УДК 536.212.2:536.2.023: 536.631: 536.413.2:669-1

Теплофизические свойства эвтектического сплава магния с литием^{*}

А.Ш. Агажанов, Р.Н. Абдуллаев, Д.А. Самошкин, Ю.М. Козловский

Институт теплофизики им. С.С. Кутателадзе СО РАН, Новосибирск

E-mail: scousekz@gmail.com

Проведено комплексное исследование теплофизических свойств сверхлегкого сплава Mg-Li эвтектического состава (с содержанием лития 23 ат. %), перспективного для использования в аэрокосмической промышленности. Получены новые достоверные экспериментальные данные по теплопроводности, температуропроводности, удельной теплоемкости, плотности, термическому коэффициенту линейного расширения и относительному удлинению сплава в интервале температур 300–759÷781 К. Проведено сопоставление полученных результатов с известными литературными данными по теплопроводности и тепловому расширению для сплавов системы Mg–Li. Приведены аппроксимационные уравнения и таблица рекомендуемых данных изученных свойств. Определен относительный скачок плотности эвтектики при плавлении.

Ключевые слова: сплав магний-литий, эвтектический состав, теплопроводность, температуропроводность, удельная теплоемкость, плотность, термический коэффициент линейного расширения, относительное удлинение.

Введение

В последние годы сильно возрос интерес исследователей-материаловедов к рассмотрению магниево-литиевых сплавов в качестве основы сверхлегких конструкционных материалов для аэрокосмической и автомобильной промышленностей, для использования в области портативной электроники и т.п. [1, 2]. Связано это в первую очередь с их крайне низкой плотностью (плотность сплава $Mg_{70}Li_{30}$ меньше плотности чистого алюминия примерно в два раза [3]) и привлекательными механическими свойствами [2, 4]. Особое внимание привлекает эвтектический сплав с концентрацией лития $X_{Li} = 23$ ат. % (рис. 1), сочетающий в себе прочность α -фазы (твердый раствор Li в Mg с гексагональной плотноупакованной структурой) и высокую пластичность β -фазы (твердый раствор Mg в Li с объемно-центрированной кубической структурой) [2, 4, 5]. Для анализа перспектив практического использования этого сплава необходимы надежные данные по многим физико-химическим свойствам, в том числе по теплофизическим.

Прогнозирование физических свойств эвтектического сплава магния с литием, а также анализ перспектив его использования затруднены особенностями фазовой диаграммы

^{*} Работа выполнена при финансовой поддержке Российского научного фонда (проект № 20-79-10025).

[©] Агажанов А.Ш., Абдуллаев Р.Н., Самошкин Д.А., Козловский Ю.М., 2022

системы Mg–Li (рис. 1). Согласно обзорной работе [5], соотношение α -фазы и β -фазы в эвтектике меняется с изменением температуры: в процессе нагрева происходит уменьшение доли α -фазы в сплаве, а при охлаждении наблюдается обратный процесс — выделение новых частиц α -фазы. Данные превращения подтверждены кристаллографическим исследованием [6]. Вместе с тем анализ литературы показал, что несмотря на указанные особенности и высокий практический и фундаментальный интерес, экспериментальное исследо-

вание теплофизических свойств сплава $Mg_{77} Li_{23}$ проводилось только в работе [7]. В ней были получены данные по температуропроводности и тепловому расширению трех сплавов, включая $Mg_{77} Li_{23}$, в узком интервале температур, без приведения погрешностей исследуемых свойств и описания процедуры приготовления сплавов. Согласно анализу литературы, до настоящего времени измерений теплоемкости эвтектики $Mg_{77} Li_{23}$ не проводилось. Для оценки теплоемкости в работе [7] использовалось правило Неймана–Коппа. Однако выполненные ранее исследования термических и калорических свойств твердых сплавов магния с литием в окрестности 30 ат. % Li [3, 8] указывают на необоснованность и недостаточную надежность использования законов идеального раствора для расчета теплофизических свойств сплавов магния с литием.

Исходя из вышеизложенного, целью настоящей работы являлось экспериментальное исследование транспортных, калорических и термических свойств эвтектики $Mg_{77}Li_{23}$ в широком интервале температур твердого состояния.

