УДК 534.222.2

УДАРНАЯ СЖИМАЕМОСТЬ ЭМУЛЬСИОННОЙ МАТРИЦЫ ПРИ ДАВЛЕНИИ ДО 37 ГПа

В. В. Сильвестров, А. С. Юношев, А. В. Пластинин, С. И. Рафейчик

Институт гидродинамики им. М. А. Лаврентьева СО РАН, 630090 Новосибирск, silver@hydro.nsc.ru

Экспериментально исследована ударная сжимаемость эмульсионной матрицы на основе водного раствора аммиачной и натриевой селитр при давлении до 37 ГПа, значительно превышающем расчетное давление детонации. На основе полученных данных определены параметры уравнения состояния в форме, предложенной Хейесом, и рассчитана температура ударного разогрева матрицы. При давлении более 17 ГПа на профилях входного давления наблюдается подъем, связанный с химическим превращением эмульсии.

Ключевые слова: матрица эмульсионного взрывчатого вещества, ударная адиабата, уравнение состояния.

ВВЕДЕНИЕ

Эмульсионные взрывчатые вещества (BB) состоят из двух основных компонентов: эмульсионной матрицы (эмульсии) и порообразуюцего сенсибилизатора. Эмульсия — единственный энергетический компонент, способный к экзотермической реакции. Но сведения о динамическом поведении чистой эмульсии, без сенсибилизирующих включений, об ее уравнении состояния в широком диапазоне параметров и о возможности взрывного превращения ограничены. Подобная информация необходима при построении уравнения состояния эмульсионного BB, для оценки термодинамических параметров детонации и при анализе механизма взрывного превращения подобных композиций.

Детонационное превращение эмульсии без сенсибилизатора не наблюдалось, не ясно, как его реализовать и какие для этого необходимы условия. Существуют расчетные оценки параметров Чепмена — Жуге: скорости детонации $D_{\rm CJ}$, давления $p_{\rm CJ}$ и температуры $T_{\rm CJ}$, зависящие от используемого уравнения состояния продуктов взрыва эмульсии. Для эмульсии на основе водного раствора аммиачной (AC) и натриевой селитр (HC) эти оценки существенно отличаются: 6.42 км/с, 13.6 ГПа, 1 601 К [1] и 7.4 км/с, 18.4 ГПа, 1 147 К [2]. Давление в химпике примерно в $1.5 \div 2$ раза больше $p_{\rm CJ}$ и может достигать $20 \div 37$ ГПа.

Известны оценки [3–5] и экспериментальные данные [6, 7] по ударной сжимаемости эмульсионных матриц различного состава. Результаты получены при динамическом давлении до 14 ГПа, близком к расчетным значениям $p_{\rm CJ}$ для эмульсии. Поведение эмульсии при более высоком давлении, существенно превышающем расчетные значения $p_{\rm CJ}$ и характерном для химического пика «детонирующей» матрицы, не исследовалось. Получение подобной информации, построение уравнения состояния и расчет температуры ударно-сжатой эмульсии и были целью настоящей работы.

ОПРЕДЕЛЕНИЕ УДАРНОЙ АДИАБАТЫ ЭМУЛЬСИОННОЙ МАТРИЦЫ

Исследовалась высокодисперсная эмульсионная матрица: окислитель — водный раствор аммиачной и натриевой селитр, 94 % (масс.); горючее — смесь индустриального масла, парафина и эмульгатора, 6 %. Плотность эмульсии $\rho_0 = 1.40 \pm 0.01$ г/см³, размер капель окислителя менее 2 мкм, кислородный баланс близок к нулю.

Слой эмульсии толщиной $\Delta \approx 5$ и 10 мм, диаметром 90 мм нагружался через «передний» экран из алюминия или фторопласта накладным зарядом ВВ или ударом пластины из дюралюминия толщиной от 10 до 5 мм, ускоренной взрывом до $2.4 \div 5.2$ км/с. С другой стороны слоя эмульсии находился «задний» экран из алюминия, фторопласта, плексигласа или воды. Профиль давления на входе в обра-

Работа поддержана Российским фондом фундаментальных исследований (проект № 12-08-00092-а), программой Президиума РАН № 2.9 и частично фондом Президента по государственной поддержке ведущих научных школ (НШ-247.2012.1).

