2017. Том 58, № 5

Июнь – июль

C. 1087 – 1094

УДК 546.311:547.463:539.26

ЛИТИЙ-КАРБОКСИЛАТНЫЕ КООРДИНАЦИОННЫЕ ПОЛИМЕРЫ НА ОСНОВЕ ТРИМЕЗИНОВОЙ КИСЛОТЫ

Т.К. Колтунова¹, Д.Г. Самсоненко^{1,2}, Д.Н. Дыбцев^{1,2}, В.П. Федин^{1,2}

¹Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск, Россия E-mail: cluster@niic.nsc.ru ²Новосибирский национальный исследовательский государственный университет, Россия

Статья поступила 16 июня 2016 г.

Три новых металл-органических координационных полимера состава $(H_2NMe_2)_{2\times} \times [Li_3(btc)(Hbtc)(DMF)_4]$ (1), $[Li_5(DMF)_6(btc)(Hbtc)] \cdot 2DMF$ (2) и $[Li_6(DMF)_8(bdc)(Hbtc)]$ (3) (H₃btc — тримезиновая кислота, H₂bdc — терефталевая кислота) получены при нагревании LiOH с различными ароматическими карбоновыми кислотами в диметилформамиде (или его смеси с водой). Кристаллические структуры и составы соединений установлены методом монокристального рентгеноструктурного анализа. Соединение 1 имеет слоистую структуру, соединения 2 и 3 — каркасные.

DOI: 10.15372/JSC20170527

Ключевые слова: координационные полимеры, каркасные структуры, комплексы лития(I), рентгеноструктурный анализ.

введение

Химия металл-органических координационных полимеров (МОКП) — бурно развивающаяся область современной химической науки. Важнейшей движущей силой развития этого направления являются уникальные функциональные свойства МОКП, прежде всего их сорбционные характеристики по отношению к различным газам [1-5]. Например, для пористых МОКП на основе цинка и карбоксилатных мостиковых лигандов были зафиксированы рекордные значения удельной поверхности [6]. При этом очевидно, что такие системы имеют потенциал для дальнейшего увеличения гравиметрических сорбционных характеристик, если заменить катион 3*d*-металла на более легкий элемент. Таким образом, пористые МОКП на основе лития(I) являются наиболее ценными кандидатами с точки зрения получения сорбентов с высокими значениями удельной поверхности и сорбционной емкости. Несмотря на важность получения новых литий-органических координационных полимеров, число таких материалов, обладающих пористым каркасом и демонстрирующих сорбцию газов, пока слишком ограничено [7-9]. Отчасти такое несоответствие связано с несовершенством используемых подходов к синтезу литий-органических каркасов, а также с отсутствием понимания всех взаимосвязей между условиями кристаллизации и составом/строением конечного продукта. Таким образом, получение новых МОКП на основе лития и характеризация их кристаллической структуры представляет собой важную задачу как для фундаментальной науки, так и с точки зрения прикладного материаловедения. В настоящей работе описано получение и исследование кристаллической структуры трех новых координационных полимеров на основе лития(I) и тримезиновой кислоты (С₆H₃(COOH)₃), проведена их топологическая идентификация и анализ.

[©] Колтунова Т.К., Самсоненко Д.Г., Дыбцев Д.Н., Федин В.П., 2017

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Исходные вещества — моногидрат гидроксида лития, бензол-1,3,5-трикарбоновую кислоту, 1,4-бензолдикарбоновую кислоту, 1,4-бифенилдикарбоновую кислоту, N,N-диметилформамид (все квалификации не ниже XЧ) использовали без дополнительной очистки.

