2009. Том 50, № 6

Ноябрь – декабрь

C. 1245 – 1248

КРАТКИЕ СООБЩЕНИЯ

УДК 548.737:541.49

СТРУКТУРА И МАГНИТНЫЕ СВОЙСТВА БИСХЕЛАТА Си(II) СО СПИН-МЕЧЕНЫМ АМИНОЕНАЛЕМ

© 2009 Е.В. Третьяков^{1,2}*, О.В. Коренева¹, Г.В. Романенко¹, А.С. Богомяков^{1,2}, В.И. Овчаренко^{1,2}, Р.З. Сагдеев¹

¹Учреждение Российской академии наук Институт "Международный томографический центр" СО РАН, Новосибирск

²Новосибирский государственный университет

Статья поступила 7 ноября 2008 г.

С доработки — 24 декабря 2008 г.

Исследована молекулярная и кристаллическая структура бисхелата Cu(II) с депротонированным стабильным нитроксильным радикалом 4,4,5,5-тетраметил-2-(2-оксо-1-(4,4,5,5-тетраметилимидазолидин-2-илиден)этил)-4,5-дигидро-1*Н*-имидазол-3-оксид-1-оксилом (HL). Найдено, что упаковка комплекса образована отдельными молекулами CuL₂. Атомы O групп >N \Rightarrow O не принимают участия в координации ионом Cu²⁺, и поэтому в CuL₂ реализуются лишь слабые обменные взаимодействия между парамагнитными центрами.

Ключевые слова: нитронилнитроксилы, комплексы меди(II), кристаллическая структура, магнитные свойства.

Комплексы Cu(II) со стабильными нитроксильными радикалами представляют собой ценные объекты для теоретического анализа обменных каналов в сложных многоспиновых системах [1—3]. На их основе были получены гетероспиновые "дышащие кристаллы" [4—9], изучен нетривиальный эффект существенного изменения величины энергии обменного взаимодействия при изменении температуры [10, 11], и впервые для гетероспиновых систем продемонстрирована возможность генерации LIESST эффекта [12]. Бисхелаты Cu(II) с депротонированными спин-мечеными енаминокетонами использовали при выращивании монокристаллов низкотемпературных ферромагнетиков, не содержащих "классических" магнитных элементов, и при изучении анизотропии их магнитных свойств [13—16]. Это побудило нас получить комплекс Cu(II) с депротонированным спин-меченым аминоеналем — 4,4,5,5-тетраметил-2-(2-оксо-1-(4,4,5,5-тетраметилимидазолидин-2-илиден)этил)-4,5-дигидро-1*H*-имидазол-3-оксид-1-оксилом (HL), синтез которого был недавно описан [17], исследовать его структуру и магнитные свойства.

Синтез комплекса CuL₂. К раствору нитронилнитроксила HL (50 мг, 0,15 ммоля) в 3 мл MeOH прибавляли раствор Cu(OAc)₂ · H₂O (20 мг, 0,10 ммоля) в 4 мл MeOH и затем 3 мл H₂O.

