
СИБИРСКИЙ ЖУРНАЛ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ. 2024. Т. 27, N◦-- 1

УДК 519.633.6

Обратная задача для модели развития популяции
с учетом возраста организмов

и миграционных потоков∗

А.Ю. Щеглов1,2, C.В. Нетесов2

1MSU-PPI University in Shenzhen, Shenzhen, 518172, China
2Московский государственный университет им. М.В. Ломоносова, Ленинские горы, 1, Москва, 119991

E-mails: shcheg@cs.msu.ru (Щеглов А.Ю.), sv954@yandex.ru (Нетесов C.В.)

Английская версия этой статьи печатается в журнале “Numerical Analysis and
Applications” N◦-- 1, Vol. 17, 2024.

Щеглов А.Ю., Нетесов C.В. Обратная задача для модели развития популяции с
учетом возраста организмов и миграционных потоков // Сиб. журн. вычисл. математи-
ки / РАН. Сиб. отд-ние. –– Новосибирск, 2024.–– Т. 27, N◦-- 1. –– С. 113–120.

Рассматривается обратная задача восстановления коэффициента в дифференциальном уравнении
модели развития однородной биологической популяции организмов, структурированных по возрасту. В
модели учитывается влияние миграционных потоков на изменение размера популяции. Устанавлива-
ются условия, обеспечивающие единственность решения обратной задачи. Предлагается краткий обзор
алгоритмов для численного решения обратной задачи.

DOI: 10.15372/SJNM20240109
EDN: ZWDQMJ

Ключевые слова: обратная задача, возрастное структурирование, миграционные потоки, инте-
гральное уравнение Вольтерра.

Shcheglov A.Yu., Netessov S.V. The inverse problem for a age-structured population
dynamics model with account to migration flows // Siberian J. Num. Math. / Sib. Branch
of Russ. Acad. of Sci. –– Novosibirsk, 2024. –– Vol. 27, N◦-- 1.–– P. 113–120.

An inverse problem of reconstructing a coefficient in the differential equation of a model of development
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1. Введение

Начало математических исследований популяций с учетом роста организмов мож-
но связать с работой Л. Эйлера [1]. Анализ популяций с возрастным структурировани-
ем получил развитие в большом цикле публикаций А.Д. Лотки (см., например, [2, 3]).
В настоящее время модели биологических сообществ с возрастным структурированием
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привлекают к себе повышенное внимание [4–11] и используются при изучении разви-
тия популяций как микроорганизмов (клеток [7, 8], бактерий [5], вирусов [10, 11]), так
и многих других биологических видов. Обратные задачи для популяционных моделей
исследовались в работах [12–15].

Математическая модель динамики популяции с возрастной структурой и миграцией
особей, выбираемая здесь для построения обратной задачи, была представлена в работе
[9, с. 73] и формализуется в виде начально-краевой задачи

ux(x, t) + ut(x, t) + µ(x)u(x, t) = m(x)η(t)− e(x)u(x, t), (x, t) ∈ QT , (1)

u(0, t) =

∫ l

0
β(ξ)u(ξ, t) dξ, t ∈ [0, T ], (2)

u(x, 0) = ϕ(x), x ∈ [0, l], (3)

где QT = {(x, t) : 0 < x < l, 0 < t 6 T} и QT — замыкание области QT . Функция u(x, t)
определяет число особей возраста x (или их плотность) в популяции в момент време-
ни t; функции µ(x), m(x)η(t) и e(x) характеризуют интенсивность смертности, въездной
миграции (иммиграции) и выездной миграции (эмиграции) соответственно; β(x) — плот-
ность репродуктивности (появления новорожденных у родителя возраста x); ϕ(x) — на-
чальное распределение особей в популяции. Неотрицательность всех функций является
естественным модельным ограничением.