Рентгеноструктурное исследование. Дифракционные данные для монокристаллов 1—3 получены при 130 К на автоматическом дифрактометре Agilent Xcalibur, оснащенном двухкоординатным детектором AtlasS2 (графитовый монохроматор, $\lambda(MoK_{\alpha}) = 0,71073$ Å, ω -сканирование). Интегрирование, учет поглощения, определение параметров элементарной ячейки проводили с использованием пакета программ CrysAlisPro [10]. Структура расшифрована прямым методом и уточнена полноматричным MHK в анизотропном (за исключением атомов водорода) приближении с использованием пакета программ SHELX-2014 [11]. Позиции атомов водорода) органических лигандов рассчитаны геометрически и уточнены по модели наездника. В структурах 1 и 3 наблюдается разупорядочение метильной группы одной из координированных молекул DMF по двум позициям. Дифракционные данные для соединения 2 были получены на слабо дифрагирующем монокристалле малого размера. Значения соотношения $I/\sigma(I)$ при разрешении выше 0,9 не превышает 4 ($R_{int} > 0,10$). Кристаллографические данные и детали дифракционных экспериментов приведены в табл. 1. Значения основных длин связей и величины

Таблица 1

Параметр	1	2	3
Брутто-формула	C ₃₄ H ₅₁ Li ₃ N ₆ O ₁₆	C42H63Li5N8O20	C50H68Li6N8O24
М, г/моль	820,62	1034,70	1206,76
Сингония	Триклинная	Моноклинная	Моноклинная
Пр. группа	P-1	$P2_1$	$P2_1/n$
a, Å	10,06221(16)	9,4864(3)	9,2100(2)
<i>b</i> , Å	10,52528(17)	15,8714(5)	27,6071(6)
<i>c</i> , Å	19,9730(3)	18,2035(8)	12,3333(3)
α, град.	93,0892(13)		
β, град.	92,8790(13)	90,182(4)	101,729(2)
ү, град.	99,1059(13)		
V, \hat{A}^3	2081,89(6)	2740,75(17)	3070,40(12)
Ζ	2	2	2
$D_{\rm выч}, \Gamma/{\rm cm}^3$	1,309	1,254	1,305
μ, мм ⁻¹	0,103	0,098	0,102
F(000)	868	1092	1268
Размер кристалла, мм	0,20×0,14×0,11	0,12×0,12×0,03	0,30×0,10×0,08
Область сканир. по θ, град.	3,31—25,68	3,35—25,25	3,36—26,37
Диапазон индексов <i>hkl</i>	-13 < h < 13,	-12 < h < 9,	-10 < h < 12,
	-13 < k < 13,	-20 < k < 16,	-26 < k < 35,
	-25 < l < 25	-22 < l < 22	-12 < l < 15
<i>N</i> _{hkl} измер. / независ.	30976 / 7891	12936 / 7774	14731 / 6086
$R_{\rm int}$	0,0255	0,0340	0,0171
N_{hkl} c $I > 2\sigma(I)$	6547	6348	4947
Добротность по F^2	1,030	1,165	1,016
R -факторы [$I > 2\sigma(I)$]	$R_1 = 0,0595,$	$R_1 = 0,1011,$	$R_1 = 0,0386,$
	$wR_2 = 0,1624$	$wR_2 = 0,2776$	$wR_2 = 0,0885$
<i>R</i> -факторы (по всем отражениям)	$R_1 = 0,0699,$	$R_1 = 0,1200,$	$R_1 = 0,0527,$
	$wR_2 = 0,1719$	$wR_2 = 0,2898$	$wR_2 = 0,0957$
Ост. эл. плотность (max / min), e/Å ³	1,070 / -0,263	0,542 / -0,444	0,294 / -0,285

