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The paper considers an implementation of an adaptive computational grid constructing algorithm in-
side the numerical solution of the one-dimensional forward magnetotelluric sounding problem (the Tikho-
nov–Cagniard problem). The numerical solution of the problem is realized by the method of local integral
equations, which was proposed by authors earlier. An adaptive computational grid construction is based on
geometrical principles, which conduct approximation of the electrical conductivity function via optimization
of its’ piecewise-constant interpolant. Numerical experiments are carried out to study and illustrate the ef-
fectiveness of the combined method. Approbation was realized on the Kato–Kikuchi model with known exact
solution.
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Введение

Метод магнитотеллурического зондирования (МТЗ) является одним из важнейших
методов глубинных геофизических исследований и позволяет делать предположения о
строении литосферы на основе анализа вариаций естественного электромагнитного поля
Земли [1–6]. Несмотря на то, что теоретические и практические основы метода МТЗ
были заложены еще в 1950-е годы учеными А.Н. Тихоновым [1] и Л. Каньяром [2], в
настоящее время метод продолжает совершенствоваться и представляет большой интерес
как с точки зрения фундаментальных, так и прикладных геофизических задач. При этом
развитие теоретических основ и методов интерпретации магнитотеллурических данных
по-прежнему является актуальным исследовательским направлением.

Одним из наиболее изученных классов МТ-задач являются прямые одномерные за-
дачи магнитотеллурического зондирования [3–6], основанные на так называемой фи-
зической модели Тихонова–Каньяра [1–6]. Решение таких задач заключается в моде-
лировании компонент электромагнитного поля для геологической среды с известными
физическими параметрами.

В работе [7] авторами была предложена и исследована разностная схема для решения
прямой одномерной задачи МТЗ, полученная на основе метода локальных интегральных
уравнений (основные формулы приведены в следующем пункте статьи). Построение раз-
ностных схем предполагало кусочно-постоянную интерполяцию функции удельной элек-
трической проводимости среды σ(z) на вычислительной сетке. Несмотря на то, что в
работе [7] доказаны оценки сходимости приближенного решения к точному на классе
квазиравномерных сеток, проблема выбора в некотором смысле оптимального варианта
такой сетки осталась открытой.

Среди физико-геологических моделей, соответствующих прямым одномерным зада-
чам магнитотеллурического зондирования, значительный интерес, ввиду наименьшей
изученности, представляют градиентные геологические среды, характеризующиеся не-
прерывной одномерной функцией удельной электропроводности σ [3, 8], причем при оп-
ределенных условиях такая функция может характеризоваться зонами повышенных гра-
диентов, локализующихся на определенных глубинах, что может вносить значительные
искажения в получаемые численные решения. Для более точной кусочно-постоянной ап-
проксимации функции σ(z) в данной работе предполагается применение специальных
адаптивных сеток.

Известны различные варианты построения сеток, адаптированных под свойства ин-
терполируемой функции. Наиболее часто вопрос конструирования адаптивной сетки рас-
сматривается как задача построения взаимно-однозначного отображения равномерной
вычислительной сетки в искомую адаптивную, позволяющую информативно описывать
профиль интересующей функции. Впервые такой подход был предложен в работе [9] и
основывался на принципе эквидистантного распределения некоторой вспомогательной
“весовой” функции, позволяющей организовать искомую адаптивную сетку следующим
образом: на участках, где значения производных интересующей функции велики, лока-
лизуется большее число узлов, чем на участках, где значения этих производных незна-
чительны.