В прямой задаче требуется определить функцию u(x, t) по заданным значениям l, T
и известным функциям µ(x), m(x), η(t), e(x), β(x), ϕ(x), x ∈ [0, l] и t ∈ [0, T ].

В рамках обратной задачи при заданных значениях l > 0 и T > 0 и функциях µ(x),
m(x), e(x), β(x), ϕ(x), x ∈ [0, l], требуется восстановить две функции η(t) и u(x, t) по
известному значению a ∈ (0, l] и заданной дополнительно функции

g(t) = u(a, t), t ∈ [0, T ]. (4)

2. Прямая задача и условия ее разрешимости

Теорема 1. Если выполнены условия

µ(x), e(x) ∈ C[0, l], m(x), β(x), ϕ(x) ∈ C1[0, l], η(t) ∈ C[0, T ],

µ(x),m(x), e(x), β(x), ϕ(x), η(t) > 0 ∀x ∈ [0, l], t ∈ [0, T ], ϕ(0) =

∫ l

0
β(s)ϕ(s) ds,

то существует единственное решение u(x, t) ∈ C1
(
QT
)
прямой задачи (1)–(3).

Доказательство. Представленное ниже доказательство аналогично изложенному для
схожей теоремы [15], касающейся модели без учета миграционных потоков.

Интегрирование дифференциального уравнения (1) с использованием решений его
характеристической системы с учетом условия (3) дает [16] формулу для решения прямой
задачи (1)–(3) на части области определения искомой функции u(x, t):

u(x, t) = û(x, t) = ϕ(x− t)e−
∫ x
x−t(µ(s)+e(s)) ds+∫ t

0
m(τ + x− t)η(τ)e−

∫ x
τ+x−t(µ(s)+e(s)) ds dτ, 0 < t < x 6 l, 0 6 t 6 T. (5)
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При введении функции ψ(t) = u(0, t), t ∈ [0, T ], и интегрировании уравнения (1) на его
характеристиках для остальных точек (x, t) из области QT для решения u(x, t) имеем
[16] формулу

u(x, t) = ψ(t− x)e−
∫ x
0 (µ(s)+e(s)) ds+∫ t

t−x
m(τ − t+ x)η(τ)e−

∫ x
τ−t+x(µ(s)+e(s)) ds dτ, 0 < x 6 min{l, t}, 0 < t 6 T, (6)

в которой функция ψ(t), t ∈ [0, T1], где T1 = min{l, T}, является решением построенного
на основе условия (2) и формул (5), (6) интегрального уравнения

ψ(t) =

∫ t

0
K(t, s)ψ(s) ds+H1(t), 0 6 t 6 T1 = min {l, T} , (7)

где для t ∈ [0, T1],

K(t, s) = β(t− s)e−
∫ t−s
0 (µ(ξ)+e(ξ))dξ, 0 6 s 6 t 6 T1, (8)

H1(t) =

∫ t

0
β(s)

∫ t

t−s
m(τ − t+ s)η(τ)e−

∫ s
τ−t+s(µ(ξ)+e(ξ)) dξ dτ ds+

∫ l

t
β(s)û(s, t) ds. (9)

Получаем, что задача (1)–(3) редуцируется [16, теорема 4.2.2] для t ∈ [0, T1] к инте-
гральному уравнению Вольтерра II рода (7) относительно функции ψ(t) с вычислени-
ем значений решения u(x, t) по формулам (5), (6). При выполнении условий теоремы 1
единственное решение ψ(t) ∈ C [0, T1] уравнения (7) существует [17] и для него, исходя
из уравнения (7) при t = 0, выполняется условие

ψ(0) = ϕ(0) =

∫ l

0
β(s)ϕ(s) ds. (10)

Сравнивая с учетом равенства (10) значения функции u(x, t) при t = x ∈ [0, T1], вычис-
ляемые по формулам (5) и (6), получаем, что u(x, t) |x=t−0= u(x, t) |x=t+0, t ∈ (0, T1).
Следовательно, при выполнении условий теоремы после решения уравнения (7) имеем
вычисляемые по формулам (5) и (6) значения u(x, t) ∈ C

(
QT1

)
.