Кристаллографические параметры и детали рентгеноструктурного эксперимента

Таблица 2

Связь	<i>d</i> , Å	Угол	ω, град.	Угол	ω, град.
Li(1)—O(11)	1,933(3)	O(11)—Li(1)—O(1D)	111,12(16)	O(2D)—Li(2)—O(21)	119,7(2)
$Li(1) - O(12)^{i}$	1,927(4)	$O(12)^{i}$ —Li(1)—O(11)	107,16(15)	O(2D)—Li(2)—O(3D)	107,10(18)
$Li(1) - O(14)^{ii}$	1,876(3)	$O(12)^{i}$ —Li(1)—O(1D)	104,65(16)	O(3D)—Li(2)—O(15)	117,52(19)
Li(1)—O(1D)	1,976(3)	$O(14)^{ii}$ —Li(1)—O(11)	109,56(17)	O(23)—Li(3)—O(25) ⁱⁱⁱ	119,06(17)
Li(2)—O(15)	1,951(4)	$O(14)^{ii}$ —Li(1)—O(12) ⁱ	121,10(17)	O(23)—Li(3)—O(26) ⁱⁱ	111,23(17)
Li(2)—O(21)	1,906(4)	$O(14)^{ii}$ —Li(1)—O(1D)	102,98(15)	O(23)—Li(3)—O(4D)	104,22(15)
Li(2)—O(2D)	1,899(4)	O(21)—Li(2)—O(15)	103,86(17)	O(25) ⁱⁱⁱ —Li(3)—O(4D)	106,86(16)
Li(2)—O(3D)	1,927(4)	O(21)—Li(2)—O(3D)	108,34(18)	$O(26)^{ii}$ —Li(3)— $O(25)^{iii}$	104,59(15)
Li(3)—O(23)	1,874(3)	O(2D)—Li(2)—O(15)	100,75(17)	$O(26)^{ii}$ —Li(3)—O(4D)	110,80(16)
Li(3)—O(25) ⁱⁱⁱ	1,949(4)				
Li(3)—O(26) ⁱⁱ	1,923(3)				
Li(3)—O(4D)	1,971(3)				

Значения основных длин связей и величины валентных углов в 1

Координаты зависимых атомов получены при действии следующих операций симметрии: $^{i}-x+1, -y+2, -z; ^{ii}x-1, y, z; ^{iii}-x+1, -y, -z+1.$

валентных углов приведены в табл. 2—4. Полные таблицы межатомных расстояний и валентных углов, координаты атомов и параметры атомных смещений депонированы в Кембриджский банк структурных данных (CCDC 1485305, 1485306 и 1485307), а также могут быть получены у авторов.

Синтез (H₂NMe₂)₂[Li₃(btc)(Hbtc)(DMF)₄] (1). Монокристаллы соединения 1 были получены при нагревании раствора 10,5 мг (50 мкмоль) тримезиновой кислоты (H₃btc), 8,3 мг (50 мкмоль) терефталевой кислоты (H₂bdc) и 4,2 мг (100 мкмоль) LiOH · H₂O в смеси 1,5 мл DMF и 50 мкл H₂O в запаянной стеклянной ампуле при 80 °C в течение 24 ч и последующем охлаждении до комнатной температуры.

Синтез [Li₅(DMF)₆(btc)(Hbtc)]·2DMF (2). Монокристаллы соединения 2 были получены при нагревании раствора 10,5 мг (50 мкмоль) тримезиновой кислоты (H₃btc), 10 мг (40 мкмоль) 1,4-бифенилдикарбоновой кислоты (H₂bpdc) и 4,2 мг (100 мкмоль) LiOH·H₂O в 1,5 мл DMF в запаянной ампуле при 80 °C в течение 24 ч и последующем охлаждении до комнатной температуры.

Синтез [Li₆(DMF)₈(bdc)(Hbtc)] (3). Монокристаллы соединения 3 были получены при нагревании раствора 10,5 мг (50 мкмоль) тримезиновой кислоты (H₃btc), 8,3 мг (50 мкмоль) терефталевой кислоты (H₂bdc) и 4,2 мг (100 мкмоль) LiOH·H₂O в 1,5 мл DMF в запаянной ампуле при 80 °C в течение 24 ч и последующем охлаждении до комнатной температуры.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Координационный полимер (H_2NMe_2)₂[Li₃(btc)(Hbtc)(DMF)₄] (1) получен при нагревании смешанного раствора DMF и воды (30:1), содержащего моногидрат гидроксида лития, тримезиновую кислоту (H_3 btc) и 1,4-бензолдикарбоновую кислоту (H_2 bdc) при 80 °C в течение 24 ч. По данным PCA соединение 1 представляет собой слоистый металл-органический координационный полимер, построенный из катионов лития и остатков тримезиновой кислоты. Независимая часть структуры 1 содержит три катиона Li⁺, два остатка тримезиновой кислоты, четыре координированных молекулы DMF и два катиона диметиламмония. Катионы лития находятся в тетраэдрическом координационном окружении. Расстояния Li—O лежат в диапазоне 1,874(2)— 1,976(3) Å (ср. 1,93(3) Å), что соответствует длинам связей в тетраэдрических комплексах лития.