В данной работе предлагается другой метод адаптации вычислительной сетки, ос-
нованный на геометрическом принципе, который заключается в минимизации функ-
ционала дефекта площадей, описываемых графиками исходной функции и ее кусочно-
постоянного интерполянта. Построенные таким образом адаптивные сетки используются
при решении прямой одномерной задачи МТЗ для случая градиентной среды с помощью
разностных схем, ранее полученных в статье [7].
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Разностные схемы для решения прямой одномерной
задачи магнитотеллурического зондирования,

полученные методом локальных интегральных уравнений

В работе [7] рассматривалось матричное дифференциальное уравнение вида

d
−→
U (z)

dz
= L(z)

−→
U (z), z ∈ (0, zmax), (1)

где
−→
U (z) — неизвестная двухкомпонентная комплекснозначная вектор-функция, L(z) —

переменный оператор уравнения, определяемый матрицей
(

0 −σ(z)
iωµ0 0

)
, в которой

ω > 0, µ0 > 0 — действительные константы, i — мнимая единица, σ(z) — вещественная
функция, заданная на z ∈ (0, zmax). На основе метода локальных интегральных урав-
нений авторами в работе [7] была построена разностная схема для численного решения
этого уравнения: −→

U h
j+1 = e∆zjLj+1/2

−→
U h
j , j = 1, 2, . . . , J − 1, (2)

где
{
zj
}J
j=1

— узлы произвольной неравномерной на отрезке [0, zmax] вычислительной

сетки; ∆zj = zj+1 − zj — длины сеточных ячеек;
−→
U h
j ≈

−→
U (zj) — приближенное реше-

ние уравнения (1) в узлах сетки; σj+1/2 =
σ(zj) + σ(zj+1)

2
; kj+1/2 = (1 − i)

√
ωµ0σj+1/2

2
;

e∆zjLj+1/2 =

 ch
(
∆zjkj+1/2

)
−σj+1/2

kj+1/2
sh
(
∆zjkj+1/2

)
iωµ0

kj+1/2
sh
(
∆zjkj+1/2

)
ch
(
∆zjkj+1/2

)
 — матричная экспонента.

Наряду с основной разностной схемой (2) в работе [7] с помощью метода локаль-
ных интегральных уравнений были предложены и формулы естественного варианта ин-
терполяции получаемого приближенного решения. Так в предположении, что известна
сеточная функция

−→
U h =

{−→
U h
j

}J
j=1

, найденная как приближенное решение задачи (1) с
помощью разностной схемы (2), в качестве интерполянта в [7] было предложено рассмат-
ривать непрерывную вектор-функцию

−→
U h(z), значения которой во внутренних точках

каждой сеточной ячейки определяются по формуле
−→
U h(z) = e(z−zj)Lj+1/2

−→
U h
j , z ∈ [zj , zj+1], j = 1, 2, . . . , J − 1, (3)

где

e(z−zj)Lj+1/2 =

 ch
[
(z − zj)kj+1/2

]
−
σj+1/2

kj+1/2
sh
[
(z − zj)kj+1/2

]
iωµ0
kj+1/2

sh
[
(z − zj)kj+1/2

]
ch
[
(z − zj)kj+1/2

]
 .

Если в качестве вектор-функции
−→
U (z) в матричном дифференциальном уравне-

нии (1) использовать вектор
(
H(z)
E(z)

)
, то это уравнение, переписанное в покомпонент-

ной форме, примет вид системы
dH(z)

dz
= −σ(z)E(z),

dE(z)

dz
= iωµ0H(z),

z ∈ (0, zmax). (4)
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Наделяя функции и константы системы (4) физическим смыслом, можно убедиться,
что она соответствует математической модели, описывающей поведение электромагнит-
ного поля в одномерной геологической среде [1–6]: z ∈ (0, zmax) — пространственная
координата, вдоль которой меняются свойства среды (ось Оz направлена вглубь Земли);
H(z) и E(z) — взаимно-ортогональные комплекснозначные компоненты напряженности
магнитного и электрического полей соответственно; σ(z) — удельная электрическая про-
водимость среды; µ0 = 4π 10−7 — магнитная постоянная; ω — частота электромагнитного
поля.