Из условий теоремы и формул (8), (9) следует дифференцируемость по аргументу t
функций K(t, s) и H1(t). Из этого следует непрерывная дифференцируемость правой
части уравнения (7). Следовательно, непрерывна производная ψ′(t) левой части (7). По-
лучаемые при дифференцировании по x формулы (6) при t ∈ (0, T1) значения производ-
ной ux(x, t) |x=t−0 совпадают при условиях теоремы и равенстве (10) с получаемыми при
дифференцировании формулы (5) значениями производной ux(x, t) |x=t+0, t ∈ (0, T1),
т. е. ux(x, t) |x=t−0= ux(x, t) |x=t+0, t ∈ (0, T1). Аналогично устанавливается равенство
ut(x, t) |x=t−0= ut(x, t) |x=t+0, t ∈ (0, T1). В итоге имеем решение u(x, t) ∈ C1

(
QT1

)
, и в

случае T ∈ (0, l] теорема 1 доказана.
При T > l однозначное решение u(x, t) со значением t = T1 = l используем как началь-

ное условие для начально-краевой постановки, аналогичной задаче (1)–(3), с аргументом
t∈ [l, T2], где T2=min {2l, T}, и устанавливаем однозначную разрешимость задачи (1)–(3)
для аргументов (x, t) ∈ QT2 . Затем, продлевая область изменения переменной t последо-
вательно на отрезки [(j − 1)l, jl], j = 3, 4, . . . , N , где N = arg maxj∈N ((j − 1)l < T 6 jl), и
при этом TN = T , и устанавливая однозначную разрешимость задачи (1)–(3) последова-
тельно на областях QTj , j = 2, 3, . . . , N , получаем за N однотипных шагов единственное
решение u(x, t) ∈ C1

(
QT
)
задачи (1)–(3) на всей области его определения QT = QTN .

Теорема 1 доказана.
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3. Обратная задача

Определение. Решением обратной задачи (1)–(4) пусть называются две функции η(t)
и u(x, t) такие, что

η(t) ∈ C[0, T ], η(t) > 0 ∀t ∈ [0, T ], u(x, t) ∈ C1
(
QT
)
,

при заданной функции g(t) для известного значения a ∈ (0, l] и при заданных функциях
µ(x), m(x), e(x), β(x), ϕ(x), удовлетворяющих условиям

g(t) ∈ C[0, T ], µ(x), e(x) ∈ C[0, l], m(x), β(x), ϕ(x) ∈ C1[0, l], g(0) = ϕ(a), (11)

µ(x),m(x), e(x), β(x), ϕ(x), g(t) > 0 ∀x∈ [0, l], t∈ [0, T ], ϕ(0) =

∫ l

0
β(s)ϕ(s) ds, (12)

выполняются уравнения (1)–(3) и дополнительное условие (4).

Теорема 2. При известных значениях l > 0, T > 0, a ∈ (0, l] и заданных функциях
µ(x), m(x), e(x), β(x), ϕ(x), g(t), удовлетворяющих условиям (11), (12) и

g(t) ∈ C1[0, T ], m(a) > 0, (13)

обратная задача (1)–(4) может иметь не более одного решения.