1089

Таблица 3

Связь	<i>d</i> , Å	Угол	ω, град.	Угол	ω, град.
$L_{i}(1) = O(11)$	1.02(2)	$O(11)$ $I_{i}(1)$ $O(1D)$	107.7(11)	$O(3D) = I_{3}(3) = O(13)$	112 0(8)
$Li(1) = O(11)^{i}$	1,92(2) 1.87(2)	O(11) - Li(1) - O(1D) O(11) - Li(1) - O(2D)	107,7(11) 104.7(10)	O(3D) = Li(3) = O(13) O(22) = Li(4) = O(14)	102,0(0)
Li(1) = O(15) Li(1) = O(1D)	1,07(2)	O(11)— $Li(1)$ — $O(2D)O(15)^{i} Li(1) O(11)$	104,7(10) 110.8(10)	O(22)—LI(4)— $O(14)O(22) Li(4) O(25)^{iii}$	102,0(9) 107,2(0)
$Li(1) \rightarrow O(1D)$	1,90(2)	O(15) $-Li(1) - O(11)$	110,8(10)	O(22) $Li(4) = O(23)$	107,3(9)
L1(1) - O(2D)	1,96(2)	$O(15)^{-}Li(1)-O(1D)$	108,1(11)	O(22)—L1(4)— $O(4D)$	127,4(9)
Li(2)— $Li(3)$	2,75(2)	$O(15)^{i}$ —Li(1)—O(2D)	117,9(12)	$O(25)^{m}$ —Li(4)—O(14)	106,6(8)
Li(2)—Li(4)	2,76(2)	O(2D)— $Li(1)$ — $O(1D)$	107,2(10)	$O(25)^{111}$ —Li(4)—O(4D)	102,9(9)
Li(2)—Li(5)	2,66(2)	O(13)—Li(2)—O(22)	102,1(7)	O(4D)—Li(4)—O(14)	109,3(9)
Li(2)—O(13)	2,007(17)	O(24) ⁱⁱ —Li(2)—O(13)	109,2(8)	$O(24)^{ii}$ —Li(5)—O(26) ⁱⁱⁱ	95,1(8)
Li(2)—O(22)	2,016(17)	O(24) ⁱⁱ —Li(2)—O(22)	124,3(8)	$O(24)^{ii}$ —Li(5)—O(5D)	109,4(9)
Li(2)—O(24) ⁱⁱ	1,942(18)	$O(24)^{ii}$ —Li(2)— $O(26)^{iii}$	92,4(7)	O(24) ⁱⁱ —Li(5)—O(6D)	114,6(8)
Li(2)—O(26) ⁱⁱⁱ	2,000(16)	O(26) ⁱⁱⁱ —Li(2)—O(13)	123,8(8)	O(26) ⁱⁱⁱ —Li(5)—O(6D)	109,0(9)
Li(3)—O(13)	1,985(17)	O(26) ⁱⁱⁱ —Li(2)—O(22)	107,0(8)	O(5D)—Li(5)—O(26) ⁱⁱⁱ	120,3(9)
Li(3)—O(21)	1,919(17)	O(21)—Li(3)—O(13)	102,1(8)	O(5D)—Li(5)—O(6D)	108,3(9)
Li(3)—O(23) ⁱⁱ	1,943(18)	O(21)—Li(3)—O(23) ⁱⁱ	105,1(8)	Li(3)—O(13)—Li(2)	87,0(7)
Li(3)—O(3D)	1,961(16)	O(21)—Li(3)—O(3D)	104,7(8)	Li(4)—O(22)—Li(2)	89,7(7)
Li(4)—O(14)	1,940(19)	$O(23)^{ii}$ —Li(3)—O(13)	111,7(8)	$Li(5)^{iv}$ — $O(24)$ — $Li(2)^{iv}$	87,7(7)
Li(4)—O(22)	1,901(19)	O(23) ⁱⁱ —Li(3)—O(3D)	119,2(9)	$Li(5)^{v}$ — $O(26)$ — $Li(2)^{v}$	84,8(7)
Li(4)—O(25) ⁱⁱⁱ	1,925(19)				
Li(4)—O(4D)	1,926(18)				
Li(5)—O(24) ⁱⁱ	1,904(16)				
Li(5)—O(26) ⁱⁱⁱ	1,952(18)	Координаты зависими	ых атомов і	юлучены при действии с	ледующих
Li(5)—O(5D)	1,910(19)	операций симметрии: $i -x+2$, $y-1/2$, $-z+1$; $i -x+2$, $y-1/2$, $-z$; $i -x+2$, $-x+2$,			
Li(5)—O(6D)	1,955(19)	" $-x+2, y+1/2, -z; x-$	1, y, z.		