^{*} E-mail: tev@tomo.nsc.ru

КРАТКИЕ СООБЩЕНИЯ

Таблица 1

Связь	d	Связь	d	Связь	d
Cu - N(4)	1.925(2)	C(8)—C(9)	1.375(3)	N(1A) - C(4A)	1.499(3)
Cu—O(3)	1,937(2)	C(8) - C(10)	1,441(3)	C(1A) - N(2A)	1,497(3)
O(1) - N(1)	1,288(3)	C(9)—O(3)	1,270(3)	O(2A)— $N(2A)$	1,274(2)
N(1)—C(7)	1,343(3)	C(10)—N(4)	1,315(3)	N(2A)—C(7A)	1,351(3)
N(1)—C(1)	1,502(4)	C(10)—N(3)	1,356(3)	C(7A)—C(8A)	1,454(3)
C(4)—N(2)	1,503(4)	Cu—N(4A)	1,934(2)	C(8A)—C(9A)	1,367(3)
N(2)—O(2)	1,272(3)	Cu—O(3A)	1,938(2)	C(8A)—C(10A)	1,434(3)
N(2)—C(7)	1,358(4)	O(1A)—N(1A)	1,293(2)	C(9A)—O(3A)	1,273(3)
C(7)—C(8)	1,451(3)	N(1A)—C(7A)	1,336(3)	C(10A)—N(4A)	1,314(3)
				C(10A)—N(3A)	1,365(3)
Угол	ω	Угол	ω	Угол	ω
N(4) Cu $N(4A)$	148 41(8)	N(4) = C(10) = N(3)	113 3(2)	O(2A) $N(2A)$ $C(1A)$	121 6(2)
N(4) - Cu - N(4X) N(4) - Cu - O(3)	9278(7)	N(4) - C(10) - N(3) N(4) - C(10) - C(8)	113,3(2) 124 A(2)	C(7A) = N(2A) = C(1A)	121,0(2) 112 8(2)
N(4A) = Cu = O(3)	92,70(7) 98 37(7)	N(3) - C(10) - C(8)	127,7(2) 122,2(2)	N(1A) - C(7A) - N(2A)	108.3(2)
N(4A) = Cu = O(3) O(1) = N(1) = C(7)	126.8(2)	C(10) = C(10) = C(14)	122,2(2) 107 2(2)	N(1A) = C(7A) = N(2A) N(1A) = C(7A) = C(8A)	100, 5(2) 127 6(2)
O(1) - N(1) - C(1)	120, 5(2)	C(10) = N(3) = C(14) C(10) = N(4) = C(11)	107,2(2) 107,1(2)	N(2A) - C(7A) - C(8A)	127,0(2) 124 0(2)
C(7) = N(1) = C(1)	120,3(2) 112 1(3)	C(10) = N(4) = C(11) C(10) = N(4) = Cu	107,1(2) 126 3(1)	n(2A) - C(7A) - C(8A) n(3A) - C(9A) - C(8A)	124,0(2) 128 3(2)
O(2) - N(2) - O(7)	112,1(3) 125.8(2)	C(10) = N(4) = Cu C(11) = N(4) = Cu	120,5(1) 126 6(1)	C(9A) - C(3A) - C(0A)	120, 5(2) 125 7(2)
O(2) = N(2) = C(4)	123,0(2) 122,2(2)	$O(3) - C_1 - O(3A)$	120,0(1) 140 52(8)	N(4A) = C(10A) = N(3A)	123,7(2) 113 0(2)
C(7) = N(2) = C(4)	122,2(2) 111 5(3)	N(4) - Cu - O(3A)	$97\ 20(7)$	N(4A) - C(10A) - C(8A)	173,0(2) 124 6(2)
N(1) - C(7) - N(2)	107.7(2)	$N(4A) = C_{11} = O(3A)$	97,20(7) 92,76(7)	N(3A) - C(10A) - C(8A)	124,0(2) 122 3(2)
N(1) - C(7) - C(8)	107,7(2) 128 3(3)	O(1A) - N(1A) - C(7A)	125.6(2)	C(10A) = N(3A) = C(14A)	122,5(2) 107 5(2)
N(1) = C(7) = C(8)	120,5(3) 1240(2)	O(1A) - N(1A) - C(4A)	120,0(2) 120,9(2)	C(10A) = N(4A) = C(11A)	107, 3(2) 107 7(2)
O(3) - C(9) - C(8)	123,0(2) 128 2(2)	C(7A) = N(1A) = C(4A)	113 1(2)	C(10A) - N(4A) - Cu	125 9(1)
C(9) - O(3) - Cu	125,2(2) 125,5(2)	O(2A)-N(2A)-C(7A)	125,3(2)	C(11A)— $N(4A)$ — Cu	126,4(1)

Избранные длины связей d, Å и валентные углы ω , град. для CuL₂

Открытую колбу с реакционной смесью помещали в термостат (MEMMERT). После выдержки смеси в течение суток при 25 °C отфильтровывали образовавшиеся блестящие темно-синие кристаллы, промывали водой и сушили на воздухе. Выход 34 мг (62 %). ИК спектр (KBr), ν/cm^{-1} : 422, 473, 540, 607, 738, 770, 870, 898, 932, 965, 998, 1030, 1141, 1176, 1214, 1276, 1340, 1367, 1445, 1521, 1593, 2924, 2972, 3190 уш, 3457 уш. Найдено, %: С 54,2, Н 7,3, N 15,5. Вычислено для $C_{32}H_{52}CuN_8O_6$, %: С 54,3, Н 7,4, N 15,8.