Доказательство. Пусть при выполнении условий (11)–(13) пара функций η1(t), u1(x, t)
и другая пара функций η2(t), u2(x, t) являются двумя решениями обратной задачи
(1)–(4). Из формулы (5) при x = a и условия (4) следует, что функция η(t) из любого ре-
шения η(t), u(x, t) обратной задачи удовлетворяет линейному интегральному уравнению
Вольтерра I рода при t ∈ [0, t1], где t1 = min{a, T}:∫ t

0
e−

∫ a
τ+a−t(µ(s)+e(s)) dsm(τ + a− t)η(τ) dτ = g(t)− ϕ(a− t)e−

∫ a
a−t(µ(s)+e(s)) ds. (14)

Дифференцируя равенство (14) по t ∈ [0, t1], получаем уравнение

η(t) =

∫ t

0
G(t, τ)η(τ) dτ +H2(t), 0 6 t 6 t1, (15)

где ядро G(t, τ) и неоднородность H2(t) линейного уравнения (15) имеют вид

G(t, τ) =

[
m′(ξ) +

(
µ(ξ) + e(ξ)

)
m(ξ)

m(a)
e−

∫ a
ξ (µ(s)+e(s)) ds

]∣∣∣∣
ξ=τ+a−t

, 0 6 τ 6 t 6 t1, (16)

H2(t) =
g′(t)

m(a)
+

[
ϕ′(ξ) +

(
µ(ξ) + e(ξ)

)
ϕ(ξ)

m(a)
e−

∫ a
ξ (µ(s)+e(s)) ds

]∣∣∣∣
ξ=a−t

, 0 6 t 6 t1. (17)

При выполнении условий (11)–(13) теоремы 2 определяемые формулами (16), (17)
функции G(t, τ), 0 6 τ 6 t 6 t1, и H2(t), 0 6 t 6 t1, являются непрерывными. Следова-
тельно, линейное интегральное уравнение Вольтерра II рода (15) имеет [17] единственное
решение η(t) для t ∈ [0, t1]. Соответственно, функции η1(t) и η2(t) из различных реше-
ний обратной задачи совпадают: η1(t) = η2(t) = η(t) при t ∈ [0, t1]. Отсюда (по теореме 1
с T = t1) существует единственное решение прямой задачи (1)–(3) u(x, t) ∈ C1

(
Qt1
)
.
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Тогда и функции u1(x, t), u2(x, t) совпадают: u1(x, t) = u2(x, t) на множестве Qt1 , в том
числе и при x = 0: u1(0, t) = u2(0, t) = ψ(t) для t ∈ [0, t1]. Следовательно, при исходных
значениях T и a таких, что T 6 a, т. е. при t1 = min{a, T} = T , теорема 2 доказана.

Если же исходные a и T таковы, что a < T , то тогда при t ∈ [a,min{2a, T}], т. е.
при t ∈ [(j−1)a, tj ], tj = min{ja, T}, со значением j = 2, а затем последовательно и
для j = 3, 4, . . . , n, где n = entier(T/a)+1, а entier(x) — целая часть числа x, в силу
формулы (6) и условия (4) любое решение η(t), u(x, t) обратной задачи удовлетворяет
уравнению Вольтерра I рода для функции η(t) при j = 2, 3, . . . , n для t ∈ [(j − 1)a, tj ]:∫ t

t−a
e−

∫ a
τ−t+a(µ(s)+e(s)) dsm(τ − t+ a)η(τ) dτ = g(t)− ψ(t− a)e−

∫ a
0 (µ(s)+e(s)) ds. (18)

Дифференцируя равенство (18) по t ∈ [(j − 1)a, tj ] с j = 2, 3, . . . , n и учитывая, что при
t ∈ [(j − 2)a, (j − 1)a] для предыдущего значения (j−1) функция η(t) восстанавливается
однозначно в форме η(t), получаем уравнение (при j = 2, 3, . . . , n)

η(t) =

∫ t

(j−1)a
G(t, τ)η(τ) dτ +H3(t), t ∈ [(j − 1)a, tj ] , (19)

где ядро G(t, τ) уравнения (19) с аргументами (t, τ), удовлетворяющими неравенствам
(j−1)a 6 τ 6 t 6 tj , определяется формулой (16), и неоднородностьH3(t) уравнения (19)
имеет вид (при j = 2, 3, . . . , n)