Отметим, что система (4) вместе с начальными условиями{
H(0) = H0,

E(0) = E0,
или в матричном виде

−→
U (0) =

−→
U h

1 =

(
H0

E0

)
, (5)

где H0 и E0 — заданные комплексные постоянные, составляет прямую одномерную
задачу магнитотеллурического зондирования или так называемую задачу Тихонова–
Каньяра [1–6]. При этом наиболее распространенным способом анализа решений пря-
мых задач МТЗ на практике считается изучение свойств функции магнитотеллуриче-
ского импеданса (импеданса Тихонова–Каньяра), в одномерном случае определяемого
отношением

Z(z) =
E(z)

H(z)
. (6)

Поэтому во многих работах, рассматривающих подходы к решению прямой одномерной
задачи МТЗ, внимание авторов преимущественно направлено на вычисление импеданса,
а не на вычисление функций E(z) и H(z). Однако возможность эффективного вычисле-
ния этих функций для одномерных сред представляет интерес и практическую значи-
мость, например, для определения граничных значений компонент электромагнитного
поля при его моделировании в двумерных средах [4, 6, 10].

Обратим внимание на то, что в работе [7] была доказана и оценка сходимости прибли-
женного решения задачи (4), (5), получаемого по формуле (2), к ее точному решению:

max
{∣∣H(zj)−Hh

j

∣∣, ∣∣E(zj)− Ehj
∣∣} 6 K (∆z)2, j = 1, 2, . . . , J,

гдеH(zj), E(zj) иHh
j , E

h
j — точные и приближенные решения системы (4) в узлах сетки,

K — константа, не зависящая от ∆z ≡ max16j6J−1∆zj , т. е. разностная схема (2) харак-
теризуется вторым порядком сходимости к точному решению рассматриваемой задачи
относительно шага сетки.

Доказана также аналогичная оценка для интерполянта (3):

max
{∣∣H(z)−Hh(z)

∣∣, ∣∣E(z)− Eh(z)
∣∣} 6 K (∆z)2, 0 6 z 6 zmax,

где H(z), E(z) и Hh(z), Eh(z) — точные и проинтерполированные приближенные реше-
ния системы (4), K — константа, не зависящая от ∆z ≡ max16j6J−1∆zj , т. е. интерпо-
лянт, получаемый по формуле (3), обладает сходимостью второго порядка при ∆z → 0.

Описанные выше численные методы были реализованы в программном обеспечении
MT1Dhlm и протестированы на различных тестовых задачах [11,12].
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Алгоритм построения адаптивной вычислительной сетки
на основе оптимизации кусочно-постоянного интерполянта

На отрезке [a, b ] рассмотрим произвольную неравномерную сетку
{
zj
}J
j=1

:

a = z1 < z2 < · · · < zJ−1 < zJ = b. (7)

Пусть f(z) — достаточно гладкая функция, определенная на отрезке [a, b ], для аппрокси-
мации которой на выбранной сетке (7) будем использовать кусочно-постоянную функцию

f(z, θ) ≡

{
fj(θ) ≡ (1− θ)f(zj) + θf(zj+1),

z ∈ [zj , zj+1], j = 1, 2, . . . , J − 1,
(8)

где θ ∈ [0, 1] — произвольный параметр. Тогда из формулы (8) следует равенство

f(z)− fj(θ) = (1− θ)
z∫

zj

f ′(s)ds− θ
zj+1∫
z

f ′(s)ds, z ∈ [zj , zj+1], j = 1, . . . , J − 1, (9)

с помощью которого можно получить оценку, характеризующую дефект площадей, воз-
никающий на отрезке [a, b ] при аппроксимации функции f(z) по формуле (8):

∥∥f − f(·, θ)∥∥
L1
6

J−1∑
j=1

zj+1∫
zj

∣∣θ(s− zj) + (1− θ)(zj+1 − s)
∣∣ ∣∣f ′(s)∣∣ds ≡ ϕ(~z, θ), (10)

где ~z = (z1, z2, . . . , zJ−1, zJ) — вектор, компонентами которого являются узлы вычисли-
тельной сетки (7).