Экспериментальная техника и методика измерений

В представленной работе были проведены измерения следующих теплофизических свойств эвтектики $Mg_{77} Li_{23}$ соответствующими методами: температуропроводности (*a*) методом лазерной вспышки [9]; удельной массовой теплоемкости (*c_p*) методом дифференциальной сканирующей калориметрии (ДСК) [8]; термического коэффициента линейного расширения (*a*) и относительного удлинения (*ɛ*) дилатометрическим методом [3]. Также рассчитывались теплопроводность (*λ*), плотность (*ρ*) и скачок плотности (*δρ_f*) эвтектики $Mg_{77} Li_{23}$ при переходе «твердое тело – жидкость». Необходимые для экспериментов образцы были получены механическим путем из одного предварительно приготовленного и однородного по составу слитка. Это позволило устранить или минимизировать неопределенности, связанные с различным составом и структурой исследуемых образцов.

Процедура приготовления исходного гомогенного сплава $Mg_{77}Li_{23}$, включая взвешивание масс навесок Mg и Li и их герметизацию в молибденовой ампуле при помощи электродуговой сварки, проводилась внутри перчаточного бокса в атмосфере высокочистого аргона (99,992 об. %). Фактическое содержание Li в итоговом образце составило $X_{Li} = 23,03 \pm 0,02$ ат. %. На следующем этапе подготовки герметичная ампула с навесками Мд и Li устанавливалась в гамма-плотномер [3], где металлы плавились в атмосфере аргона и выдерживались несколько часов при температуре 950 K, после чего ампула охлаждалась и переворачивалась. Данная процедура переплавки повторялась несколько раз до полной гомогенизации сплава. Гомогенность, отсутствие газовых включений в расплаве и внутренних пустот в твердом сплаве контролировались путем измерения коэффициента ослабления пучка гамма-излучения в образце на различных высотах [3]. Следует отметить, что молибден (материал ампулы) не взаимодействует с магнием при температурах до 2600 K и практически нерастворим в жидком литии до 1000 K [10]. Плотность Mg₇₇ Li₂₃ при комнатной температуре (ρ_0) определялась методом Архимеда (в силиконовом масле) и составила $\rho_0 = 1516,9 \pm 0,8$ кг/м³.

Измерения удельной теплоемкости c_p проводились на калориметре DSC 404 F1 в интервале температур 300–781 К. Для экспериментов использовался образец массой 32,90 мг, изготовленный в форме цилиндра высотой ~ 1,5 мм и диаметром ~ 5 мм, с отшлифованными основаниями для лучшего теплового контакта с дном тигля. Масса образца после измерения теплоемкости практически не изменилась. Эталоном для калибровки калориметра являлась нержавеющая сталь марки 12X18H10T массой 81,62 мг. Измерения осуществлялись с использованием тиглей из нержавеющей стали в нескольких циклах нагрева-охлаждения со скоростью 10 К/мин в проточной атмосфере аргона (20 мл/мин). Перед проведением каждого термического цикла рабочий объем установки вакуумировался (1 Па) и несколько раз промывался аргоном (99,992 об. %). Погрешность полученных ДСК-методом экспериментальных данных по теплоемкости сплава составляет 2–4 %.

Термический коэффициент линейного расширения α исследовался на горизонтальном дилатометре DIL-402C в интервале 300 – 759 К с держателем и толкателем, изготовленными из плавленого кварца. Эксперименты, в которых использовался образец в форме цилиндра длиной $l_0 \approx 25$ мм и диаметром 6 мм, проводились в статической атмосфере высокочистого гелия (99,995 об. %) со скоростью нагрева–охлаждения печи 2 К/мин и при 15-минутной изотермической выдержке при максимальной температуре. Длина образца l_i и его относительное удлинение $\varepsilon_i = (l_i - l_0)/l_0$ при заданной температуре T_i определялись индуктивным датчиком перемещения с разрешением 1 нм, а температура — термопарой типа S, рабочий спай которой располагался на расстоянии около 3 мм от боковой поверхности образца. Величина $\alpha(T_i)$ находилась численным дифференцированием значений ε_i :

$$\alpha(T_i) = \frac{1}{2} \left(\frac{\varepsilon_{i+1} - \varepsilon_i}{T_{i+1} - T_i} + \frac{\varepsilon_i - \varepsilon_{i-1}}{T_i - T_{i-1}} \right). \tag{1}$$