[©] Сильвестров В. В., Юношев А. С., Пластинин А. В., Рафейчик С. И., 2014.

зец $p_{in}(t)$ и время пробега Δt ударной волны по слою эмульсии регистрировались манганиновыми датчиками, расположенными на границах раздела передний экран — эмульсия и эмульсия — задний экран. В отдельных опытах для регистрации профиля массовой скорости на второй границе раздела использовался лазерный интерферометр VISAR.

На рис. 1 приведены профили входного давления $p_{in}(t)$ при его начальном значении $13 \div 18$ ГПа с выделением характерных точек. Пик давления p_A в точке A в первые ≈ 0.2 мкс связан с переходными процессами внутри датчиков давления сопротивлением ≈ 0.2 Ом, чувствительный элемент которых с обеих сторон изолирован пленкой из фторопласта толщиной 0.15 или 0.3 мм. Точность измерения давления — $3 \div 5$ %, скорости ударной волны — 2%.

При помощи одномерного программного комплекса [8] моделировалось прохождение ударной волны через систему экран / прокладка из фторопласта / эмульсия. Время установления постоянного течения в эмульсии определялось серией ревербераций волн сжатия и разрежения в прокладке в интервале давления в эмульсии $2 \div 50$ ГПа. При варьировании толщины прокладки из фторопласта в диапазоне $150 \div 600$ мкм время установления составило $50 \div 200$ нс, по истечении этого времени давление в эмульсии соответствовало точке на адиабате разгрузки материала экрана. Время реак-

Рис. 1. Профили давления, зарегистрированные датчиком на входе ($\Delta \approx 5$ мм):

стрелками отмечен момент прихода волны разгрузки со стороны свободной поверхности ударника ции используемой схемы регистрации сигнала манганинового датчика 75 нс. Отсюда следует обоснование для выбора точки B на профиле первого датчика: на удалении ≈ 200 нс от фронта сигнала регистрируемая амплитуда давления соответствует давлению в эмульсии.

Для построения ударной адиабаты эмульсии использовались значения давления p_B в точке B, соответствующие входному давлению в эмульсии (см. рис. 1), и времени пробега ударной волны по эмульсии Δt . На первой итерации считалось, что скорости ударных волн в эмульсии U и в изолирующих прокладках из фторопласта совпадают. Скорость определялась делением расстояния между чувствительными элементами датчиков на интервал времени Δt . Массовую скорость $u = p_B/(\rho_0 U)$ и ударную адиабату эмульсии рассчитывали из закона сохранения импульса.

На второй итерации средняя по толщине слоя эмульсии скорость ударной волны рассчитывалась с учетом конечной толщины изолирующих прокладок и различия в ударной сжимаемости фторопласта и эмульсии. Использовались ударные адиабаты материалов экрана из [9] и ударная адиабата эмульсии, полученная на первом шаге. Разница между адиабатами, рассчитанными на первой и второй итерациях, составляла $0.5 \div 2.6 \%$ и соответствовала ошибке измерения давления в точке *B*.

Результаты расчета приведены в таблице и на рис. 2. В координатах волновая — массовая скорость данные для АС/НС-эмульсии хорошо описываются линейной зависимостью $U = 2.14(\pm 0.13) + 1.77(\pm 0.06)u$ (штриховая линия на рис. 2, а) или обобщенными ударными адиабатами [10, 11] при измеренной при нормальных условиях скорости звука $C_0 =$ 1.85 ± 0.05 км/с, например ударной адиабатой в форме $U/C_0 = 1.37 - 0.37 \exp(-2u/C_0) +$ $1.62u/C_0$ [11]. Овалом на рис. 2 отмечена исследованная ранее другими авторами область при $p \leq 14$ ГПа. Из сравнения результатов с данными для эмульсий на основе водного раствора АС или АС/перхлорат натрия (ПН) [6, 7] следует, что вариации в составе и дисперсности эмульсии слабо влияют на положение ударной адиабаты в этих координатах. Ударная адиабата в координатах давление — массовая скорость хорошо описывается параболой $p = 3.43u + 2.30u^2$. При p = 37 ГПа степень сжатия эмульсии достигает 1.75.