Конструирование адаптивной вычислительной сетки осуществляется с помощью ре-
шения следующей оптимизационной задачи:

ϕ(~z, θ)→ min
~z

(параметр θ ∈ [0, 1] фиксирован). (11)

Решение задачи (11) может быть сведено к системе нелинейных уравнений
F1(~z ) ≡ z1 − a = 0,

Fj(~z ) = 0, j = 2, . . . , J − 1,

FJ(~z ) ≡ zJ − b = 0,

(12)

где

Fj(~z) =
∂ϕ(~z, θ)

∂zj
, j = 2, . . . , J − 1. (13)

Система (12) может быть решена, например, итерационным методом Ньютона:{
~z (0) задано,

F ′
(
~z (k−1)) (~z (k) − ~z (k−1)) = −F (~z (k−1)), k = 1, 2, . . . ,

(14)

где k — номер итерации, ~z (k) ≡
(
z
(k)
1 , z

(k)
2 , . . . , z

(k)
J

)
, F
(
~z (k)

)
=
(
F1

(
~z (k)

)
, F2

(
~z (k)

)
, . . . ,

FJ
(
~z (k)

))
, F ′

(
~z (k)

)
=

(
∂Fi

(
~z (k)

)
∂zj

)J
i,j=1

— матрица Якоби.
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Заменяя в (14) вектор ~z на вектор ~v с компонентами

v
(k)
j = z

(k)
j − z

(k−1)
j , j = 1, . . . , J,

и применяя некоторые специальные аппроксимации (подробно описанные в работе [13])
для вычисления компонент вектор-функции F

(
~z
)
и матрицы Якоби F ′

(
~z
)
, на k-м ите-

рационном шаге задачу (14) сводим к решению системы линейных алгебраических урав-
нений 

B
(k−1)
1 v

(k)
1 − C

(k−1)
1 v

(k)
2 = g

(k−1)
1 ,

−A(k−1)
j v

(k)
j−1 +B

(k−1)
j v

(k)
j − C

(k−1)
j v

(k)
j+1 = g

(k−1)
j , j = 2, . . . , J − 1,

−A(k−1)
J v

(k)
J−1 +B

(k−1)
J v

(k)
J = g

(k−1)
J ,

(15)

коэффициенты которой определены следующим образом:

B
(k−1)
1 = 1, C

(k−1)
1 = 0, g

(k−1)
1 = 0,

A
(k−1)
J = 0, B

(k−1)
J = 1, g

(k−1)
J = 0;

A
(k−1)
j = (1− θ)w(k−1)

j−1 + θw
(k−1)
j ,

C
(k−1)
j = (1− θ)w(k−1)

j + θw
(k−1)
j+1 ,

B
(k−1)
j = 3w

(k−1)
j − θw(k−1)

j−1 − (1− θ)w(k−1)
j+1 ,

g
(k−1)
j =

(
z
(k−1)
j+1 − 2z

(k−1)
j + z

(k−1)
j−1

)
w

(k−1)
j +

θ

2

(
z
(k−1)
j+1 − z(k−1)j

)(
w

(k−1)
j+1 − w(k−1)

j

)
+

1− θ
2

(
z
(k−1)
j − z(k−1)j−1

)(
w

(k−1)
j − w(k−1)

j−1

)
, j = 2, . . . , J − 1,

где используются вспомогательные функции wj :

w1 =

∣∣∣∣ z3 − z1
(z3 − z2)(z2 − z1)

(
f(z2)− f(z1)

)
− z2 − z1

(z3 − z2)(z3 − z1)
(
f(z3)− f(z1)

)∣∣∣∣,
wj =

∣∣∣∣ zj − zj−1
(zj+1 − zj−1)(zj+1 − zj)

(
f(zj+1)− f(zj)

)
+

zj+1 − zj
(zj+1 − zj−1)(zj − zj−1)

(
f(zj)− f(zj−1)

)∣∣∣∣, j = 2, . . . , J − 1,

wJ =

∣∣∣∣ zJ − zJ−2
(zJ−1 − zJ−2)(zJ − zJ−1)

(
f(zJ)− f(zJ−1)

)
−

zJ − zJ−1
(zJ−1 − zJ−2)(zJ − zJ−2)

(
f(zJ)− f(zJ−2)