Кристаллы CuL₂ отбирали непосредственно из реакционной смеси. Массив отражений от монокристалла CuL₂ получен на дифрактометре SMART APEX CCD (Bruker AXS) при комнатной температуре (MoK_a, $\lambda = 0,71073$ Å, поглощение учитывалось по программе Bruker SADABS, версия 2.10). Структура решена прямыми методами, уточнена полноматричным MHK в анизотропном приближении для всех неводородных атомов. Положения атомов H найдены из серии разностных синтезов электронной плотности, их уточнение проводили изотропно. Все расчеты по решению и уточнению структур проводили по комплексу программ Bruker Shelxtl Version 6.14. Кристаллографические характеристики комплекса: *a* = 12,603(1), *b* = 12,951(1), *c* = 22,894(2) Å, $\beta = 95,415(2)^{\circ}$, *V* = 3720,1(5) Å³, *P*2₁/*c*, *Z* = 4, *d*_{выч} = 1,265 г/см³, $\mu = 0,638$ мм⁻¹, 1,79 < θ < 26,64°, измерено 35897 *I*_{hkl}, из которых 7591 независимое (*R*_{инт} = 0,0481; 632 уточняемых параметра, GOOF = 1,019; для *I* > 2 σ_I , *R*₁ = 0,0429, *wR*₂ = 0,1019; по всем *I*_{hkl} *R*₁ = 0,0620, *wR*₂ = 0,1121. Значения избранных длин связей, валентных углов и параметры внутримолекулярных H-связей приведены в табл. 1 и 2.

Таблица 2

D—HA	<i>d</i> (D—H), Å	<i>d</i> (HA), Å	<i>d</i> (DA), Å	∠(DHA), град.
N(3)—H(3)O(1)	0,83(3)	1,97(3)	2,741(3)	154(3)
N(3A)—H(3A)O(1A)	0,85(3)	2,13(3)	2,866(3)	144(2)

Параметры внутримолекулярных Н-связей

Магнитную восприимчивость (χ) измеряли на SQUID-магнетометре MPMS*XL* фирмы "Quantum Design" в температурном интервале 2—300 К при напряженности магнитного поля 5 кЭ. Парамагнитные составляющие магнитной восприимчивости определяли с учетом диамагнитного вклада, оцененного из констант Паскаля. Эффективный магнитный момент (μ_{eff}) вычисляли по формуле $\mu_{eff} = [3k\chi T/(N_A\beta^2)]^{1/2}$, где N_A , β и k — число Авогадро, магнетон Бора и постоянная Больцмана соответственно.

Результаты и их обсуждение. Структура комплекса CuL_2 молекулярная (см. рисунок, *a*). Окружение атома Cu представляет собой уплощенный тетраэдр со средними расстояниями Cu—O 1,937(2) Å и Cu—N 1,930(2) Å. Значения *транс*-углов NCuN и OCuO равны соответственно 148,41(8) и 140,52(8)°. Шестичленные хелатные циклы практически плоские: отклонение атомов от среднеквадратичных плоскостей, проведенных через все атомы циклов, не превышает 0,07 Å. Имидазолиновые циклы нитронилнитроксилов имеют *гош*-конформацию; атомы углерода связи С—C отклонены от плоскости фрагментов CN_2 на равные расстояния — ±0,24 Å (C1 и C4) и ±0,17 Å (C1A и C4A), тогда как депротонированные имидазолидиновые циклы имеют форму конверта с выходом из плоскости одного из атомов углерода (C14 и C14A) группы >C(CH₃)₂ на ~0,45 Å. Расстояния N—O, равные 1,288(3) и 1,293(2) Å для атомов O, участвующих в образовании внутримолекулярной водородной связи (см. табл. 2), несколько увеличены по сравнению со свободными группами N—O (1,272(3), 1,274(2) Å). Как внутри-, так и межмолекулярные расстояния между парамагнитными центрами, т.е. между атомами Cu и ато-

Структура молекулы CuL_2 и нумерация атомов — *а* (атомы H не приведены), зависимость μ_{eff} от температуры для $CuL_2 - \delta$ (точки — экспериментальные значения, сплошная кривая — расчет) мами О групп >N \$\$O, превышают 4 Å, за исключением межмолекулярного расстояния O1...O1', равного 3,823 Å.