При определении ударной адиабаты ма-

Рис. 2. Ударная адиабата эмульсионной AC/HC-матрицы:

точки — эксперимент: 1, 6 — AC/HC-эмульсия и эмульсионное BB, данные авторов (см. таблицу); 2–4 — AC и AC/ПН-эмульсии [6, 7]; 5 — точка Чепмена — Жуге [1]; 7 — расчет; 8 — прямая Михельсона, соответствующая расчетной скорости детонации 6.42 км/с [1]

Δ , mm	p, ГПа	U, км/с	u, км/с	$V, \mathrm{cm}^3/\mathrm{f}$	V/V_0
АС/НС-эмульсия					
5.73	0.53	2.18	0.17	0.66	0.92
5.28	5.3	4.02	0.94	0.55	0.77
10.80	11.0	4.93	1.60	0.48	0.68
5.94	13.0	5.18	1.79	0.47	0.66
10.09	15.3^{*}	5.75	1.90	0.48	0.67
10.15	17.6	5.97	2.11	0.46	0.65
10.05	20.9	6.33	2.36	0.45	0.63
4.65	23.1	6.57	2.51	0.44	0.62
9.93	25.0^{*}	6.91	2.58	0.45	0.63
9.85	25.2^{*}	6.64	2.71	0.42	0.59
4.93	30.1	7.37	2.92	0.43	0.60
4.94	34.5	7.76	3.18	0.42	0.59
11.37	37.5^{*}	7.91	3.39	0.41	0.57
Эмульсионное ВВ:					
АС/НС-эмульсия + 2 % (масс.) МС-В, 1.27 г/см ³					
5.92	22.0	7.53	2.89	0.52	0.66

Экспериментальные данные

*Для получения профиля массовой скорости $u_{out}(t)$ на границе эмульсия — вода использовался VISAR.

лочувствительного ВВ РВХ 9502 (95 % ТАТВ, 5 % пластификатора Kel-F 800) в широком диапазоне давления показано, что данные разбиваются на две группы [12, 13]. При амплитуде ударной волны p менее $p_{\rm CJ}$ результаты соответствуют ударной адиабате инертной композиции. При $p > p_{\rm CJ}$ инициируется пересжатая детонация и результаты соответствуют сильной ветви детонационной адиабаты продуктов взрыва. При $p \approx p_{\rm CJ}$ наблюдается особенность в виде скачкообразного перехода с ударной адиабаты композиции на детонационную адиабату.

Для исследуемой эмульсионной матрицы, априори малочувствительной, но способной к экзотермической реакции, подобная особенность при $p \approx p_{\rm CJ}$ отсутствует. Возможно, это связано, во-первых, с низкой скоростью химического превращения материала эмульсионной матрицы и соответственно малым количеством дополнительно выделяющейся энергии при ограниченной длительности эксперимента. Во-вторых, металлическая соль натрия разлагается эндотермически с образованием твердых продуктов реакции [4], поглощая часть энергии экзотермической реакции. В результате интегральная скорость реакции становится еще меньше, т. е. натриевая селитра может рассматриваться как инертная добавка, и кажется, что матрица остается практически инертной средой, хотя на самом деле при $p > p_{\rm CJ}$ она может быть смесью исходного вещества и продуктов частичной реакции.

