УДК 531.3+537.8

ВЛИЯНИЕ УПРУГОСТИ НА ДИНАМИКУ СВЕРХПРОВОДЯЩЕГО РОТОРА, ВРАЩАЮЩЕГОСЯ В МАГНИТНОМ ПОЛЕ

Ю. М. Урман, В. В. Новиков

Нижегородский государственный педагогический университет, 603005 Нижний Новгород

При сферической форме внешней поверхности роторов некоторых типов неконтактных гироскопов создаются условия, при которых силовое поле обеспечивает стабильность центра масс по отношению к основанию и оказывает незначительное влияние на угловые движения ротора. Однако существуют эффекты (например, эффект Барнетта — Лондона), которые приводят к появлению моментов механических сил даже для сферических тел. Изучено влияние упругости ротора на движение в магнитном поле сверхпроводящего твердого деформируемого тела сферической формы и показано, что в первом приближении момент механических сил, действующий на тело в магнитном поле, пропорционален квадрату угловой скорости. Исследуется влияние этого момента на динамику угловых движений ротора.

1. Влияние магнитного поля на вращающийся сверхпроводящий ротор. Если тело не вращается, то в окружающем его пространстве магнитное поле H является суперпозицией полей, создаваемых источниками H_0 и экранирующими токами H_3 в тонком поверхностном слое сверхпроводника, и удовлетворяет следующим уравнениям и условиям на внешней поверхности ротора S_1 и вдали от него [1]:

rot
$$\boldsymbol{H} = 0$$
, div $\boldsymbol{H} = 0$, $\boldsymbol{H} \cdot \boldsymbol{n}_0^{(1)} = 0$ на S_1 , $\boldsymbol{H}_{\mathfrak{H}} \to 0$ при $|\boldsymbol{r}| \to \infty$, (1.1)

где $\boldsymbol{n}_0^{(1)}$ — вектор нормали к поверхности S_1 . Бесконтактное удержание тела обеспечивается магнитным давлением \boldsymbol{P} $(H^2/(8\pi))\boldsymbol{n}_0^{(1)}$, обусловленным разрывом на S_1 компонент тензора напряжений Максвелла. Магнитное давление вызывает деформацию ротора. В зависимости от величины магнитного поля и упругих свойств тела эта деформация либо не принимается во внимание ввиду малости, либо учитывается как некоторая малая исходная несферичность внешней поверхности ротора.

При вращении ротор деформируется, что приводит к возмущению магнитного поля H_{2} , характеризуемому вектором H_{1} , для которого имеем задачу

rot
$$\boldsymbol{H}_1 = 0$$
, div $\boldsymbol{H}_1 = 0$, $\boldsymbol{H}_1 \cdot \boldsymbol{n}_0^{(1)} + \boldsymbol{H} \cdot \boldsymbol{n}_1^{(1)} = 0$ на S_1 ,
 $\boldsymbol{H}_1 \to 0$ при $|\boldsymbol{r}| \to \infty$, (1.2)

где $\boldsymbol{n}_1^{(1)}$ — поправка к $\boldsymbol{n}_0^{(1)}$, связанная с возмущением поверхности тела при вращении.

Наряду с системой координат X_i (i = 1, 2, 3), сопряженной с источниками поля, в которой вычисляются H и H_1 , введем систему координат Z_i . Общим началом этих систем координат является закрепленная точка (центр масс). В системе координат Z_i ,

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 98-01-00129).

вращающейся с угловой скоростью $\boldsymbol{\omega}$, отсутствует движение тела как целого, поэтому выполняются интегральные соотношения

$$\int_{V} \boldsymbol{U} \, dV = 0, \qquad \int_{V} \boldsymbol{r} \times \boldsymbol{U} \, dV = 0 \tag{1.3}$$

(U - вектор деформации). Здесь и далее используются безразмерные переменные и параметры. Для соответствующих физических величин в качестве масштабных множителей приняты радиус ротора R, характерное время движения его как целого t_* (вращение системы координат Z_i относительно X_i) и параметр H_* , характеризующий внешнее магнитное поле.