Полученные значения $\alpha(T_i)$ аппроксимировались методом наименьших квадратов в виде полиномов температуры, а сглаженные значения $\varepsilon(T)$ рассчитывались интегрированием полиномиальной зависимости $\alpha(T)$ с условием равенства нулю ε при комнатной температуре. Плотность $\rho(T)$ эвтектики Mg₇₇Li₂₃ рассчитывалась по формуле

$$\rho(T) = \frac{\rho_0}{\left(1 + \varepsilon(T)\right)^3}.$$
(2)

Оцениваемые погрешности величин α , ε и ρ не превышают 3, 1,6 и 0,12 % соответственно.

657

Измерения температуропроводности проводились на установке LFA-427 в статической атмосфере высокочистого аргона (99,992 об. %) в интервале 300-773 К. Для экспериментов были изготовлены два образца в виде цилиндров высотой 2 мм, диаметрами 10 и 12,6 мм с отшлифованными плоскопараллельными торцами. Перед серией экспериментов образцы отжигались при температуре 400 К. Измерения *а* при заданной температуре осуществлялись в серии из трех «выстрелов» лазера после стабилизации температуры образца в пределах ± 2 К. Интервал между «выстрелами» составлял 2 – 3 минуты. Температура измерялась термопарой типа S с неопределенностью ± 5 К, рабочий спай которой находился на расстоянии 2 мм от края образца. Теплопроводность λ рассчитывалась с использованием полученных значений температуропроводности, удельной теплоемкости и плотности по формуле

$$\lambda = a \, \rho \, c_p. \tag{3}$$

Оцениваемые погрешности полученных экспериментальных данных по тепло- и температуропроводности сплава в зависимости от температуры составили 3-5 % и 2-4 % соответственно.

Результаты и обсуждение

На рис. 2 представлены результаты измерений удельной массовой теплоемкости c_p исследованного эвтектического сплава в интервале температур 300-781 К. Из рисунка видно, что данные, полученные в различных термических циклах, хорошо согласуются между собой при температурах до 540 К. При более высоких температурах наблюдаются существенные различия между кривыми $c_p(T)$ для режимов нагрева и охлаждения. В связи с этим построение температурных зависимостей теплоемкости сплава для режимов нагрева и охлаждения осуществлялось раздельно. Для нагрева были получены следующие аппроксимационные уравнения:

$$c_p(T) = 1,053 + 4,93 \cdot 10^{-4} T, \quad 300 \le T \le 616 \text{ K},$$
(4)

$$c_p(T) = 1,426 - 1,27 \cdot 10^{-3} T + 1,879 \cdot 10^{-6} T^2, \ 616 \le T \le 781 \text{ K},$$
 (5)

где *c_p* измеряется в Дж/(г К), *T* — в К. Для охлаждения в интервале 490 – 780 К использовалась аппроксимация в виде уравнения по типу соотношений Шомейта:

$$c_p(T) = -36,625 + 0,102 \ T - 1,2129 \cdot 10^{-4} \ T^2 + 5,459 \cdot 10^{-8} \ T^3 + 5213,2 \ T^{-1}.$$
 (6)

Среднеквадратичные отклонения экспериментальных значений от уравнений (4)-(6) не превышают 0,3-0,5 %.

Резкий рост теплоемкости при температурах выше $T_1 \approx 600$ К и расхождение зависимостей $c_p(T)$, полученных в режимах нагрева и охлаждения, вероятно связаны с особенностями фазовой диаграммы системы Mg–Li [5, 11] (см. рис. 1), согласно

Рис. 2. Удельная массовая теплоемкость эвтектики Mg₇₇Li₂₃.