Наличие ударной адиабаты чистой эмульсии в широком диапазоне давления позволяет оценить параметры «химпика» в точке пересечения экспериментальной ударной адиабаты и прямой Михельсона при расчетной скорости детонации эмульсии $D_{\rm CJ} = 6.42$ км/с [1]: давление $p_{sp} = 22$ ГПа, массовая скорость $u_{sp} = 2.43$ км/с (рис. 2, δ), температура $T_{sp} \approx$ 1200 К (см. ниже). Аналогичная оценка при $D_{\rm CJ} = 7.4$ км/с [2] дает значения 32 ГПа, 3.07 км/с и 1700 К. Таким образом, только при очень высоком давлении $(22 \div 32 \ \Gamma \Pi a)$ за фронтом ударной волны достигается температура, близкая к температуре в «химпике» возможной детонации эмульсионной матрицы, при которой должна реализовываться максимальная скорость химического превращения, характерная для детонационного режима чистой эмульсии.

УРАВНЕНИЕ СОСТОЯНИЯ ЭМУЛЬСИИ

Знание ударной адиабаты эмульсии позволяет построить уравнение состояния и рассчитать температуру ударно-нагретой эмульсии при условии, что во всем диапазоне давления она ведет себя как инертное вещество. Использовалось термодинамически согласованное уравнение состояния типа Ми — Грюнайзена, основанное на концепции термодинамического потенциала: свободной энергии Гельмгольца F(T, V) в форме (1), предложенной Хейесом [14], простейшем калорическом уравнении состояния и соотношении Мурнагана (2). Эта модель широко используется для построения уравнений состояния ряда мощных BB: HNS, РВХ-9404, октогена, РВХ-9502, и составляющих смесевого взрывчатого вещества ANFO: прессованной аммиачной селитры и дизельного топлива [14–18]. Выпишем уравнения:

$$F(T,V) = c_V \left\{ (T - T_0) \left[1 + \frac{\Gamma}{V} (V_0 - V) \right] + T \ln \left(\frac{T_0}{T} \right) \right\} + \frac{K_{T_0} V_0}{N(N-1)} \times \left[\left(\frac{V_0}{V} \right)^{N-1} - (N-1) \left(1 - \frac{V}{V_0} \right) - 1 \right], \quad (1)$$

$$P(V,T) = -\left(\frac{\partial F}{\partial V}\right)_T =$$
$$= c_V \rho_0 \Gamma_0 (T - T_0) + \frac{K_{T_0}}{N} \left[\left(\frac{V_0}{V}\right)^N - 1 \right].$$
(2)

Они включают в себя пять параметров. Начальный удельный объем $V_0 = 1/\rho_0$ вычисляется по измеренной плотности эмульсии (предполагается, что эмульсия не содержит пор). Считалось, что теплоемкость эмульсии постоянна, не зависит от давления и температуры; коэффициент Грюнайзена Г пропорционален удельному объему и не зависит от температуры; изотермический модуль сжатия K_T пропорционален степени сжатия $\sigma = V_0/V$:

$$c_V = c_{V_0} = \text{const}, \quad \frac{\Gamma}{V} = \Gamma_0 \rho_0 = \text{const} = \gamma_1,$$

$$K_T = K_{T_0} \left(\frac{V_0}{V}\right)^N \equiv K_{T_0} \sigma^N.$$
(3)

Значения теплофизических и механических величин для эмульсии оценивались из данных при давлении 0.1 МПа: $c_{V_0} = 2.2 \div$ 2.3 Дж/(г·К) [5, 19]; модуль сжатия при нормальных условиях $K_{T_0} \approx \rho_0 C_0^2 \approx 4.8$ ГПа; коэффициент Грюнайзена — по известному соотношению $\Gamma_0 \approx \beta C_0^2/c_p = 1.0$ (коэффициент объемного термического расширения при-нимался равным $\beta = 6 \cdot 10^{-4} \text{ K}^{-1}$ и $c_p \approx c_V$). Используя дифференциальные определения основных термодинамических переменных и законы сохранения на ударной адиабате, можно получить трансцендентное уравнение, связывающее ударную и массовую скорости на ударной адиабате [16]. Параметр «упругости» N определяли методом наименьших квадратов из условия наилучшего совпадения экспериментальной и расчетной ударных адиабат. Получено оптимальное значение параметра N = 7.1и хорошее согласие расчетной ударной адиабаты с опытными данными (см. рис. 2, кривые 7).