Значения основных длин связей и величины валентных углов в 2

Таблица 4

Значения основных длин связей и величины валентных углов в 3

				•	
Связь	<i>d</i> , Å	Угол	ω, град.	Угол	ω, град.
Li(1)—Li(2)	2,757(3)	$O(11)$ — $Li(1)$ — $O(12)^{i}$	114,14(13)	O(3D)—Li(2)—O(21)	116,55(14)
Li(1)—O(11)	1,898(3)	O(11)—Li(1)—O(21)	114,30(12)	O(3D)—Li(2)—O(1D)	100,08(12)
$Li(1) - O(12)^{i}$	1,951(3)	O(11)—Li(1)—O(1D)	115,28(13)	$O(14)^{ii}$ —Li(3)— $O(16)^{iii}$	112,30(12)
Li(1)—O(21)	1,924(2)	$O(12)^{i}$ —Li(1)—O(1D)	101,64(11)	O(14) ⁱⁱ —Li(3)—O(4D)	105,49(12)
Li(2)—O(21)	1,942(3)	$O(21)$ — $Li(1)$ — $O(12)^{i}$	118,01(13)	O(16) ⁱⁱⁱ —Li(3)—O(4D)	108,16(12)
Li(2)—O(1D)	1,984(3)	O(21)—Li(1)—O(1D)	90,39(11)	O(22)—Li(3)—O(14) ⁱⁱ	113,90(12)
Li(2)—O(2D)	1,897(3)	O(21)—Li(2)—O(1D)	90,67(11)	O(22)—Li(3)—O(16) ⁱⁱⁱ	112,36(13)
Li(2)—O(3D)	1,913(3)	O(2D)—Li(2)—O(21)	123,60(14)	O(22)—Li(3)—O(4D)	103,86(12)
Li(3)—O(14) ⁱⁱ	1,940(3)	O(2D)—Li(2)—O(1D)	112,86(13)	Li(1)—O(21)—Li(2)	90,99(11)
Li(3)—O(16) ⁱⁱⁱ	1,960(2)	O(2D)—Li(2)—O(3D)	108,90(13)	Li(2)—O(1D)—Li(1)	87,31(10)
Li(3)—O(22)	1,904(3)				
Li(3)—O(4D)	1,963(3)				

Координаты зависимых атомов получены при действии следующих операций симметрии: $^{i}-x, -y+1, -z;$ $^{ii}-x+1/2, y+1/2, -z+1/2; ^{iii}-x, -y+1, -z+1.$

Рис. 1. Координационное окружение катионов лития в структуре 1 (эллипсоиды 50%-й вероятности). Штриховыми линиями показаны второе положение метильной группы одного из лигандов DMF, а также водородная связь между карбоксилатными группами лигандов Hbtc²⁻ и btc³⁻. Атомы водорода не показаны. Координаты зависимых атомов получены при действии следующих операций симметрии: i - 1 + x, y, z; ii - x, 2 - y, -z; iii - x, -y, 1 - z; $x^{iv} 2-x, 2-y, -z; v^{i} 1-x, -y, 1-z$