H3(t) =

∫ (j−1)a

t−a

[
m′(ξ) +

(
µ(ξ) + e(ξ)

)
m(ξ)

m(a)
e−

∫ a
ξ (µ(s)+e(s)) ds

]∣∣∣∣
ξ=τ+a−t

η(τ) dτ+

g′(t)

m(a)
+
m(0)η(t− a)− ψ′(t− a)

m(a)
e−

∫ a
0 (µ(s)+e(s)) ds, (j − 1)a 6 t 6 tj . (20)

Последовательно для каждого значения j = 2, 3, . . . , n в силу условий (11)–(13) ядро
G(t, τ), (j − 1)a 6 τ 6 t 6 tj , и правая часть H3(t), (j − 1)a 6 t 6 tj , уравнения (19),
определяемые формулами (16), (20), являются непрерывными функциями. Следователь-
но, линейное интегральное уравнение Вольтерра II рода (19) имеет [17] единственное
решение η(t), t ∈ [(j − 1)a, tj ], непрерывно продолжающее функцию η(t), построенную
при меньших j на отрезке [0, (j − 1)a]. Соответственно, функции η1(t) и η2(t) из двух
решений обратной задачи (1)–(4), как решения уравнения (19) при текущем j, имеют
совпадающие значения: η1(t) = η2(t) = η(t) при t ∈ [(j − 1)a, tj ]. Отсюда (по теореме 1
для T = tj) существует единственное решение прямой задачи (1)–(3) u(x, t) ∈ C1

(
Qtj
)
.

Тогда и функции u1(x, t), u2(x, t) имеют совпадающие значения: u1(x, t) = u2(x, t) на
множестве Qtj . Доказательство завершается при j = n и tn = T , что дает равенства
η1(t) = η2(t), t ∈ [0, T ], и u1(x, t) = u2(x, t), (x, t) ∈ QT , и опровергает сделанное в нача-
ле доказательства предположение о существовании двух различных решений обратной
задачи (1)–(4). Теорема 2 доказана.

Приближенное решение обратной задачи (1)–(4) проводится последовательным чис-
ленным решением линейного интегрального уравнения Вольтерра II рода (15) с полу-
чением приближения функции η(t) при t ∈ [0, t1] = [0,min{a, T}] и уравнения (7) для
t∈ [0, t1] с формулами (5), (6) для восстановления функции u(x, t), (x, t)∈Qt1 , сначала на
первом шаге с j = 1, затем для последующих шагов с j = 2, 3, . . . , n, n = entier(T/a) + 1,
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численно решаются линейное интегральное уравнение Вольтерра II рода (19) с получе-
нием приближения функции η(t) при t∈ [(j − 1)a, tj ] и уравнение (7) с формулами (5),
(6) для восстановления функции u(x, t), (x, t)∈Qtj \Qtj−1

.
Численное решение линейных интегральных уравнений Вольтерра II рода (15), (7),

(19) может осуществляться стандартными методами [17]. При этом, учитывая сведение
вычислений к решению уравнений Вольтерра II рода (15), (19) с неоднородностями, со-
держащими производные заданных функций, некорректный характер обратной задачи
(1)–(4) непосредственно связан с проблемой неустойчивости численного дифференциро-
вания заданной в форме дополнительного условия функции g(t), а также, возможно,
заданных исходных функций ϕ(x), m(x), β(x), в том случае, если их значения известны
в виде приближений непрерывными функциями с заданными погрешностями.

Альтернативой численному решению линейных интегральных уравнений Вольтер-
ра II рода (15), (7), (19) с приближенно вычисленными значениями производных исход-
ных функций может быть решение вместе с уравнениями Вольтерра II рода (7) линейных
интегральных уравнений Вольтерра I рода (14), (18), для которых, исходя из свойств
ядер интегральных уравнений, разработаны специальные виды регуляризирующих ал-
горитмов (см., например, [18–22]).
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