¹ — кривые нагревов, *2* — кривые охлаждений.

l - Mg [8], $2 - Mg_{70}Li_{30}$ [8], $3 - Mg_{77}Li_{23}$ (результаты настоящей работы при нагреве), 4, 5 - расчет по правилу Неймана-Коппа для $Mg_{70}Li_{30}$ и $Mg_{77}Li_{23}$ соответственно, 6 - Li [12].

ис. 4. Гермический коэффициент линейного расширения эвтектики Mg₇₇Li₂₃.
 1, 2 — соответственно данные нагрева и охлаждения, полученные в настоящей работе, 3 — данные работы [7].

которой при высоких температурах (выше T_1) в образце эвтектического сплава заметно увеличивается доля β -фазы.

Анализ литературы показал, что теплоемкость сплава $Mg_{77}Li_{23}$ ранее не измерялась. На рис. 3 представлено сравнение температурных зависимостей молярной теплоемкости (C_p) для эвтектики $Mg_{77}Li_{23}$, лития [12], а также магния и конгруэнтно плавящегося сплава $Mg_{70}Li_{30}$, исследованных авторами в работе [8]. Как видно из графика, кривые $C_p(T)$ для сплавов демонстрируют схожий характер поведения, а именно: линейный ход при низких температурах и резкий нелинейный рост при температурах выше 600-650 К. Отметим, что ниже 600 К зависимости $C_p(T)$ для сплавов и чистого магния практически совпадают. Молярная теплоемкость сплавов в интервале 300-600 К может быть рассчитана по зависимости $C_p(T)$ для чистого магния с погрешностью, не превышающей суммарную погрешность измерений. Такой способ оценки теплоемкости сплавов дает более точные результаты, чем те, которые получены с использованием правила Неймана–Коппа (кривые 4 и 5 на рис. 3), и, вероятно, может быть распространен на все сплавы магния с литием в интервале концентраций $X_{Li} = 0 \pm 30$ ат. % Li.

На рис. 4 представлены типичные результаты измерений термического коэффициента линейного расширения эвтектического сплава $Mg_{77}Li_{23}$, полученные в режимах нагрева и охлаждения образца в интервале температур 300 - 760 K, а также литературные данные [7]. Как видно, данные исследования [7] и настоящей работы неплохо согласуются друг с другом, однако в последнем случае измерения проводились в существенно более широком температурном диапазоне. Как и кривые $C_p(T)$, зависимость $\alpha(T)$ показывает резкий рост выше 600 К. Эта особенность, вероятно, также связана с заметным изменением фазового состава сплава (увеличение доли β -фазы) при высоких температурах.

Следует отметить, что полученные результаты по термическому коэффициенту линейного расширения эвтектического сплава Mg₇₇Li₂₃ в циклах нагрева и охлаждения хорошо согласуются между собой, в отличие от данных по теплоемкости. Это, вероятно, связано с существенно меньшей скоростью проведения дилатометрических измерений по сравнению с измерениями ДСК-методом, вследствие чего фазовый состав образца в ходе дилатометрических экспериментов был ближе к равновесному, чем при измерениях теплоемкости.

Рис. 5. Термический коэффициент линейного расширения сплавов Mg-Li и чистых Mg и Li. *I* — Li [14], *2* — Mg₇₀Li₃₀ [3], *3* — Mg₆₈Li₃₂ [7], *4* — Mg₇₇Li₂₃ (результаты настоящей работы), *5* — Mg₇₇Li₂₃ [7], *6* — Mg₈₇Li₁₃ [7], *7* — Mg [3].

Аппроксимация экспериментальных данных методом наименьших квадратов дала следующие уравнения для температурной зависимости термического коэффициента линейного расширения:

$$\alpha(T) = 23,290 + 4,16 \cdot 10^{-2} T - 4,18 \cdot 10^{-5} T^2, \quad 300 \le T \le 559 \text{ K},\tag{7}$$

$$\alpha(T) = 52,577 - 9,8456 \cdot 10^{-2} T + 1,15 \cdot 10^{-4} T^2, \quad 559 \le T \le 759 \text{ K},$$
(8)

где α измеряется в 10⁻⁶ K⁻¹. Среднеквадратичные отклонения точек от (7) и (8) не превышают 3,0 и 3,3 % соответственно.