В роторе имеется полость, предназначенная для уменьшения массы вывешенного в магнитном поле тела и обеспечения его вращения в заданном направлении (соотношение между моментами инерции в исходном состоянии определяется равенством $I_{11}^0 = I_{22}^0 = I_{33}^0$). Уравнения движения элемента объема и условия на поверхности ротора в системе

Уравнения движения элемента объема и условия на поверхности ротора в системе координат Z_i имеют вид

$$(\chi + 1) \operatorname{grad} \operatorname{div} \boldsymbol{U} + \Delta \boldsymbol{U} = \varepsilon (\boldsymbol{U} + \boldsymbol{F}); \tag{1.4}$$

$$(\sigma_{ij} - \delta T_{ij})(n_{0j}^{(1)} + n_{1j}^{(1)}) = 0 \quad \text{ha} \quad S_1, \qquad \sigma_{ij}(n_{0j}^{(2)} + n_{1j}^{(2)}) = 0 \quad \text{ha} \quad S_2, \tag{1.5}$$

где $\chi = \lambda/\mu$; λ , μ — постоянные Ламе; $\varepsilon = \rho R^2/(\mu t_*^2)$; ρ — плотность; $\delta = H_*^2/\mu$; $\mathbf{F} = \boldsymbol{\omega} \times (\boldsymbol{\omega} \times \mathbf{r}) + \dot{\boldsymbol{\omega}} \times \mathbf{r} + 2\dot{\boldsymbol{\omega}} \times \dot{\mathbf{U}}$ — вектор сил инерции; σ_{ij} — тензор напряжений; $\mathbf{n}^{(2)} = \mathbf{n}_0^{(2)} + \mathbf{n}_1^{(2)}$ — вектор нормали к внутренней поверхности S_2 ; $T_{ij} = (1/(4\pi))(H_iH_j - \delta_{ij}H^2/2)$.

Вообще говоря, ротор испытывает также действие поверхностной и объемной сил неэлектромагнитной природы, что должно найти отражение в соотношениях (1.4), (1.5). Примером могут служить гравитационная сила и сопротивление окружающей среды. Считаем, что влияние этих сил на деформирование ротора пренебрежимо мало.

Будем рассматривать только угловые движения ротора, что возможно в случае, когда частоты углового движения существенно меньше нижней частоты собственных упругих колебаний тела (т. е. справедливо неравенство $\varepsilon \ll 1$) [2].

Вектор деформации $\boldsymbol{U}(\boldsymbol{r},t)$ представим в виде ряда по параметрам ε, δ :

$$\boldsymbol{U} = \varepsilon \boldsymbol{U}_1 + \delta \varepsilon \boldsymbol{U}_2 + \dots \tag{1.6}$$

Подставив U в (1.3)–(1.5), получим задачу

$$\int_{V} \boldsymbol{U}_{1} \, dV = 0, \quad \int_{V} \boldsymbol{r} \times \boldsymbol{H}_{1} \, dV = 0, \quad (\chi + 1) \, \text{grad} \, \text{div} \, \boldsymbol{U}_{1} + \Delta \boldsymbol{U}_{1} = \boldsymbol{F}^{(1)},$$

$$\sigma_{ij}^{(1)} n_{0j}^{(k)} = 0 \quad \text{ha} \quad S_{k} \qquad (k = 1, \ 2),$$
(1.7)

где $\sigma_{ij}^{(1)} = \sigma_{ij}(U_{1m})$ — тензор напряжений, вычисляемый по U_1 ; $F^{(1)} = \boldsymbol{\omega} \times (\boldsymbol{\omega} \times \boldsymbol{r}) + \dot{\boldsymbol{\omega}} \times \boldsymbol{r}$. В соответствии с (1.7) первый член ряда (1.6) представляет собой деформацию сво-