ТЕМПЕРАТУРА УДАРНО-СЖАТОЙ ЭМУЛЬСИОННОЙ МАТРИЦЫ

Результаты расчета температуры ударного разогрева инертной эмульсии приведены на рис. 3 и являются ориентиром при анализе вопросов, связанных с разложением эмульсии за фронтом ударной волны. Например, при

Рис. 3. Расчетные оценки температуры ударного сжатия эмульсии и детонации:

чистая эмульсия: 1 — уравнения состояния (1)–(3), 2 — расчет [5], 3 — химпик в точке 22 ГПа, 1 220 К; детонация: 4 — эмульсионное ВВ на основе AC/HC-эмульсии [1], 5 — на основе AC-эмульсии [2]

давлении 2÷10 ГПа температура во фронте ударной волны составляет всего $350 \div 630$ К, при 20 ГПа она равна 1100 К. Полученные значения согласуются с расчетными оценками температуры ударно-сжатой эмульсии при $p \leq 10$ ГПа [5] (точки 2 на рис. 3).

Расчетные оценки [1–5] дают представление о температурах, характерных для детонации эмульсионных BB (точки 4, 5 на рис. 3) при времени реакции ≈ 1 мкс [3, 20]): $T \approx 1700 \div 2200$ К. Для эмульсии без пор такие температуры достигаются при ударном давлении $32 \div 40$ ГПа. Следовательно, взрывоподобное превращение AC/HC-эмульсии, протекающее с максимально возможной скоростью, можно ожидать при очень высоком давлении, более 30 ГПа.

Для анализа достоверности расчетных оценок температуры необходимы экспериментальные измерения температуры ударносжатой эмульсии при $p \leq 40$ ГПа и $T \leq 2500$ К. Эти результаты могли бы помочь оценить корректность выбора уравнения состояния, теплоемкости и коэффициента Грюнайзена для исследуемой эмульсии.

Рис. 4. Профили $p_{in}(t)$ в опытах с плоскими ударниками:

AC/HC-эмульсия, $\Delta \approx 5\,$ мм, приведены значения давления в точке B

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

При начальном давлении на входе в образец эмульсии $13 \div 18$ ГПа на профилях $p_{in}(t)$ с задержкой $0.3 \div 0.6$ мкс наблюдается подъем давления (отмечен стрелками на рис. 1 и рис. 4), амплитуда Δp которого для AC/HCэмульсии изменяется от ≈ 1.5 ГПа при $p_{in} \approx$ 17 ГПа до 4 ГПа при $p_{in} \approx 35 \div 37$ ГПа. Появление этого скачка давления связано, возможно, с разложением эмульсии за фронтом ударной волны. Регистрируемая амплитуда подъема давления зависит от длительности нагружающего импульса сжатия, т. е. от времени пребывания эмульсии в ударно-сжатом состоянии, и от амплитуды инициирующей волны. Данное наблюдение качественно согласуется с торможением контактной границы «входной экран из парафина — АС-эмульсия», регистрируемым электромагнитным датчиком массовой скорости при давлении более 13.5 ГПа [6]. Авторы [6] дали следующее качественное объяснение эффекта: скорость контактной границы падает, так как за счет экзотермической реакции разложения эмульсии увеличивается давление на границе. Таким образом, впервые появилось указание на начало разложения эмульсии при $p_{in} = 13 \div 14 \ \Gamma \Pi a.$

По сути дела, в данной работе наблюдается тот же эффект в виде подъема давления на контактной границе экран — эмульсия. Отметим, что при инициировании флегматизированного гексогена ударной волной 3.1 ГПа также регистрируется прирост давления на входе в образец величиной $\Delta p = 4 \div 5$ ГПа [21], природа которого связана с инициированием реакции в BB и сомнений не вызывает.