На рис. 5 представлены полученные в настоящей работе и опубликованные в литературе данные по термическому коэффициенту линейного расширения сплавов магнийлитий. Сопоставление этих данных с диаграммой состояния системы Mg-Li (см. рис. 1) позволяет сделать определенные выводы о влиянии фазового состава сплавов на поведение $\alpha(T)$. Как видно из рисунка, коэффициент теплового расширения сплава с содержанием около 13 ат. % Li незначительно превышает значения *а* для чистого магния. Сплав $Mg_{87}Li_{13}$ представляет собой твердый раствор лития в магнии (α -фаза) с гексагональной плотноупакованной решеткой, как у магния. Вследствие этого можно предположить, что в интервале составов от 0 до ~15 ат. % Li (область существования *α*-фазы) коэффициент теплового расширения очень слабо возрастает с увеличением содержания лития в сплавах. Согласно [13], в области концентраций от ~30 до 100 ат. % Li, соответствующих твердому раствору магния в литии (β -фаза), увеличение содержания лития в сплавах также ведет к медленному и плавному росту коэффициента теплового расширения. Наиболее резкий рост коэффициента теплового расширения с концентрацией происходит, по-видимому, в интервале от ~15 до ~30 ат. % Li, где твердые сплавы представляют собой смеси из α - и β -фаз. Изучение влияния содержания β -фазы на тепловое расширение магний-ли-

тиевых сплавов эвтектического и околоэвтектического составов представляет большой практический интерес, поскольку именно эти сплавы рассматриваются как наиболее перспективные сверхлегкие конструкционные материалы.

Рис. 6. Плотность эвтектики Mg₇₇Li₂₃. LA — жидкое состояние, BS — твердое состояние;

¹, 2 — данные твердой (результаты настоящей работы) и жидкой [3] эвтектики соответственно.

На рис. 6 приведена температурная зависимость плотности $\rho(T)$ твердого эвтектического сплава Mg₇₇Li₂₃, построенная по результатам дилатометрических измерений. Полученная зависимость была экстраполирована к температуре ликвидуса $T_{\rm L}$ = 865,2 K [3]. С использованием данных [3] по плотности расплава Mg₇₇Li₂₃ выполнена оценка относительного скачка плотности при плавлении – кристаллизации по формуле

$$\delta \rho_f = \frac{\rho_{\rm S} - \rho_{\rm L}}{\rho_{\rm S}} \cdot 100 \,\% = 4,65 \,\%,\tag{9}$$

где $\rho_{\rm S}$, $\rho_{\rm L}$ — значения плотности твердого и жидкого сплава при $T_{\rm L}.$

На рис. 7 приведены результаты измерений температуропроводности и теплопроводности сплава Mg₇₇Li₂₃ в интервале 300–773 К, полученные в нескольких термических циклах и на двух образцах, совместно с литературными данными [7]. Аппроксимация экспериментальных данных проводилась методом наименьших квадратов. Были получены следующие уравнения:

$$a(T) = 22,407 + 1,302 \cdot 10^{-2} T + 3,21 \cdot 10^{-5} T^{2} - 4,8 \cdot 10^{-8} T^{3},$$
(10)

$$\lambda(T) = 32,77 + 7,083 \cdot 10^{-2} T - 3,45 \cdot 10^{-5} T^{2},$$
(11)

где *а* измеряется в мм²/с, λ — в Вт/(м·К). Среднеквадратичные отклонения точек от (10) и (11) не превышают 0,6 и 0,7 % соответственно. Как видно из рисунка, теплопроводность сплава монотонно возрастает с ростом температуры, однако зависимость *a*(*T*) имеет максимум в районе 600 К. Температура максимума близка к температуре *T*₁, выше которой начинается резкий рост теплоемкости и термического коэффициента линейного расширения сплава (рис. 2–5). Таким образом, можно сделать вывод, что изменение фазового состава сплава при высоких температурах приводит к появлению аномалий на температурных зависимостях не только термодинамических, но и некоторых транспортных свойств.