Катионы Li(1) и Li(3) имеют сходное координационное окружение, построенное из трех атомов О трех остатков тримезиновой кислоты и одного атома О координированной молекулы DMF (рис. 1). Катионы Li(1) соединяются друг с другом посредством двух мостиковых СОО-групп, образуя биядерный фрагмент { $Li_2(\mu_2$ -RCOO- $\kappa^1,\kappa^1)_2$ (DMF) $_2$ (RCOO) $_2$ }. Катионы Li(3) соединяются между собой аналогичным образом. Центры биядерных фрагментов располагаются по двум системам центров инверсии: 1d (1/2, 0, 0) и 1b (0, 0, 1/2) для Li(1) и Li(3) соответственно. Катион Li(2) координирован двумя атомами О двух остатков тримезиновой кислоты и двумя атомами О координированных молекул DMF (см. рис. 1). При этом свободные концы двух координированных СОО-групп образуют между собой водородную связь О...НО (расстояние О...О 2,46 Å). Атом водорода разупорядочен по двум равно заселенным позициям между этими двумя СОО-группами. Биядерные фрагменты, состоящие из катионов Li(1), связываются между собой остатками тримезиновой кислоты с образованием полимерной цепи. Пары катионов Li(3) образуют аналогичную полимерную цепь. Катионы Li(2) связывают цепи Li(1) и Li(3) между собой с образованием полимерного слоя (рис. 2). Упаковываясь, полимерные слои располагаются на

Рис. 2. Упаковка полимерных слоев в структуре 1 (проекция на плоскость bc). Атомы водорода и катионы диметиламмония не показаны. Позиции атомов лития показаны шарами

Рис. 3. Координационное окружение катионов лития в структуре **2** (эллипсоиды 50%-й вероятности). Штриховыми линиями показана водородная связь между карбоксилатными группами лигандов $Hbtc^{2-}$ и btc^{3-} . Атомы водорода не показаны. Координаты зависимых атомов получены при действии следующих операций симметрии: ¹ 2-*x*, -1/2+*y*, 1-*z*; ¹¹ 1+*x*, *y*, *z*; ¹¹¹ 2-*x*, -1/2+*y*, -*z*

системе плоскостей (012). С топологической точки зрения структуру **1** можно представить в виде соединений узлов двух типов: 3-связанных (анионы тримезиновой кислоты) и 4-связанных (биядерные фрагменты {Li₂(RCOO)₄}), которые вместе образуют 3,4-связанную сетку. Данная сетка может быть описана точечным символом $(4.6^2)(4^2.6^2.8^2)$ или, согласно базе RCSR [12], **bex**. Катионы диметиламмония располагаются в пространстве между полимерными слоями. Обратим внимание, что терефталевая кислота не входит в состав **1**, однако ее присутствие в реакционной смеси является непременным условием образования кристаллического продукта, по-видимому, в качестве модулятора кислотности реакционного раствора.