)∣∣∣∣.
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В рамках данной работы для решения системы (15) будем использовать метод прогон-
ки [14]. Для регуляризации прогонки, в смысле соблюдения условия строгого диагональ-
ного преобладания, будем формировать диагональные коэффициенты B

(k−1)
j следующим

образом:

B
(k−1)
j = max

(
A

(k−1)
j + C

(k−1)
j + E, 3w

(k−1)
j − θw(k−1)

j−1 − (1− θ)w(k−1)
j+1

)
,

где E > 0 — достаточно малое положительное число.
В качестве начального приближения для итерационного процесса (14) будем исполь-

зовать равномерную на [a, b ] сетку

z
(0)
j = a+

j − 1

J − 1

(
b− a

)
, j = 1, . . . , J,

а в качестве критерия остановки итерационного процесса (14) — условие выполнения
неравенства ∥∥~v ∥∥∞ = max

16j6J
|vj | < δ (16)

с наперед заданным достаточно малым параметром δ = O
((
J − 1

)−3).
Аналитическое решение прямой одномерной задачи МТЗ

для модели Като–Кикучи (тестовая задача)

Одним из известных примеров градиентной функции удельной электропроводности σ,
используемой в задачах МТЗ, является степенная функция, соответствующая модели
Като–Кикучи [3]:

σ(z) = σ0
(
1 + pz

)−2
, (17)

где σ0 и p — некоторые положительные числа. При определенных значениях σ0 и p эта
функция формирует пограничный слой вблизи точки z = 0. Отметим, что для случая
функции (17) известно аналитическое решение соответствующей прямой одномерной за-
дачи МТЗ [3, 11, 12], что является дополнительным преимуществом данной модели при
проведении численных экспериментов по тестированию эффективности разностной схе-
мы (2).

Рассмотрим прямую одномерную задачу магнитотеллурического зондирования для
случая вертикально-градиентной геологической среды, описываемой степенной моделью
Като–Кикучи [3]. Математической моделью такой задачи является система уравнений (4)
(или, что то же самое, матричное уравнение (1)) вместе с начальными условиями (5) (при
этом функция удельной электрической проводимости σ определяется по формуле (17)):

dH(z)

dz
= −σ0(1 + pz)−2E(z),

dE(z)

dz
= iωµ0H(z),

z ∈ (0, zmax),

{
H(0) = H0,

E(0) = E0,
(18)
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где z — пространственная координата; H(z) и E(z) — неизвестные функции напряжен-
ности магнитного и электрического полей; σ0 и p — положительные вещественные числа;
i — мнимая единица; µ0 = 4π 10−7 — магнитная постоянная; ω — частота электромаг-
нитного поля.

В работе [11] было показано, что точное решение этой задачи имеет вид

E(z) = E0(1 + pz)ν+
1
2 , H(z) = H0(1 + pz)ν−

1
2 , ν =

√
1

4
+
k20
p2
, z ∈ [0, zmax], (19)

где k20 = −iωµ0σ0, при этом для обеспечения разрешимости задачи (18) комплексные
постоянные H0 и E0 связаны между собой соотношением p

(
1

2
− ν
)
H0 = σ0E0. Магнито-

теллурический импеданс (6) в этом случае описывается функцией

Z(z) =
E0

H0
(1 + pz), z ∈ [0, zmax]. (20)

Численное решение прямой одномерной задачи МТЗ
с применением адаптивных вычислительных сеток

В данном пункте статьи представим результаты численных экспериментов по реше-
нию прямой одномерной задачи магнитотеллурического зондирования (18) с помощью
разностной схемы (2) с применением равномерных и адаптивных вычислительных се-
ток. Основной целью расчетов является анализ эффективности применения адаптивных
сеток при численном решении задачи Тихонова–Каньяра в случае градиентной среды
(модель Като–Кикучи), для которой известны соответствующие точные решения этой
задачи (19), (20).

Вычисления осуществлялись в среде MatLab в матричном виде для разных наборов
параметров самой задачи и вычислительной сетки. Для этого было усовершенствовано
программное обеспечение MT1Dhlm1 за счет имплементации алгоритма по построению
адаптивных вычислительных сеток.

