучать процессы, происходящие при инициировании взрывного превращения при ударноволновом воздействии, непосредственно из эксперимента на сегодняшний день затруднительно. В связи с этим, несомненно, актуальной задачей является изыскание других методов для получения информации, способствующей развитию понимания этих процессов.

Здесь следует сказать, что рассматриваемые в работе [5] элементы структуры, задействованные в механизмах развития деформационных процессов, обусловленные воздействием на ВВ ударной волны, проявляют себя как источники возбуждения механических волн, фиксируемых методом акустической эмиссии (АЭ)

Исследование выполнено при финансовой поддержке Министерства науки и высшего образования РФ (соглашение с ОИВТ РАН № 075-15-2020-785).

[©] Костюков Е. Н., Никифорова М. С., Спирин И. А., Никифоров И. И., Баранов С. Н., Шевлягин О. В., Бурнашов В. А., 2023.

при квазистатическом деформировании материалов [6]. Существует также мнение, что разрушение твердых тел при динамических нагрузках имеет много общего с процессом разрушения при квазистатическом силовом воздействии [7], а началу взрывного превращения в деталях из ВВ предшествует механическое разрушение [8].

На основании вышеизложенного было сделано предположение об аналогии в развитии деформационных процессов при ударноволновом и при квазистатическом нагружении ВВ, вследствие которых в одном случае инициируется взрывное превращение, а в другом происходит разрушение детали.

Учитывая, что деформационные процессы во многом обусловлены структурой материала, для подтверждения этого предположения было проведено исследование с целью установить зависимости параметров акустической эмиссии и характеристик ударно-волновой чувствительности от дисперсности октогена как одного из главных факторов, определяющих структуру BB.

1. ПРЕДМЕТ ИССЛЕДОВАНИЙ И МЕТОДИКИ ИСПЫТАНИЙ

В качестве модельного материала для проведения экспериментов использовали пластифицированное ВВ на основе октогена различного фракционного состава, массовая доля которого составляла более 90 %. В качестве пластификатора использовали фторопласт-32Л (ОСТ 6-05-432-78).

Состав исходного материала для изготовления деталей различался соотношением массовых долей фракций крупнодисперсного октоггена, назовем его А, и мелкодисперсного октогена, назовем его Б. При этом специального разделения октогена по фракциям не проводилось, использовали его промышленные партии. Было изготовлено три группы деталей с соотношением фракций А/Б 100/0, 50/50, 0/100. Максимальный разброс плотности для всех деталей составлял не более 0.003 г/см³ при средней пористости ≈ 1 %. Гистограмма распределения фракций октогена по группам представлена на рис. 1.

Для анализа процесса накопления поврежденности в деталях при их механическом нагружении использовали сумму импульсов АЭ (N_{AE}), их длительность (t_{imp}) и энергию (E_{AE}). Параметры АЭ во время меха-

Рис. 1. Содержание разных фракций октогена в составе групп

нических испытаний регистрировали с помощью системы акустико-эмиссионного контроля A-Line32D (фирма «Интерюнис», Москва). Скорость нагружения составляла 0.2 кH/с.

Для оценки ударно-волновой чувствительности деталей из ВВ использовали метод типа gap-test с регистрацией распространения инициирующей ударной и детонационной волн радиоинтерферометрическим и электроконтактным методами, описание которых приведено в работах [9, 10]. Условия нагружения исследуемых ВВ: расходящаяся УВ с давлением во фронте около 4 ГПа, кривизна фронта 0.025 мм⁻¹, градиент давления за фронтом вдоль оси симметрии детали из ВВ -0.5 ГПа/мкс.

В качестве характеристик для оценки УВЧ использовали:

— время задержки детонации (τ_{ind} , мкс), которое рассчитывали по формуле

$$\tau_{ind} = t_{exp} - h/D,\tag{1}$$

где t_{exp} — время от момента входа УВ в пассивный заряд ВВ до выхода детонационной волны на его противоположную поверхность, h — толщина образца, D — скорость детонации;

— глубину возбуждения детонации (*H*, мм), которую определяли радиоинтерферометрическим методом.

2. ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ АКУСТИЧЕСКОЙ ЭМИССИИ ПРИ МЕХАНИЧЕСКОМ НАГРУЖЕНИИ ДЕТАЛЕЙ В УСЛОВИЯХ СЖАТИЯ

На рис. 2 представлены диаграммы суммы импульсов АЭ.

Диаграмма $N_{\rm AE}-t$, полученная при испытании деталей из состава, содержащего 100 % октогена Б, представляет собой в данном масштабе оси ординат практически прямую линию (3), совпадающую с осью абсцисс, что соответствует минимальному значению данного параметра для этого состава. Учитывая, что параметр суммы импульсов несет информацию об интегральной повреждаемости детали в процессе нагружения, об увеличении количества и площади микродефектов в ней, можно сказать, что детали из данного состава деформируются упруго. Для деталей, изготовленных из ВВ, содержащего крупнодисперсный октоген и его смесь с мелкодисперсным в соотношении 50/50, диаграммы суммы импульсов демонстрируют быстрый рост количества импульсов АЭ практически с начала нагружения, что соответствует накоплению поврежденности на микроуровне, т. е. является следствием рассмотренных выше механизмов развития деформационных процессов.

Различаются и значения длительности фиксируемых импульсов АЭ, диаграммы которых представлены на рис. 3. Видно, что диаграммы длительности импульсов АЭ для деталей, изготовленных из ВВ со 100%-м содержанием крупного октогена и из смеси октогена разных фракций, представлены непрерывной линией. Различие между ними заключается в более высоких значениях параметра для деталей из смесевого состава. Диаграмма t_{imp}-t для деталей из ВВ, содержащего 100 % октогена Б, отличается дискретным характером, когда на фоне минимальных значений наблюдаются отдельные выбросы. В табл. 1 представлены значения третьего из анализируемых параметров, а именно суммарной энергии импульсов А
Э $E_{\rm AE}.$ Как следует из таблицы, максимальное значение ЕАЕ зафиксировано для деталей из состава на основе смеси наполнителя с октогеном в соотношении его массовых долей A/E = 50/50. Минимальные значения этой характеристики имеют детали, изготовленные из октогена Б. Детали из ВВ, содержащего 100 % октогена А, занимают по данному показателю промежуточное положение.

Рис. 2. Диаграммы $N_{\rm AE}$ -*t* при испытании деталей в условиях сжатия:

соотношение массовых долей октогена А/Б для групп деталей: 1 — 100/0, 2 — 50/50, 3 — 0/100

Таблица 1 Суммарная энергия импульсов АЭ для деталей из составов с разным содержанием октогена крупной (А) и мелкой (Б) фракций

А/Б	$N_{\rm AE}$	$E_{\rm AE}$, усл. ед.
100/0	4926	299348
50/50	17805	1205520
0/100	35	2378

Рис. 3. Диаграммы $t_{imp} - t$ при испытании деталей в условиях сжатия:

соотношение массовых долей октогена А/Б для групп деталей: 1 — 100/0, 2 — 50/50, 3 — 0/100

Таким образом, из вышеизложенного следует:

— дисперсность наполнителя влияет на параметры АЭ;

— прямая зависимость между содержанием в составе разных фракций октогена и суммарной энергией импульсов АЭ отсутствует.

Следующий этап исследований заключался в определении характеристик УВЧ. В табл. 2 приведены средние значения времени задержки $\langle \tau_{ind} \rangle$ и глубины возбуждения $\langle H \rangle$ детонации, количественно характеризующие УВЧ ВВ. Здесь же для сопоставления зависимостей параметров АЭ и УВЧ от

Рис. 4. Электронные изображения поверхности деталей из BB на основе октогена в зоне их разрушения:

соотношение массовых долей октогена А/Б для групп деталей: а — 0/100, б — 100/0, в — 50/50

Таблица 2

Акустическая эмиссия и ударно-волновая чувствительность

А/Б	Еле, усл.ед.	$<\!H\!>,{\rm mm}$	$< \tau_{ind} >$, MKC
50/50	1205520	8 ± 0.1	1.35 ± 0.02
100/0	299348	7.6 ± 1.2	1.23 ± 0.05
0/100	2378	6.5 ± 0.3	1.11 ± 0.03

