ОСОБЕННОСТИ СТРОЕНИЯ КИСЛЫХ ФТОРОФОСФАТОЦИРКОНАТОВ (ГАФНАТОВ) ПО ДАННЫМ ЯМР 19F, 31P, 1H

А.Б. Слободюк¹, В.Я. Кавун¹, М.М. Годнева²

¹Институт химии ДВО РАН, Владивосток, Россия
²Институт химии и технологии редких элементов и минерального сырья КНЦ РАН, Апатиты, Россия
E-mail: motov@chemy.kolasc.net.ru

Статья поступила 18 сентября 2015 г.

Методом ЯМР 31P, 19F, 1H исследованы фторофосфатометаллаты составов K₃H₂ZrF₄(PO₄)₃, Rb₂H₂ZrF₄(PO₄)₃, Rb₂H₂HfF₃(PO₄)₃, Cs₂H₂ZrF₂(PO₄)₃·2H₂O. Установлено, что протоны входят в состав гидрофосфатных групп, а атомы фтора занимают концевые позиции в окружении четырехвалентного металла. Предложены схемы кристаллического строения фторофосфатометаллатов. Установлено, что молекулы воды в Cs₂H₂F₂(PO₄)₃·2H₂O связаны сильной водородной связью с протоном фосфатной группы и характеризуются низким энергетическим барьером молекулярных движений.

DOI: 10.15372/JSC20160214

Ключевые слова: фторофосфатоцирконаты, фторофосфатографиты, спектры ЯМР, протонная подвижность, кристаллическое строение.

Структурные особенности некоторых фосфатоцирконатов (гафнатов) приводят к появлению у них практически важных свойств: рентгенолинейных [1], сорбционных [2], ионной проводимости [3]. Расширение этого класса соединений, получение соединений с новыми свойствами может быть достигнуто за счет комбинирования двух типов анионов в их структуре. Фторофосфатометаллаты лития и натрия используются в качестве катодных материалов [4]. Ранее был выделен ряд кислот фторофосфатоцирконатов (гафнатов) (ФФМе) щелочных металлов [5—10]. Определение их структуры методом рентгеноструктурного анализа затруднено из-за малых размеров кристаллов. ИК спектры М₁₂M₃V₃F₃(HPO₄)₃(PO₄)₂ (М⁴ — К, Rb; M⁴ — Zr, Hf) в области колебаний ν₃(PO₄³⁻) 900—1300 см⁻¹ содержат все две полосы, из которых одна (1050 см⁻¹) относится к ν₃(PO₄³⁻), а вторую (1220 см⁻¹) — к δ(POH), при этом формуле соединения K₃H₂ZrF₄(PO₄)₃ приписан вид K₂ZrF₄(HPO₄)₃(PO₄)₂ [5—7]. Гафниевый аналог с рубидием представлен как кристаллосольват [8] на том основании, что в ИК спектрах, кроме двух полос ν₃ (PO₄³⁻), отсутствуют полосы в области 700—900 и 860—915 см⁻¹, относящиеся к колебаниям γ(POH) и ν(POH) соответственно [11]. В настоящей работе для получения информации о строении и истиных формулах ФФМе был применен метод ЯМР.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Статические и MAS спектры ЯМР ядер 19F, 1H, 31P записывали на спектрометре Bruker Avance AV-300 в магнитном поле 7,05 Тл. Для регистрации спектров MAS использовали частоты вращения νmax 12 (1H, 31P), 14 (19F) и 16 (1H) кГц, ротор диаметром 4 мм и метод спинового...
Рис. 1. Статические (а) и MAS (б) спектры ЯМР 19F соединений I—IV. Изотропные сдвиги помечены на спектрах MAS стрелками. $T = 300$ К. Звездочками отмечены боковые полосы от вращения образца.

Экха Хана, синхронизированного с периодом вращения. В качестве эталонов химических сдвигов (ХС) использовали CFCl_3 (19F), тетраметиленсилан (2H) и 1М водный раствор H_2PO_4 (31P).