Аппроксимация функции импеданса Z(z) выполнялась по формуле (6) как отношение
соответствующих приближенных функций E(z) и H(z).

Точности всех получаемых приближенных решений оценивались по двум видам по-
грешностей:

rel_error_max =

∥∥(Y )h − Y h
∥∥
∞∥∥(Y )h

∥∥
∞

100%, (21)

и

rel_error_L1 =

J−1∑
j=1

(zj+1 − zj)
∣∣∣∣(Y )hj+1 + (Y )hj

2
−
Y h
j+1 + Y h

j

2

∣∣∣∣
J−1∑
j=1

(zj+1 − zj)
∣∣∣∣(Y )hj+1 + (Y )hj

2

∣∣∣∣
100%, (22)

где (Y )hj — проекция точного решения задачи (18) на j-й узел сетки, Y h
j — приближен-

ное решение задачи (18) в j-м узле,
∥∥(Y )h − Y h

∥∥
∞ = max16j6J

∣∣(Y )hj − Y h
j

∣∣, ∥∥(Y )h
∥∥
∞ =

1Забинякова О.Б., Скляр С.Н. Программа для моделирования магнитотеллурического поля в
горизонтально-слоистых средах MT1Dhlm. Свидетельство о государственной регистрации программы
для ЭВМ 2022683182, дата регистрации 01.12.2022. Заявка N◦-- 2022682325 от 21.11.2022.
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max16j6J
∣∣(Y )hj

∣∣. Оценка осуществлялась по отдельности для решений, получаемых на
равномерной и адаптивной сетках. Для сравнения результатов, получаемых на равно-
мерной и адаптивной сетках, использовалась контрольная равномерная сетка с большим
числом узлов, на которой выполнялось построение соответствующих интерполянтов по
формуле (3) для приближенных решений, полученных на базовых равномерной и адап-
тивной сетках.

Обратим внимание, что в работе [7] при построении разностных схем для решения
системы (4) подразумевалась возможность кусочно-постоянной аппроксимация функции
удельной электрической проводимости σ(z), при которой внутри каждой сеточной ячей-
ки используется значение функции, соответствующее полусумме ее значений на концах
этой ячейки. Поэтому, придерживаясь этой логики, при построении адаптивных сеток
и соответствующих кусочно-постоянных интерполянтов в рассматриваемой тестовой за-
даче будем использовать значение параметра θ = 1

2
.

Отметим, что была выполнена серия численных экспериментов с разными значени-
ями начальных условий (5). В данной работе, для конкретности, приведем результаты,
полученные при произвольно выбранном значении H0 = 100+100i. Также, для конкрет-
ности, зафиксируем значение параметра-критерия остановки итерационного процесса по
подбору узлов адаптивной сетки в формуле (16) δ = 0.01 и количество узлов контрольной
равномерной сетки, равное 1001.

В таблицах 1–3 приведены относительные погрешности функций H(z), E(z) и Z(z)
соответственно, полученные при разных значениях параметров задачи (18) и вычисли-
тельной сетки (в заголовках таблиц используются сокращения: UG — равномерная сетка,
AG — адаптивная сетка). При выполнении численных экспериментов было установлено,
что погрешности интерполянтов на любых сетках не превышают погрешности соответ-
ствующих сеточных функций, поэтому отдельные таблицы погрешностей интерполянтов
в данной работе приводить не будем.