содержания в исследуемом составе октогена разных фракций указаны значения суммарной энергии импульсов АЭ ЕАЕ. Как следует из табл. 2, наблюдается аналогия в зависимости времени задержки детонации $<\tau_{ind}>$, глубины возбуждения <H> и суммарной энергии $E_{\rm AE}$, измеренной при статическом деформировании деталей, от содержания в ВВ октогена разной дисперсности. Максимальные значения $\langle H \rangle$ и $\langle \tau_{ind} \rangle$ и, соответственно, наиболее низкая УВЧ характерны для деталей, изготовленных на основе смеси октогена с соотношением A/B = 50/50. Детали из такого же состава имеют и максимальную суммарную энергию импульсов АЭ. Минимальные значения анализируемых показателей оказались у деталей из ВВ на основе высокодисперсного октогена Б.

Таким образом, наблюдается аналогия в зависимости параметров АЭ и параметров, характеризующих УВЧ, от дисперсности октогена, что может свидетельствовать о подобии механизмов деформирования ВВ при квазистатическом и ударно-волновом нагружении.

На сегодняшний день существуют разные мнения о доминирующих механизмах возбуждения и распространения взрывного превращения в BB. В данной работе с использованием полученной нами аналогии рассмотрен один из возможных вариантов — процесс деградации структуры ВВ, предшествующей началу взрывного превращения в деталях при воздействии УВ. Для большей объективности описания механизма развития поврежденности использованы снимки структуры исследованного ВВ, представленные на рис. 4.

3. АНАЛИЗ ВЗАИМОСВЯЗИ ПАРАМЕТРОВ АЭ, УВЧ И СТРУКТУРЫ ВВ

Фотография на рис. 4, а демонстрирует практически монолитную структуру деталей из ВВ, содержащего 100 % мелкодисперсного октогена Б, которая представляет собой множество плотно упакованных кристаллов мелкодисперсного октогена с прослойками пластификатора. При механическом сжатии в деформируемом материале такой структуры образуется однородное поле напряжений по всему объему детали. Низкая акустоактивность (минимальная сумма импульсов АЭ) и минимальная длительность импульсов АЭ, фиксируемых при квазистатическом сжатии, свидетельствуют о том, что весь объем материала деформируется упруго и энергетические затраты на развитие поврежденности минимальны.

Исходя из установленной аналогии зависимостей энергии АЭ и УВЧ от дисперсности октогена, можно предположить, что энергетические потери на развитие процесса деградации структуры будут минимальны и в случае нагружения детали ударной волной. Это в итоге выражается в минимальных (из представленных составов) значениях времени задержки и глубины возбуждения детонации, т. е. отвечает максимальным значениям УВЧ.

На рис. 4, б представлена структура детали из ВВ, содержащего 100 % крупнодисперсного октогена А. Здесь видны практически сохранившие целостность крупные кристаллы октогена с поврежденными кромками, не скрепленные пластификатором. При испытании на сжатие разрушение произошло по межкристаллическим границам. Быстрый рост длительности импульсов АЭ при сравнительно низкой акустоактивности (см. рис. 2, 3) свидетельствует о достижении уже на ранней стадии нагружения критического уровня поврежденности в отдельных зонах детали. Объединение микроповреждений в дефекты мезо- и макроуровня и их дальнейшее развитие при незначительных нагрузках определяют быстрое разрушение деталей.

Предполагается, что и при воздействии УВ на деталь из крупнодисперсного октогена А развивается деградация структуры ВВ с образованием множества разрозненных и разномасштабных очагов локализации микроповреждений. Соответственно, на этот процесс затрачивается часть энергии УВ, что приводит к снижению количества энергии, идущей на формирование «горячих» точек, либо к затягиванию процесса достижения критической концентрации «горячих» точек в такой неравновесной структуре. Как следствие, увеличивается время создания условий для начала взрывного превращения, что отражается на увеличении глубины возбуждения и времени задержки детонации, т. е. снижении УВЧ.