Высокотемпературная асимптотика μ_{eff} для CuL₂ стремится к величине 3,18 β (см. рисунок, δ). При понижении температуры величина μ_{eff} возрастает до 3,3 β при 20 K, а затем резко уменьшается. Для теоретического описания зависимости $\mu_{eff}(T)$ была выбрана модель внутримолекулярных трехцентровых обменных кластеров, слабо взаимодействующих между собой, так как по данным рентгеноструктурного исследования CuL₂ межмолекулярные расстояния между парамагнитными центрами достаточно велики. Аппроксимация экспериментальной зависимости $\mu_{eff}(T)$ в рамках изотропного спин-гамильтониана для указанного кластера позволила получить следующие оптимальные значения параметров: $g_{Cu} = 2,13$, $J_{RCu} = 14$ см⁻¹ и J' = -2 см⁻¹. Значение параметра J_{RCu} хорошо согласуется с известными теоретическими представлениями [1, 2].

Исследованный CuL₂ служит первым представителем гетероспиновых комплексов, которые мы планируем синтезировать, исходя из 2-этинилзамещенного нитронилнитроксила [18, 19], а также исследовать методом PCA и статической магнитной восприимчивости.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант 08-03-00025), НШ-1213.2008.3, НОЦ НГУ, Президиума РАН и СО РАН.

СПИСОК ЛИТЕРАТУРЫ

- 1. Musin R.N., Schastnev P.V., Malinovskaya S.A. // Inorg. Chem. 1992. 31. P. 4118 4123.
- 2. Lanfranc de Panthou F., Luneau D., Musin R. et al. // Ibid. 1996. 35. P. 3484 3491.
- 3. Gorelik E.V., Ovcharenko V.I., Baumgarten M. // Eur. J. Inorg. Chem. 2008. P. 2837 2846.
- 4. Lanfranc de Panthou F., Belorizky E., Calemczuk R. et al. // J. Amer. Chem. Soc. 1995. 117. P. 11247 11253.
- 5. Iwahory F., Inoue K., Iwamura H. // Mol. Cryst. Liq. Cryst. 1999. 334. P. 533 538.
- 6. Caneschi A., Chiesi P., David L. et al. // Inorg. Chem. 1993. 32. P. 1445 1453.
- 7. Овчаренко В.И., Фокин С.В., Романенко Г.В. и др. // Журн. структур. химии. 2002. **43**, № 1. С. 163 179.
- 8. Овчаренко В.И., Марюнина К.Ю., Фокин С.В. и др. // Изв. АН. Сер. хим. 2004. С. 2304 2325.
- 9. Fedin M., Veber S., Gromov I. et al. // Inorg. Chem. 2007. 46. P. 11405 11415.
- 10. Veber S.L., Fedin M.V., Potapov A.I. et al. // J. Amer. Chem. Soc. 2008. 130. P. 2444 2445.
- 11. Ovcharenko V.I., Romanenko G.V., Maryunina K.Yu. et al. // Inorg. Chem. 2008. 47. P. 9537 9552.
- 12. Fedin M., Ovcharenko V., Sagdeev R. et al. // Angew. Chem. Int. Ed. 2008. 47, N 36. P. 6897 6899.
- 13. Burdukov A.B., Ovcharenko V.I., Guschin D.A. et al. // Mol. Cryst. Liq. Cryst. 1999.- 334. P. 395 404.
- 14. Shvedenkov Y., Ikorskii V., Romanenko G. et al. // Ibid. P. 405 414.
- 15. Shvedenkov Y., Ikorskii V., Guschin D. et al. // Polyhedron. 2001. 20. P. 1207 1213.
- 16. *Овчаренко В.И., Сагдеев Р.З. //* Успехи химии. 1999. **68**. С. 381 400.
- 17. Третьяков Е.В., Овчаренко В.И., Сагдеев Р.З. и др. // Изв. АН. Сер. хим. 2007. С. 1975 1979.
- 18. Tretyakov E., Romanenko G., Podoplelov A., Ovcharenko V. // Eur. J. Org. Chem. 2006. P. 2695 2702.
- 19. Tretyakov E., Romanenko G., Ikorskii V. et al. // Ibid. 2007. P. 3639 3647.