Оценим максимальную амплитуду давления Δp , полагая, что за счет реакции разложения эмульсии за фронтом ударной волны дополнительно выделяется энергия $\Delta q \approx$ $2.0 \div 2.5$ кДж/г [20]. Часть ее тратится на изменение кинетической энергии вещества (на этом основан метод торможения границы раздела [6]), часть — на увеличение тепловой составляющей давления. При уменьшении амплитуды ударной волны и, соответственно, меньшем ударном нагреве, ограниченном времени существования высоких параметров в динамическом эксперименте рост давления Δp будет уменьшаться. Из соотношения Грюнайзена следует $\Delta p_{\max} \sim \frac{\Gamma}{V} \Delta q = \Gamma_0 \rho_0 \Delta q \approx 3 \div 4$ ГПа, что согласуется с данными эксперимента. Таким образом, имеются основания считать, что появление скачка давления на профиле $p_{in}(t)$ указывает на инициирование реакции разложения исследуемой АС/НС-эмульсии за фронтом ударной волны.

Были поставлены опыты при $p_{in} = 15$ и 25 ГПа, в которых регистрировались профили массовой скорости $u_{out}(t)$ на границе эмульсия — вода с помощью интерферометра VISAR (рис. 5). Использовалась свежая эмульсия: менее суток от ее изготовления до испытания. Полученный профиль $u_{out}(t)$ оказался типичным для жидкости без химических превращений, т. е. значительное увеличение массовой

Рис. 5. Профили массовой скорости на границе AC/HC-эмульсия — вода

скорости, подобное зарегистрированному увеличению скорости в 1.5 раза для АС-эмульсии [7], не наблюдалось.

Сложность интерпретации профилей $p_{in}(t)$ и $u_{out}(t)$ связана с невысокой скоростью химического превращения материала эмульсионной матрицы, представляющей собой интермолекулярную смесь окислителя и горючего. Возможно, ожидаемый гидродинамический комплекс — ударная волна с последующей быстрой реакцией — не успевает сформироваться в условиях постановки эксперимента, а именно при ограниченной толщине слоя эмульсии и ограниченном времени поддержания высокого давления.

ЗАКЛЮЧЕНИЕ

При нагружении ударной волной давлением до 37 ГПа, превышающем расчетное давление детонации, эмульсионная матрица на основе водного раствора аммиачной и натриевой селитр ведет себя как инертное вещество: на ударной адиабате отсутствуют какие-либо особенности. При начальном давлении на входе в образец более 17 ГПа на профиле наблюдается прирост давления $\Delta p \approx 4 \ \Gamma \Pi a$, что указывает на разложение вещества матрицы, способного в принципе к экзотермической реакции. Вопрос о возможности детонационного превращения эмульсии без сенсибилизатора остается открытым, так же как и достоверность классификации эмульсионной матрицы, тестируемой в заряде ограниченного диаметра при ударном давлении менее 15 ГПа, по степени опасности как невзрывчатое вещество [22].

ЛИТЕРАТУРА

- Yoshida M., Iida M., Tanaka K., Fudjiwara S. Detonation behavior of emulsion explosives containing glass microballoons // Proc. 8th Symp. (Intern.) on Detonation. — 1985. — P. 993– 1000.
- Tanaka K. Shock compression of solid with voids by gridless Lagrangian SPH // Shock Compression of Condensed Matter — 2005 (AIP Conf. Proc.). — Pt 2. — P. 1117–1120.
- Leiper G. A., Kirby I. J., Hackett A. Determination of reaction rate in intermolecular explosives using the electromagnetic particle velocity gauge // Proc. 8th Symp. (Intern.) on Detonation. 1985. P. 187–195.
- Lee J., Sandstrom F. W., Graig B. G., Persson P.-A. Detonation and shock initiation properties of emulsion explosives // Proc. 9th Intern. Detonation Symp. 1989. P. 263–271.