Структура детали на снимке рис. 4, в занимает промежуточное положение из трех вариантов распределения структурных элементов в детали. Видно, что крупные кристаллы октогена вкраплены в матрицу из высокодисперсного наполнителя, смешанного с частицами разрушенных кромок крупных кристаллов и с пластификатором. Такая более упорядоченная по сравнению с предыдущей структура ВВ способствует созданию более равномерного поля напряжений при деформировании детали при испытании на сжатие. Это снижает вероятность локализации микроповреждений и возникновения дефектных зон в деталях при малых нагрузках. В результате увеличивается продолжительность стадии развития поврежденности до критической концентрации. Следует отметить, что заключительная стадия разрушения для этих деталей характеризуется таким же быстрым ростом длительности импульсов АЭ, как и для деталей, изготовленных из ВВ, содержащих 100 % октогена А. Различие заключается в еще большей длительности импульсов АЭ.

Предполагается, что и при воздействии УВ на деталь, изготовленную из ВВ, содержащего смесь октогена А и Б в соотношении 50/50, имеют место затраты энергии на процессы, связанные с разрушением структуры. Причем, учитывая относительно большую длительность импульсов АЭ, пропорциональную размеру или количеству развивающихся повреждений, в данном случае затраты энергии больше, чем при возбуждении взрывного превращения в детали из ВВ на основе октогена А. В результате для деталей из смесевого состава глубина возбуждения и время задержки детонации максимальны, т. е. УВЧ будет минимальной.

выводы

На примере результатов исследования пластифицированного октогена получены экспериментальные зависимости параметров акустической эмиссии при квазистатическом сжатии и зависимости характеристик чувствительности при ударно-волновом воздействии от дисперсности октогена. Эти зависимости свидетельствуют об идентичности механизмов деформирования ВВ при данных видах воздействия. С использованием зависимости параметров АЭ от дисперсности октогена описаны возможные варианты начала процесса взрывного превращения в ВВ различной структуры, являющиеся причиной различия УВЧ.

ЛИТЕРАТУРА

- 1. Роман О. В., Скороход В. В., Фридман Г. Р. Ультразвуковой и резистометрический контроль в порошковой металлургии. Мн.: Выш. шк., 1989.
- 2. Никифорова М. С., Костюков Е. Н. Влияние размеров кристаллов наполнителя на параметры акустической эмиссии при испытании на растяжение деталей из пластифицированного октогена // Дефектоскопия. — 2020. — № 9. — С. 20–27. — DOI: 10.31857/S013030822009002X.
- Взрывчатые вещества: учеб. пособие. Т.
 Взрывчатые вещества. Основные свойства. Технология изготовления и переработки / под ред. Л. В. Фомичевой. — Саров: РФЯЦ-ВНИИЭФ, 2007.

- 4. Соловьев В. С. Некоторые особенности ударно-волнового инициирования взрывчатых веществ // Физика горения и взрыва. 2000. Т. 36, № 6. С. 65–76.
- 5. Бельский В. М. Микроструктура твердых взрывчатых веществ и их ударно-волновая чувствительность // XIII Харитоновские тематические научные чтения «Экстремальные состояния вещества, детонация, ударные волны»: тр. междунар. конф. Саров: РФЯЦ-ВНИИЭФ, 2011. С. 124–133.
- Костюков Е. Н., Никифорова М. С., Никифоров И. И. и др. Прогнозирование прочностных характеристик деталей из энергетических материалов с использованием метода акустической эмиссии // Механика композиционных материалов и конструкций. 2019. Т. 25, № 2. С. 219–227.
- 7. Глушак Б. Л., Новиков С. А., Рузанов А. И., Садырин А. И. Разрушение деформируемых сред при импульсных нагрузках. — Нижний Новгород: Изд-во Нижнегород. ун-та, 1992.
- 8. Новиков С. А. Разрушение материалов при воздействии интенсивных ударных нагрузок // Сорос. образоват. журн. 1999. № 8. С. 116–121.
- Баталов С. В., Филин В. П., Шапошников В. В. Радиоволновой метод исследования физических явлений и химических превращений в гетерогенных ВВ под действием УВ // Физика горения и взрыва. — 1991. — Т. 27, № 6. — С. 107–109.
- Жерноклетов М. В. Методы исследования свойств материалов при интенсивных динамических нагрузках. — Саров: РФЯЦ-ВНИИЭФ, 2005.

Поступила в редакцию 07.06.2022. После доработки 05.07.2022. Принята к публикации 07.09.2022.