Координационный полимер [Li₅(DMF)₆(btc)(Hbtc)]·2DMF (2) получен при нагревании раствора моногидрата гидроксида лития, 1,3,5-бензолтрикарбоновой кислоты (H₃btc) и 1,4-бифенилдикарбоновой кислоты (H₂bpdc) в DMF при 80 °C в течение 24 ч. По данным PCA, соединение 2 представляет собой металл-органический каркас, построенный из катионов лития и остатков тримезиновой кислоты. Независимая часть структуры содержит пять катионов Li⁺, два остатка тримезиновой кислоты, шесть координированных и две гостевые молекулы DMF. Катионы лития находятся в тетраэдрическом координационном окружении. Расстояния Li—O лежат в диапазоне 1,87(2)—2,016(17) Å (ср. 1,94(4) Å). Катион Li(1) в структуре 2 имеет координационное окружение, аналогичное катиону Li(2) в структуре 1 (рис. 3, a). При этом две координированные СОО-группы образуют водородную связь О...НО (расстояние О...О 2,40 Å) так же, как и в случае соединения 1. Атом водорода разупорядочен аналогичным образом по двум равно заселенным позициям. Координационное окружение катиона Li(2) состоит из четырех атомов О четырех СОО-групп. Катионы Li(3) и Li(4) имеют сходное координационное окружение, состоящее из трех атомов О трех СОО-групп и одного атома О лиганда DMF. Координационное окружение катиона Li(5) состоит из двух атомов О двух СОО-групп и двух атомов О молекул DMF. Катионы Li(2), Li(3), Li(4) и Li(5), связываясь друг с другом посредством мостиковых СОО-групп остатков тримезиновой кислоты, образуют четырехъядерный координационный фрагмент {Li₄(μ_3 -RCOO- $\kappa^1,\kappa^1,\kappa^1$)₄(DMF)₄} (см. рис. 3, δ). При этом катионы Li(3), Li(4) и Li(5) образуют треугольник, в центре которого располагается катион Li(2). Отклонение Li(2) от плоскости треугольника не превышает 0,06 Å. Четырехъядерные фрагменты связываются между собой посредством остатка тримезиновой кислоты с образованием полимерных цепей, параллельных оси a. Катионы Li(1) связывают эти цепи в металл-органический каркас (рис. 4). В структуре 2 присутствуют пересекающиеся каналы, параллельные осям а и b, в которых располагаются координированные и гостевые молекулы DMF. С топологической точки зрения в каркасе 2 присутствуют два независимых 3-связанных узла (анионы тримезиновой кислоты) и один 4-связанный узел на месте полиядерного фрагмента {Li₄(RCOO)₄}. Эти узлы формируют 3,4-связанную структуру с точечным символом $(6^3)(8^3)(6^3.8^3)$. Как и в предыдущем случае, дикарбоновая кислота H₂bpdc не входит в состав **2**, однако ее роль, по всей видимости, в качестве модулятора кислотности обеспечивает оптимальные условия для образования кристаллического продукта в ходе синтеза.

Координационный полимер [Li₆(DMF)₈× ×(bdc)(Hbtc)] (3) получен при нагревании раствора моногидрата гидроксида лития, 1,3,5-бензолтрикарбоновой кислоты (H₃btc) и 1,4-бензолдикарбоновой кислоты (H₂bdc) в DMF при 80 °C в течение 24 ч. По данным PCA, соединение 3 представляет собой металл-органический каркас, построенный из

катионов лития и остатков тримезиновой и тетефталевой кислот. Независимая часть структуры **3** содержит три катиона лития, находящиеся в тетраэдрическом координационном окружении. Расстояния Li—O лежат в диапазоне 1,897(3)—1,963(3) Å (ср. 1,93(3) Å). Координационное окружение катионов Li(1) и Li(3) состоит из четырех атомов O двух COO-групп остатков тримезиновой кислоты, одной COO-группы терефталат-аниона и одной молекулы DMF. Координационное окружение Li(2) состоит из одного карбоксилатного атома O терефталат-аниона и трех атомов O молекул DMF. Катионы Li(1) и Li(2) соединяются друг с другом посредством двух

Рис. 5. Координационное окружение катионов лития в структуре 3 (эллипсоиды 50%-й вероятности). Штриховыми линиями показаны второе положение метильной группы одного из лигандов DMF, а также водородная связь между карбоксилатными группами лигандов Hbtc^{2–} и btc^{3–}. Атомы водорода не показаны. Координаты зависимых атомов получены при действии следующих операций симметрии: ⁱ–x, 1–y, –z; ⁱⁱ–x, 1–y, 1–z; ⁱⁱⁱ x, y, –1+z; ^{iv} 1/2–x, 1/2+y, 1/2–z; ^v–1/2+x, 1/2–v, –1/2+z

Рис. 6. Строение металл-органического каркаса
в структуре 3 (вид вдоль оси <i>а</i>).
Атомы водорода и фрагменты HCN(CH ₃) ₂ координиро-
ванных молекул DMF не показаны. Позиции катионов
лития показаны шарами