Таблица 1. Относительные погрешности функции H(z), получаемые при разных значениях
параметров задачи (18) и вычислительной сетки, %

N◦--

Параметры задачи и Погрешности аппроксимации
вычислительной сетки

zmax J σ0 p ω
rel_error_max rel_error_L1
формула (21), % формула (22), %
UG AG UG AG

1
1

5

10 10 100

2.4 · 10−3 8.4 · 10−4 2.1 · 10−3 4.9 · 10−4

2 10 5 · 10−4 1.9 · 10−4 4.5 · 10−4 9.8 · 10−5

3 20 1.1 · 10−4 4.4 · 10−5 10−4 2.2 · 10−5

4
100

5 19.8 6.5 · 10−2 17.31 4 · 10−2

5 10 3.94 0.014 3.72 8.2 · 10−3

6 20 0.9 3.7 · 10−3 0.88 2.2 · 10−3

7
10

5

100 10 1

2.1 · 10−2 9.1 · 10−4 1.8 · 10−2 5.7 · 10−4

8 10 4.3 · 10−3 2 · 10−4 4.1 · 10−3 1.2 · 10−4

9 20 10−3 5.6 · 10−5 10−3 3.1 · 10−5

10

1000

5 198.62 4.3 · 10−2 173.79 0.0257

11 10 38.87 1.1 · 10−2 36.71 0.0056

12 20 8.74 2.2 · 10−3 8.51 0.0013

13 50 1.32 4.7 · 10−4 1.31 2.7 · 10−4
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Таблица 2. Относительные погрешности функции E(z), получаемые при разных значениях
параметров задачи (18) и вычислительной сетки, %

N◦--

Параметры задачи и Погрешности аппроксимации
вычислительной сетки

zmax J σ0 p ω
rel_error_max rel_error_L1
формула (21), % формула (22), %
UG AG UG AG

1
1

5

10 10 100

1.7 · 10−3 3.5 · 10−4 0.0013 2.4 · 10−4

2 10 3.9 · 10−4 6.4 · 10−5 3.1 · 10−4 4 · 10−5

3 20 9 · 10−5 1.4 · 10−5 7.3 · 10−5 8.6 · 10−6

4
100

5 16.48 3.3 · 10−2 14.0 3.1 · 10−2

5 10 3.65 6.6 · 10−3 3.39 5.8 · 10−3

6 20 0.87 1.8 · 10−3 0.84 1.5 · 10−3

7
10

5

100 10 1

1.7 · 10−2 4.7 · 10−4 1.4 · 10−2 4.1 · 10−4

8 10 4 · 10−3 9.6 · 10−5 3.6 · 10−3 7.5 · 10−5

9 20 9.8 · 10−4 2.4 · 10−5 9.3 · 10−4 1.8 · 10−5

10

1000

5 165.22 2 · 10−2 140.23 2 · 10−2

11 10 35.99 4.2 · 10−3 33.43 4 · 10−3

12 20 8.4 10−3 8.14 9.1 · 10−4

13 50 1.3 2.3 · 10−4 1.28 1.9 · 10−4

Таблица 3. Относительные погрешности функции Z(z), получаемые при разных значениях
параметров задачи (18) и вычислительной сетки, %

N◦--

Параметры задачи и Погрешности аппроксимации
вычислительной сетки

zmax J σ0 p ω
rel_error_max rel_error_L1
формула (21), % формула (22), %
UG AG UG AG