бодно вращающегося тела в отсутствие магнитного поля. Для нахождения вектора $U_2(r,t)$ необходимо рассмотреть совместно электродинамические уравнения для $H, H_1 = \varepsilon h$ и систему уравнений

$$\begin{split} \int_{V} \boldsymbol{U}_2 \, dV &= 0, \quad \int_{V} \boldsymbol{r} \times \boldsymbol{H}_2 \, dV = 0, \quad (\chi + 1) \operatorname{grad} \operatorname{div} \boldsymbol{U}_2 + \Delta \boldsymbol{U}_2 = 0, \\ (\sigma_{ij}^{(2)} - t_{ij}) n_{0j}^{(1)} - T_{ij}^{(0)} n_{1j}^{(1)} = 0 \quad \text{на} \quad S_1, \qquad \sigma_{ij}^{(2)} n_{0j}^{(2)} = 0 \quad \text{на} \quad S_2, \\ \text{где} \; \sigma_{ij}^{(2)} &= \sigma_{ij} (U_{2m}); \; n_{1j}^{(1)} = \varepsilon \Delta n_j (U_{1m}); \; t_{ij} = (1/(4\pi)) (H_i h_j + H_j h_i - \delta_{ij} \boldsymbol{h} \cdot \boldsymbol{H}). \end{split}$$

Предполагается, что в недеформированном состоянии внешняя поверхность тела является сферической. В случае несферичности поверхности уравнения задачи (1.7) не меняются, причем при расчете U_1 следует считать S_1 сферической поверхностью. Влияние несферичности проявляется при вычислении последующих членов ряда (1.6).

Движение ротора определяется вектором H(r,t) и угловой скоростью $\omega(t)$. Решением системы (1.7) являются U_1 и ω , соответствующие свободному движению абсолютно твердого тела с главным моментом инерции I_{ii}^0 . Если рассматривать следующее приближение по малым параметрам задачи, то можно найти U_2 и поправку к ω , связанную с учетом упругих свойств ротора. Однако можно получить уравнения для компонент угловой скорости и без решения этой сложной задачи.

2. Уравнение движения деформируемого ротора. Умножим (1.4) векторно на r + U и проинтегрируем по объему тела с учетом условий (1.5). Подставив в полученное соотношение εU_1 вместо U, находим

$$\boldsymbol{K} + \boldsymbol{\omega} \times \boldsymbol{K} = \boldsymbol{M}(\boldsymbol{H}), \tag{2.1}$$

где $K_i = I_{ii}^0 \omega_i + \varepsilon I_{ij}^{(1)} \omega_j$ — компоненты вектора кинетического момента; $I_{ij}^1 = 2 \int_V (r_k U_{1k} \delta_{ij} - V_{1k} \delta_{ij}) dv_j$

 $r_i U_{1j} dV; M$ — момент сил, обусловленный деформацией и магнитным полем.

Преобразуем уравнение (2.1) к виду, который оно имело бы в случае абсолютно твердого тела:

$$\mathbf{K}^{(0)} + \mathbf{\omega} \times \mathbf{K}^{(0)} = \mathbf{M}_{ynp} + \mathbf{M}(\mathbf{H}), \qquad K_i^{(0)} = I_{ij}^{(0)} \omega_j.$$
 (2.2)

Переход от деформируемого ротора к модели абсолютно твердого тела является естественным с точки зрения инженерных расчетов движения гироскопа и обработки экспериментальных данных. Упругость ротора учитывается с помощью момента сил $M_{\rm ynp}$ в правой части уравнения (2.2), который зависит только от упругих свойств тела и угловой скорости. Момент M(H) обусловлен деформацией вращающегося ротора в невозмущенном поле и записывается в виде

$$\boldsymbol{M} = \delta \int\limits_{S_1} \boldsymbol{r} \times \boldsymbol{T} \, dS.$$

Таким образом, задача об угловых движениях деформируемого сверхпроводящего ротора в магнитном поле сводится к изучению угловых движений абсолютно твердого тела под действием моментов M_{ynp} и M(H), причем для их вычисления требуется лишь знание деформации тела при его вращении в отсутствие поля.