- Cooper J., Leiper A. G., Neilson W. G. Molecular and microscopic structural effects in the detonation of fluid explosives // Proc. 12th Intern. Detonation Symp. — 2002. — P. 733–741.
- Ананьин А. В., Колдунов С. А. К исследованию детонационной способности матрицы эмульсионных ВВ // Труды междунар. конф. «IX Харитоновские тематические научные чтения», 12–16 марта 2007, Саров. — С. 93–96.
- Utkin A. V., Lavrov V. V., Mochalova V. M. Experimental determination of detonation parameters of explosives based on ammonium nitrate // Shock Compression of Condensed Matter 2011 (AIP Conf. Proc.). P. 205–208.
- 8. **Shock** Wave Database: http: //www.ihed.ras.ru/rusbank/gassim/.
- Трунин Р. Ф., Гударенко Л. Ф., Жерноклетов М. В., Симаков Г. В. Экспериментальные данные по ударно-волновому сжатию и адиабатическому расширению конденсированных сред. — Саров: РФЯЦ-ВНИИЭФ, 2001.
- Woolfolk R. W., Cowperthwaite M., Shaw R. A «universal» Hugoniot for liquids // Thermochim. Acta. — 1973. — V. 5, N 4. — P. 409–414.
- Воскобойников И. М., Душенок С. А., Котомин А. А. Критические диаметры детонации растворов бисфтординитроэтилформаля // Хим. физика. — 1998. — Т. 17, № 11. — С. 130– 139.
- Wescott B. L., Stewart D. S., Davis W. C. Equation of state and reaction rate for condensedphase explosives // J. Appl. Phys. — 2005. — V. 98. — 053514(1–10).
- Menikoff R. Complete EOS for PBX 9502 // LANL Report LA-UR-09-06529, October 7, 2009.
- Hayes D. B. A Pⁿt detonation criterion from thermal explosion theory // Sixth Symp. (Intern.) on Detonation, August 24–27, 1976. — P. 76–81.

- Sheffield S. A., Mitchell D. E., Hayes D. B. The equation of state and chemical kinetics for hexanitrostilbene (HNS) explosive // Ibid. — P. 748–754.
- Zukas J. A., Walters W. P. Explosive Effects and Applications. — New York, Inc.: Springer-Verlag, 1998. — P. 94–95.
- Robbins D. L., Sheffield S. A., Dattelbaum D. M., Velisavljevic N., Stahl D. B. Equation of state of ammonium nitrate // Shock Compression in Condensed Matter — 2009 (AIP Conf. Proc.). — P. 552–555.
- Robbins D. L., Sheffield S. A., Dattelbaum D. M., Stahl D. B. Huqoniot and properties of diesel fuel used in ANFO // Shock Compression in Condensed Matter — 2011 (AIP Conf. Proc.). — P. 828–831.
- Turcotte R., Goldthorp S., Badeen C. M., Chan S. K. Hot-wire ignition of AN-based emulsions // Propellants, Explos., Pyrotech. — 2008. — V. 33. — P. 472–481.
- Юношев А. С., Пластинин А. В., Сильвестров В. В. Исследование влияния плотности эмульсионного взрывчатого вещества на ширину зоны реакции // Физика горения и взрыва. — 2012. — Т. 48, № 3. — С. 79–88.
- Бордзиловский С. А., Караханов С. М. Десенсибилизация флегматизированного гексогена и октогена последовательными ударными волнами // Физика горения и взрыва. — 1995. — Т. 31, № 2. — С. 114–124.
- Колганов Е. В., Смирнов С. П., Смирнов А. С., Ильин В. П., Хворов Ф. Т., Карачев А. Г. Определение класса опасности эмульсии порэмита // Горн. журн. — 2006. — № 5. — С. 91–92.

Поступила в редакцию 30/V 2013 г.