Ошибки определения ХС по спектрам MAS составляли 1 м.д. для 19F и 0,2 м.д. для 31P. Определение компонент тензора магнитного экранирования 19F с точностью 5 м.д. и относительных интегральных интенсивностей компонент в спектрах ЯМР 1H с точностью 10% осуществляли по оригинальной программе при помощи подгонки расчетных кривых к статическому спектру по методу наименьших квадратов. Установку температуры в эксперименте MAS ЯМР проводили с учетом нагрева образца от вращения, точность установки температуры при записи статических и MAS спектров составляла 5 К.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

ЯМР 19F. Вид спектров ЯМР 19F (рис. 1) $\text{K}_3\text{Zr}_3\text{F}_3(\text{PO}_4)_5$ (I), $\text{Rb}_3\text{Hf}_3\text{F}_3(\text{PO}_4)_5$ (II), $\text{Rb}_2\text{Hf}_3\text{F}_3(\text{PO}_4)_5$ (III), $\text{CsH}_2\text{Hf}_2\text{F}_3(\text{PO}_4)_3\cdot2\text{H}_2\text{O}$ (IV) указывает на то, что основным вкладом в форму линии является анизотропия химического экранирования. Тензор магнитного экранирования фтора является аксиально-симметричным с величиной анизотропии $\sim 170—230$ м.д. (50—65 кГц), тогда как постоянная изотропного уширения, определяемая диполь-дипольными взаимодействиями фтора с другими ядрами, имеет порядок 10 кГц. В диапазоне температур $150—320$ К спектры ЯМР 19F описываемых соединений остаются неизменными. Как показывает анализ спектров ЯМР 19F соединений циркония, асимметричная форма линии ЯМР 19F и значительная анизотропия экранирования соответствуют концевым атомам фтора, входящим в координацию металла-комплексообразователя [12].

Этот вывод подтверждается и результатами анализа спектров MAS ЯМР: в спектрах соединений I—III наблюдается только один сигнал, ХС которого свидетельствует о координации иона фтора к атомам Zr и Hf [12, 13]. Спектр ЯМР соединения IV состоит из двух компонент равной интенсивности, отстоящих друг от друга на 4,2 м.д. (1190 Гц). Наличие двух линий вызвано, по всей видимости, существованием в структуре соединения IV двух незквивалентных позиций концевых атомов фтора, координированных к двум незквивалентным атомам гафния.

Как можно видеть из табл. 1, тензоры ХС зависят от природы катиона и центрального атома. Коэффициенты $\delta_{||}$ для соединений здесь находится в области более сильного магнитного поля,

Таблица 1

| Соединение | $\delta_{||}$, м.д. | δ_{\perp}, м.д. | $\delta_{||}$, м.д. | δ_{\perp}, м.д. |
|------------|-----------------|-----------------|-----------------|-----------------|
| $\text{K}_3\text{Zr}_3\text{F}_3(\text{PO}_4)_5$ (I) | -4,4 | -10 | 73 | -159 |
| $\text{Rb}_3\text{Zr}_3\text{F}_3(\text{PO}_4)_5$ (II) | 7,9 | 8 | 79 | -137 |
| $\text{Rb}_2\text{Hf}_3\text{F}_3(\text{PO}_4)_5$ (III) | -25 | -27 | 32 | -143 |
| $\text{CsH}_2\text{Hf}_2\text{F}_3(\text{PO}_4)_3\cdot2\text{H}_2\text{O}$ (IV) | -12, -17 | -20 | 49 | -161 |

Примечание. $\delta_{||}$ — ХС, определенные по данным MAS ЯМР; δ_{\perp} — центр тяжести спектра широких линий; $\delta_{||}$, δ_{\perp} — перпендикулярная и параллельная компоненты тензора магнитного экранирования фтора.
за счет чего анизотропия экранирования уменьшается, центр тяжести спектра смещается в область сильного поля на величину около 20 м.д., что соответствует данным [13].

ЯМР 31P. Спектры ЯМР 31P соединений I—III (рис. 2) содержат два хорошо разрешенных сигнала. Соотношение интенсивностей сигналов (табл. 2) близко к 3:2. Относительный сдвиг сигналов, вызванный замещением внешнесферного кationа, противоположен наблюдающемуся для фтора: сигнал соединения рубидия находится в более сильном магнитном поле относительно ФФМе калия. То же самое можно сказать относительно соединения циркония по сравнению с его гафниевым аналогом. Спектр ЯМР 31P ФФМе IV имеет удвоенные линии, как и спектр ЯМР 19F. Причина удвоения линий, очевидно, та же, что и для спектров 19F — наличие двух незнакомых позиций фторофосфатографитных ионов. Интегральные интенсивности