3. Угловые движения деформируемого ротора в магнитном поле. Считаем, что внешнее поле осесимметричное, а ось OX_3 совпадает с осью подвеса. В рассматриваемом приближении Z_i представляет собой систему координат, жестко связанную с абсолютно твердым телом, оси которой направлены по главным осям эллипсоида инерции $(I_{11}^0 \approx I_{22}^0 \approx I_{33}^0)$. Введем также систему координат Y_i , связанную с вектором кинетического момента абсолютно твердого тела, причем направления OY_3 и $K^{(0)}$ совпадают.

Исследуем движение ротора, которое будем интерпретировать как движение вектора кинетического момента $\mathbf{K}^{(0)}$ относительно X_i и накладывающееся на него движение тела (системы координат Z_i) относительно $\mathbf{K}^{(0)}$. Уравнение движение вектора $\mathbf{K}^{(0)}$ в системе координат X_i имеет вид $d\mathbf{K}^0/dt = \mathbf{M}_{vnp} + \mathbf{M}(\mathbf{H})$. Положение системы координат Z_i относительно Y_i задается углами Эйлера. Тогда движение ротора относительно вектора кинетического момента определяется системой уравнений

$$\begin{split} \dot{\alpha} &= K^{(0)} \Big(\frac{\cos^2 \gamma}{I_{11}^0} + \frac{\sin^2 \gamma}{I_{22}^0} \Big) - \frac{1}{K^{(0)}} \Big(\operatorname{ctg} \rho \, \frac{dV}{d\rho} + \operatorname{ctg} \beta \, \frac{dV}{d\beta} \Big), \\ \dot{\beta} &= K^{(0)} \Big(\frac{1}{I_{22}^0} - \frac{1}{I_{11}^0} \Big) \sin \beta \sin \gamma \cos \gamma + \frac{1}{K^{(0)} \sin \beta} \Big(\cos \beta \, \frac{\partial V}{\partial \alpha} - \frac{\partial V}{\partial \gamma} \Big), \\ \dot{\gamma} &= K^{(0)} \cos \beta \Big(\frac{1}{I_{33}^0} - \frac{\cos^2 \gamma}{I_{11}^0} - \frac{\sin^2 \gamma}{I_{22}^0} \Big) + \frac{1}{K^{(0)} \sin \beta} \, \frac{\partial V}{\partial \beta}, \end{split}$$

где α , β , γ — углы прецессии, нутации и собственного вращения соответственно; ρ — угол между осями OX_3 и OY_3 .

Силовую функцию V, соответствующую моментам M_{ynp} , M(H) при вращении ротора в осесимметричном поле, представим в виде скалярного произведения неприводимых тензоров [3, 4], удобном для решения задачи. В нем учитывается приращение кинетической энергии, связанное с собственной упругостью тела, и энергия взаимодействия невозмущенного поля с деформируемым при вращении телом, имевшим в исходном состоянии сферическую поверхность.

При учете упругих свойств тела его кинетическая энергия $T_0 = I_{ii}^0 \omega_i^2/2$ увеличивается на величину $T_{\text{упр}} = \varepsilon \alpha_{ijkl} \omega_i \omega_j \omega_k \omega_l$. Из четырех векторов $\boldsymbol{\omega}$ можно составить только скаляр ω^4 и неприводимые тензоры второго и четвертого рангов $\omega^2 \{ \boldsymbol{\omega}_1 \otimes \boldsymbol{\omega}_1 \}_2$, $\{ \{ \{ \boldsymbol{\omega}_1 \otimes \boldsymbol{\omega}_1 \}_2 \otimes \boldsymbol{\omega}_1 \}_3 \otimes \boldsymbol{\omega}_1 \}_4$, которые выражаются через сферические функции [3]:

$$\{\boldsymbol{\omega}_1 \otimes \boldsymbol{\omega}_1\}_{2m} = \omega^2 \sqrt{\frac{2}{3}} Y_{2m}(\boldsymbol{e}), \quad \{\{\{\boldsymbol{\omega}_1 \otimes \boldsymbol{\omega}_1\}_2 \otimes \boldsymbol{\omega}_1\}_3 \otimes \boldsymbol{\omega}_1\}_{4m} = 2\sqrt{\frac{2}{35}} \omega^4 Y_{4m}(\boldsymbol{e}).$$