Данные настоящего исследования неплохо согласуются с результатами работы [7]: различие данных по температуропроводности не превышает 9 %, а по теплопроводности — 2,5 %. Однако проведенные здесь измерения выполнялись в существенно более широком температурном интервале, что впервые позволило выявить наличие максимума на кривой a(T).

Рис. 7. Температуропроводность (*a*) и теплопроводность (*b*) эвтектики $Mg_{77}Li_{23}$. *l* — результаты настоящего исследования, *2* — аппроксимация (9), (10), *3* — данные работы [7].

На рис. 8 представлено сопоставление полученных в настоящей работе данных по теплопроводности эвтектики Mg₇₇Li₂₃ с имеющимися литературными данными для сплавов Mg–Li других составов, а также для чистых металлов Mg и Li. Как видно

из рисунка, увеличение содержания лития до 23 ат. % (эвтектический состав) приводит к уменьшению теплопроводности сплава до значений, в 2–3 раза меньших, чем λ чистого Mg. При дальнейшем обогащении сплава литием до 30–32 ат. % Li теплопроводность падает менее существенно. Ниже в таблице приведены сглаженные значения изученных свойств эвтектики Mg₇₇Li₂₃.

Таблица

Сглаженные значения теплофизических свойств эвтектического сплава Mg77L	i ₂₃
в твердом состоянии*	

Т, К	<i>а</i> , мм ² /с	λ , Bt/(m K)	<i>с_p**</i> , Дж/(г К)		α , 10 ⁻⁶ K ⁻¹	ε, 10 ⁻⁶	<i>ρ</i> , кг/м ³
293,15	27,8	50,6	1,198		31,9	0	1516,9
300	27,9	50,9	1,201		32,0	219	1515,9
350	28,8	53,3	1,226		32,7	1838	1508,5
400	29,7	55,6	1,250		33,2	3488	1501,1
450	30,4	57,7	1,275		33,5	5158	1493,6
500	31,0	59,6	1,299	1,303	33,6	6838	1486,2
550	31,3	61,3	1,324	1,346	33,5	8518	1478,8
600	31,4	62,8	1,349	1,391	34,9	10220	1471,3
650	31,3	64,2	1,394	1,442	37,2	12019	1463,5
700	30,8	65,4	1,458	1,515	40,0	13947	1455,1
750	30,0	66,5	1,530	1,630	43,4	16030	1446,2
800	28,8	67,4	1,613	1,816	47,4	18299	1436,6
850	27,2	68,1	1,704	2,101	52,0	20781	1426,1
865,2	26,7	68,2	1,734	2,213	53,5	21582	1422,8

 табличные данные в интервале 800 – 865 К получены экстраполяцией сглаженных температурных зависимостей теплофизических свойств к точке плавления сплава;

** — начиная с 500 К, в левой части столбца теплоемкости приведены данные для нагрева, а в правой части — для охлаждения.

Заключение

Проведено комплексное экспериментальное исследование теплофизических свойств эвтектического сплава Mg₇₇Li₂₃ в широком интервале температур твердого состояния. Данные по теплоемкости сплава получены впервые и в настоящий момент являются единственными. На температурных зависимостях температуропроводности, теплоемкости и термического коэффициента линейного расширения были выявлены особенности в районе 500-600 K, что, вероятнее всего, обусловлено существенными изменениями фазового состава исследуемых образцов при высоких температурах. Поскольку эвтектический сплав Mg₇₇Li₂₃ представляет практический интерес как перспективный конструкционный материал, эти особенности поведения теплофизических свойств эвтектики следует учитывать в инженерных расчетах полей температур и напряжений в элементах проектируемых конструкций. Показано, что в интервале 300-650 К значения молярной теплоемкости сплавов Mg₇₇Li₂₃ и Mg₇₀Li₃₀ практически совпадают друг с другом и могут быть рассчитаны по температурной зависимости молярной теплоемкости для чистого магния с точностью, не превышающей суммарную погрешность измерений. Такой способ оценки теплоемкости, по всей видимости, применим для всех сплавов Mg-Li с содержанием лития до 30 ат. %.