1
1

5

10 10 100

7 · 10−4 5 · 10−4 10−3 4 · 10−4

2 10 1.2 · 10−4 1.3 · 10−4 1.8 · 10−4 8.8 · 10−5

3 20 2.4 · 10−5 3 · 10−5 3.7 · 10−5 2 · 10−5

4
100

5 3.3 3.2 · 10−2 5.7 3 · 10−2

5 10 0.29 7.7 · 10−3 0.56 6.9 · 10−3

6 20 3.2 · 10−2 1.9 · 10−3 6.3 · 10−2 1.6 · 10−3

7
10

5

100 10 1

3.6 · 10−3 4.3 · 10−4 6.3 · 10−3 3.9 · 10−4

8 10 3.7 · 10−4 1.1 · 10−4 6.8 · 10−4 8.9 · 10−5

9 20 5 · 10−5 3.2 · 10−5 9.5 · 10−5 2.4 · 10−5

10

1000

5 17.48 2.3 · 10−2 30.58 2.2 · 10−2

11 10 2.75 6.3 · 10−3 5.19 6 · 10−3

12 20 0.31 1.2 · 10−3 0.6 1.1 · 10−3

13 50 2 · 10−2 2.4 · 10−4 3.6 · 10−2 2 · 10−4

На рисунках 1, 3, 5 приведены примеры графиков градиентных функций σ(z) (ли-
ния 1) и их аппроксиманты, построенные с помощью кусочно-постоянной интерполяции
(линия 2 — на равномерных сетках, линия 3 — на адаптивных сетках). Визуальный ана-
лиз графиков, представленных на указанных рисунках, позволяет заметить явное пре-
имущество применения адаптивных сеток для кусочно-постоянной интерполяции функ-
ций σ(z): в отличие от равномерных сеток плотность узлов адаптивных сеток увели-
чивается в области пограничного слоя функции и позволяет более точно выполнять ее
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аппроксимацию в этой области. На рисунках 2, 4, 6 на примере функции H(z) сопостав-
ляются результаты численного решения задачи (18) с ее соответствующими точными
решениями для разных σ(z) на разных сетках (см. подрисуночные подписи): линия 1
изображает известные аналитические решения (19); линия 2 и � — приближенное реше-
ние и интерполянт, полученные с помощью разностной схемы (2) и формулы естествен-
ной интерполяции (3) на равномерной вычислительной сетке; линия 3 и • — приближен-
ное решение и интерполянт, полученные с помощью основной разностной схемы (2) и
формулы естественной интерполяции (3) на адаптивной вычислительной сетке.

Рис. 1. Верхний график — функция σ(z) и ее сеточные аппроксимации для варианта N◦-- 2
сочетания параметров из таблиц 1–3; нижний график — узлы равномерной и адаптивной вычис-
лительных сеток

Рис. 2. Графики действительной и мнимой частей функции H(z) для варианта N◦-- 2 сочетания
параметров из таблиц 1–3
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Рис. 3. Верхний график — функция σ(z) и ее сеточные аппроксимации для варианта N◦-- 5
сочетания параметров из таблиц 1–3; нижний график — узлы равномерной и адаптивной вычис-
лительных сеток

Рис. 4. Графики действительной и мнимой частей функции H(z) для варианта N◦-- 5 сочетания
параметров из таблиц 1–3



С.Н. Скляр, О.Б. Забинякова 361

Рис. 5. Верхний график — функция σ(z) и ее сеточные аппроксимации для варианта N◦-- 9
сочетания параметров из таблиц 1–3; нижний график — узлы равномерной и адаптивной вычис-
лительных сеток

Рис. 6. Графики действительной и мнимой частей функции H(z) для варианта N◦-- 9 сочетания
параметров из таблиц 1–3
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Из таблиц погрешностей и графических примеров, представленных в данном пункте,
видно, что при моделировании компонент электромагнитного поля с помощью разност-
ной схемы (2) имеет место сходимость приближенного решения к точному, что связано с
увеличением числа узлов вычислительной сетки. Это закономерно как для равномерной,
так и для адаптивной сеток. При этом эффективность применения адаптивных вычисли-
тельных сеток (по сравнению с равномерными сетками) при решении прямой одномерной
задачи магнитотеллурического зондирования для случая градиентной среды очевидна,
что наиболее явно проявилось в случаях численных экспериментов с небольшим коли-
чеством узлов и достаточно большим значением zmax.

Заключение

Таким образом, в работе рассматривался вопрос повышения точности численного мо-
делирования компонент электромагнитного поля при решении прямой одномерной зада-
чи магнитотеллурического зондирования для случая градиентной геологической среды с
помощью разностных схем, полученных методом локальных интегральных уравнений и
подразумевающих использование кусочно-постоянных интерполянтов функции удельной
электропроводности. Показано, что существует возможность повышать точность получа-
емых приближенных решений рассматриваемой задачи при использовании специальных
вычислительных сеток, адаптированных под свойства этой функции. Результаты чис-
ленных экспериментов по решению задачи Тихонова–Каньяра для модели Като–Кикучи
подтвердили эффективность применения предложенных адаптивных вычислительных
сеток, точность моделирования компонент электромагнитного поля увеличилась на 1–3
порядка.
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