Тогда энергию T_{ynp} можно представить в виде

$$T_{\text{ymp}} = \varepsilon \omega^4 [a_0 + a_2 \cdot Y_2(\boldsymbol{e}) + a_4 \cdot Y_4(\boldsymbol{e})].$$
(3.1)

Здесь $Y_{lm}(e)$ — сферическая функция, определенная без множителя $\sqrt{2l+1}/(4\pi)$; e — единичный вектор, направленный по ω ; a_0 — скаляр; a_2 , a_4 — неприводимые тензоры второго и четвертого рангов, состоящие из компонент тензора α_{ijkl} ; $\{P_n \otimes q_n\}_s$ — тензорное произведение двух неприводимых тензоров одного ранга [3].

Выражение для $T_{\text{упр}}$ в общем случае включает 15 независимых компонент, так как тензор a_2 имеет пять, а a_4 — девять компонент. Симметрия тела может уменьшить число независимых компонент $T_{\text{упр}}$ [5].

Соотношение между моментами инерции I_{ii}^0 определяется внутренней полостью в роторе. Величины a_0, a_2, a_4 являются функциями параметров, характеризующих полость, и, следовательно, зависят от моментов инерции. Поскольку в данном случае главные моменты близки по величине, в выражении (3.1) можно ограничиться первым членом, так как порядок параметров a_2 и a_4 определяется (в отличие от a_0) разностью моментов инерции.

Энергия взаимодействия невозмущенного поля с упругим телом, которая зависит от момента M_2 , является квадратичной функцией ω и H. Имеется два выделенных направления ω и η (η — единичный вектор, направленный по OX_3). Из двух векторов η можно построить скаляр и тензор второго ранга. Это относится и к угловой скорости ω . Поэтому энергия V_H выражается через неприводимые тензоры в виде

$$V_H = \delta[B\omega^2 + (d/2)(\{\boldsymbol{\eta}_1 \otimes \boldsymbol{\eta}_1\}_2 \cdot \{\boldsymbol{\omega}_1 \otimes \boldsymbol{\omega}_1\}_2)],$$

где *B*, *d* — величины, зависящие от гармоник поля и упругих постоянных тела.

Если воспользоваться соотношением [3] $\{\eta_1 \otimes \eta_1\}_2 \cdot \{\omega_1 \otimes \omega_1\}_2 = (\eta \cdot \omega)^2 - \omega^2/3$, то выражение V_H можно привести к виду $V_H = \delta[\tilde{B}\omega^2 + (d/2)(\eta \cdot \omega)^2]$. Вычисленный с использованием V_H момент M(H) в общем случае имеет вид

$$\boldsymbol{M}(\boldsymbol{H}) = d(\boldsymbol{\eta} \cdot \boldsymbol{\omega})(\boldsymbol{\eta} \times \boldsymbol{\omega}). \tag{3.2}$$

Таким образом, в рассматриваемом приближении силовая функция Vопределяется формулой

$$V = \varepsilon a \omega^4 + \delta [\tilde{B} \omega^2 + (d/2) (\boldsymbol{\eta} \cdot \boldsymbol{\omega})^2].$$
(3.3)

В силу наличия в (3.3) малых параметров кинетическая энергия абсолютно твердого тела значительно больше максимального значения силовой функции. Так как моменты инерции близки, будем считать, что $I_{ii}^0 = I^0 + \delta^* \tilde{I}_{ii}$ (I^0 — момент инерции сферы, δ^* малый параметр одного порядка с ε и δ). В нулевом приближении $\mathbf{K}^0 = \text{const}, \beta = \beta_0 = \text{const}, \gamma = \gamma_0 = \text{const}, \dot{\alpha} = K^0/I^0$, т. е. $\omega = K^0/I^0$. После подстановки $\boldsymbol{\omega}$ в (3.2) и (3.3) получим следующие уравнения первого приближения:

$$\frac{d\mathbf{K}^{0}}{dt} = \frac{\delta d}{(I^{0})^{2}} \left(\boldsymbol{\eta} \times \mathbf{K}^{0} \right) \left(\boldsymbol{\eta} \cdot \mathbf{K}^{0} \right), \qquad \dot{\alpha} = K^{0} \left(\frac{\cos^{2} \gamma}{I_{11}^{0}} + \frac{\sin^{2} \gamma}{I_{22}^{0}} \right),$$

$$\dot{\beta} = K^{0} \left(\frac{1}{I_{22}^{0}} - \frac{1}{I_{22}^{0}} \right) \sin \beta \sin \gamma \cos \gamma, \qquad \dot{\gamma} = K^{0} \cos \beta \left(\frac{1}{I_{33}^{0}} - \frac{\cos^{2} \gamma}{I_{11}^{0}} - \frac{\sin^{2} \gamma}{I_{22}^{0}} \right).$$

(3.4)

Из первого уравнения в (3.4) следует, что $|\mathbf{K}^0| = \text{const}, \mathbf{\eta} \cdot \mathbf{K}^0 = \text{const}, \tau. е.$ проекция вектора \mathbf{K}^0 на направление η остается постоянной.

Таким образом, в рассматриваемом приближении кинетический момент K^0 , величина которого остается постоянной, прецессирует вокруг вектора η при постоянном угле прецессии. Скорость прецессии определяется равенством

$$\Omega_{\rm np} = \frac{\delta d}{I_0^2} K^0 \cos \rho = \frac{\delta d}{I_0^2} \boldsymbol{K}^0 \cdot \boldsymbol{\eta},$$

а тело совершает свободное движение Эйлера — Пуассона вокруг вектора кинетического момента. Скорость прецессии $\dot{\alpha}$ отличается от соответствующих характеристик свободной нутации тела на малую величину.

В заключение сделаем следующие замечания. Деформация ротора при вращении может рассматриваться (аналогично моменту Лондона [6, 7] или дисбалансу [8]) как неоднородность, воздействующая на датчик смещения. Сигнал с датчика изменяет ток в поддерживающих катушках, что приводит к силовым воздействиям на ротор. Поскольку в системе управления имеются корректирующие цепи, в результате автомодуляции тока подвеса появляется средний за оборот ненулевой ускоряющий или тормозящий момент.

Аналогично можно исследовать движение электростатического гироскопа, заменив вектор H на напряженность электрического поля E и изменив краевые условия электродинамических задач (1.1), (1.2).

ЛИТЕРАТУРА

- Ландау Л. Д., Лифшиц Е. М. Теоретическая физика. Электродинамика сплошных сред. М.: Наука, 1982. Т. 7.
- 2. Черноусько Ф. Л. Влияние собственной упругости и диссипации на движение твердого тела относительно центра масс // Динамика сплошной среды: Сб. науч. тр. / АН СССР. Сиб. отдние. Ин-т гидродинамики. 1979. Вып. 41. С. 118–122.

- 3. Варшалович Д. А., Москалев А. Н., Херсонский В. К. Квантовая теория углового момента. Л.: Наука. Ленингр. отд-ние, 1975.
- 4. Урман Ю. М. Неприводимые тензоры и их применение в задачах движения твердого тела // Механика твердого тела: Респ. межвед. сб. Киев: Наук. думка, 1983. Вып. 15. С. 75–87.
- 5. Денисов Г. П., Новиков В. В. О свободных движениях деформируемого твердого тела, близкого к шару // Изв. АН СССР. Механика твердого тела. 1983. № 3. С. 43–50.
- 6. Урман Ю. М. Эффект Барнетта Лондона и его влияние на угловые движения твердого тела в магнитном поле // Журн. техн. физики. 1986. Т. 56, № 11. С. 2081–2086.
- 7. Урман Ю. М. Влияние эффекта Барнетта Лондона на движение сверхпроводящего ротора в неоднородном магнитном поле // Журн. техн. физики. 1998. Т. 68, № 8. С. 10–14.
- Линьков Р. В., Урман Ю. М. Влияние системы регулирования подвеса на движение несбалансированного ротора неконтактного гироскопа // Изв. АН СССР. Механика твердого тела. 1986. № 4. С. 5–12.

Поступила в редакцию 25/V 2000 г.