Список литературы

- Haferkamp H., Niemeyer M., Boehm R., Holzkamp U., Jaschik C., Kaese V. Development, processing and applications range of magnesium lithium alloys // Materials Sci. Forum. 2000. Vol. 350. P. 31–42.
- Wu R., Yan Y., Wang G., Murr L.E., Han W., Zhang Z., Zhang M. Recent progress in magnesium–lithium alloys // Intern. Materials Reviews. 2015. Vol. 22, No. 2. P. 65–100.
- 3. Abdullaev R.N., Khairulin R.A., Kozlovskii Yu.M., Agazhanov A.Sh., Stankus S.V. Density of magnesium and magnesium-lithium alloys in solid and liquid states // Transactions of Nonferrous Metals Society of China. 2019. Vol. 29. P. 507–514.
- 4. Trojanová Z., Drozd Z., Kúdela S., Száraz Z., Lukáč P. Strengthening in Mg–Li matrix composites // Composites Sci. and Technology. 2007. Vol. 67, No. 9. P. 1965–1973.
- Nayeb-Hashemi A.A., Clark J.B., Pelton A.D. The Li-Mg (lithium-magnesium) system // Binary Alloy Phase Diagrams. 1984. Vol. 5. P. 365–374.
- 6. Kral M.V., Muddle B.C., Nie J.F. Crystallography of the bcc/hcp transformation in a Mg–8Li alloy // Materials Sci. and Engng: A. 2007. Vol. 460. P. 227–232.
- Rudajevová A., Kúdela S., Staněk M., Lukáč P. Thermal properties of Mg-Li and Mg-Li-Al alloys // Materials Sci. and Technology. 2003. Vol. 19. P. 1097–1100.
- 8. Abdullaev R.N., Samoshkin D.A., Agazhanov A.Sh., Stankus S.V. Heat capacity of pure magnesium and ultralight congruent magnesium–lithium alloy in the temperature range of 300 K to 825 K // J. of Engng Thermophysics. 2021. Vol. 30, No. 2. P. 207–212.
- 9. Agazhanov A.Sh., Abdullaev R.N., Samoshkin D.A., Stankus S.V. Thermal conductivity and thermal diffusivity of Li-Pb eutectic in the temperature range of 293–1273 K // Fusion Engng and Design. 2020. Vol. 152. P. 111456-1– 111456-5.
- 10. Сайт «Springer materials properties of materials». Точка доступа: https://materials.springer.com.
- Wang P., Du Y., Liu S. Thermodynamic optimization of the Li–Mg and Al–Li–Mg systems // Calphad. 2011. Vol. 35, No. 4, P. 523–532.
- Глушко В.П. Термодинамические свойства индивидуальных веществ: справочное издание. М.: Наука, 1981. Т. 3. 400 с.
- Lynch R.W., Edwards L.R. Thermal-expansion coefficients and Grüneisen parameters of bcc Li–Mg alloys // J. Applied Physics. 1970. Vol. 41, No. 13. P. 5135–5137.
- 14. Мельникова Т.Н. Термические свойства щелочных металлов в твердой фазе // Обзоры по теплофизическим свойствам веществ. М.: ИВТАН СССР, 1988. Вып. 6. С. 48–117.
- **15.** Ho C.Y., Powell R.W., Liley P.E. Thermal conductivity of the elements: a comprehensive review // J. Physical and Chemical Reference Data. 1974. Vol. 3, No. 1. P. 279–422.

- 16. Самошкин Д.А., Абдуллаев Р.Н., Агажанов А.Ш., Станкус С.В. Коэффициенты переноса тепла сверхлегкого сплава Mg₇₀Li₃₀ // Теплофизика и аэромеханика. 2022. Т. 29, № 1. С. 147–151.
- 17. Шпильрайн Э.Э., Якимович К.А, Тоцкий Е.Е., Тимрот Д.Л., Фомин В.А. Теплофизические свойства щелочных металлов. М.: Изд-во стандартов, 1970. 288 с.

Статья поступила в редакцию 15 февраля 2022 г., после доработки — 21 марта 2022 г., принята к публикации 22 марта 2022 г.