мостиковых атомов О молекулы DMF и COOгруппы терефталат-аниона, образуя биядерный фрагмент $\{Li_2(\mu_2-DMF)(\mu_2-RCOO-\kappa^1)(DMF)_2\times\}$ ×(RCOO)₂} (рис. 5). Эти биядерные фрагменты соединяются друг с другом посредством двух мостиковых карбоксилатных групп двух лигандов Hbtc²⁻, образуя четырехъядерный фрагмент $\{Li_2(\mu_2-DMF)(\mu_2-RCOO-\kappa^1)(DMF)_2(RCOO)_2\}_2\times$ \times (μ_2 -RCOO- κ^1, κ^1). Как и в случае соединений 1 и 2, в структуре 3 наблюдается образование водородной связи О...НО (расстояние О...О 2,42 Å) между двумя координированными к катиону Li(3) карбоксилатными группами двух лигандов Hbtc²⁻ (см. рис. 5). В отличие от структур 1 и 2, в структуре 3 не наблюдается позиционного разупорядочения атома Н по двум позициям. Атом водорода локализуется только на одной из двух координированных

к Li(3) карбоксилатных групп. Четырехъядерные фрагменты соединяются между собой за счет координации COO-групп анионов Hbtc^{2–} и bdc^{2–} к катионам Li(3), образуя при этом металлорганический каркас (рис. 6). В структуре присутствуют параллельные оси *с* каналы, занятые координированными молекулами DMF. Топологию каркаса **3** можно разбить на 3- и 4-связанные фрагменты. Моноядерные катионы Li(3) и анионы тримезиновой кислоты представляют собой 3-связанные узлы. Пара биядерных карбоксилатных фрагментов с участием катионов Li(1) и Li(2), а также анионы терефталевой кислоты представляют собой 4-связанные фрагменты. Интересно, что, несмотря на принципиальные структурные различия, с топологической точки зрения 4-связанные узлы являются идентичными. Таким образом, каркас **3** представляет собой трех-узловую 3,4-связанную сетку, которая может быть описана точечным символом (4.10.12)(4.12²)(4².10³.12). Насколько нам известно, топологии металл-органических каркасов **2** и **3** не описывались ранее в научной литературе и, таким образом, являются первыми примерами в своем роде.

СПИСОК ЛИТЕРАТУРЫ

- 1. Schröder M. // Top Curr Chem. 2010. 293. P. 35.
- 2. Suh M.P., Park H.J., Prasad T.K., Lim D. // Chem. Rev. 2012. 112. P. 782.
- 3. Murray L.J., Dincă M., Long J.R. // Chem. Soc. Rev. 2009. 38. P. 1294.
- 4. Zhang Z., Yao Z., Xiang S., Chen B. // Energy Environ. Sci. 2014. 7. P. 2868.
- 5. Zhang Z., Xiang S., Chen B. // CrystEngComm. 2011. 13. P. 5983.
- 6. Furukawa H., Ko N., Go Y.B., Aratani N., Choi S.B., Choi E., Yazaydin Ö., Snurr R.Q., O'Keeffe M., Kim J., Yaghi O.M. // Science. 2010. **329**. P. 424.
- Osta R.E., Frigoli M., Marrot J., Guillou N., Chevreau H., Walton R.I., Millange F. // Chem. Commun. 2012. – 48. – P. 10639.
- 8. Abrahams B.F., Grannas M.J., Hudson T.A., Robson R. // Angew. Chem. Int. Ed. 2010. 49. P. 1087.
- 9. Zhao X., Wu T., Zheng S.-T., Wang L., Bu X., Feng P. // Chem. Commun. 2011. 47. P. 5536.
- 10. CrysAlisPro 1.171.38.41. Rigaku Oxford Diffraction, 2015.
- 11. Shedrick G.M. // Acta Crystallogr. A. 2008. 64. P. 112.
- 12. O'Keeffe M., Peskov M.A., Ramsden S.J., Yaghi O.M. // Acc. Chem. Res. 2008. 41. P. 1782.