Таблица 2

<table>
<thead>
<tr>
<th>Соединение</th>
<th>Сдвиг, м.д.</th>
<th>Интегр. интенс., %</th>
<th>Отношение</th>
</tr>
</thead>
<tbody>
<tr>
<td>K$_2$Zr$_2$F$_6$(HPO$_4$)$_3$(PO$_4$)$_2$ (I)</td>
<td>-20</td>
<td>62</td>
<td>HPO$_4^{2-}$</td>
</tr>
<tr>
<td>-25</td>
<td>38</td>
<td>Zr—PO$_4$—Zr</td>
<td></td>
</tr>
<tr>
<td>Rb$_2$Zr$_2$F$_6$(HPO$_4$)$_3$(PO$_4$)$_2$ (II)</td>
<td>-21,5</td>
<td>66</td>
<td>HPO$_4^{2-}$</td>
</tr>
<tr>
<td>-25,5</td>
<td>34</td>
<td>Zr—PO$_4$—Zr</td>
<td></td>
</tr>
<tr>
<td>Rb$_2$Hf$_2$F$_6$(HPO$_4$)$_3$(PO$_4$)$_2$ (III)</td>
<td>-15,2</td>
<td>63</td>
<td>HPO$_4^{2-}$</td>
</tr>
<tr>
<td>-18,4</td>
<td>30</td>
<td>Hf—PO$_4$—Hf</td>
<td></td>
</tr>
<tr>
<td>CsHf$_2$F$_6$(HPO$_4$)$_3$(PO$_4$)·2H$_2$O (IV)</td>
<td>-12,8</td>
<td>33</td>
<td>HPO$_4^{2-}$</td>
</tr>
<tr>
<td>-14,5</td>
<td>32</td>
<td>HPO$_4^{2-}$</td>
<td></td>
</tr>
<tr>
<td>-17,8</td>
<td>18</td>
<td>Hf—PO$_4$—Hf</td>
<td></td>
</tr>
<tr>
<td>-19</td>
<td>17</td>
<td>Hf—PO$_4$—Hf</td>
<td></td>
</tr>
</tbody>
</table>

Рис. 2. Спектры ЯМР 31P соединений I—IIV. T = 300 К

Рис. 3. Спектры ЯМР 1H соединений I—IIV (v_{max} = 16 кГц) и IV (v_{max} = 12 кГц)
пар сигналов, соответствующих ионам HPO$_4^{2-}$ и PO$_4^{3-}$ (см. табл. 2), соотносятся приблизительно как 2:1. Можно предположить, что независимость комплексных анионов (расщепление линий) вызвана чередованием ионов цезия и молекул воды во внешней сфере, в то время как ближайшее окружение атомов гафния имеет близкую геометрию.

Применение метода переноса поляризации подтверждает отнесение линий в спектрах ЯМР 31P, сделанное на основании анализа интегральных интенсивностей сигналов ЯМР. Во всех спектрах, полученных с применением переноса поляризации, проходит существенное перераспределение интенсивностей сигналов в пользу сигнала, расположенного в более слабом магнитном поле. Очевидно, что это возвано более благоприятными условиями для переноса поляризации с ядер 1H на ядро 31P в гидрофосфат-ионе по сравнению с фосфат-ионом.

ЯМР 1H. Спектры MAS ЯМР 1H соединений I—III содержат две компоненты (рис. 3, I—III). Компонента с ХС 15,5 (I) и 14,5 м.д. (II, III) относится к протону гидрофосфатной группировки. Величина сдвига соответствует наличию сильной водородной связи (расстояние O—H···O можно оценить как равное 2,5 Å в случае образования связи с кислородом [14]). Компонента сложной формы с центром тяжести при 5,9—7,0 м.д. принадлежит, по всей вероятности, протонам сорбированных молекул воды. Наличие молекул воды в соединении подтверждается присутствием полос валентных и деформационных колебаний молекул воды в ИК спектрах указанных соединений [5, 8, 15].

Статические спектры ЯМР 1H соединений I—III и характер их температурных трансформаций схожи между собой. При температуре 140—150 К спектр состоит из основания (рис. 4, компонента a) с полушириной около 60 кГц и несколько асимметричной центральной компоненты b, полуширина которой составляет ~15 кГц. Форма компоненты описывается сверткой прямоугольника и гауссовой функции (функция Абрамага). При температуре 200 K для соединений I и III и 300 K для соединения II в спектре возникает узкая компонента c с полушириной около 1,8 кГц. С повышением температуры площадь компоненты a уменьшается до нуля, а b — возрастает до 25—40 % при 320 K и остается приблизительно постоянной до температуры 370 K. Ширина компоненты a и положение центра тяжести компоненты b позволяют отнести их к протонам сорбированных молекул воды, характеризующихся высокой подвижностью. Компонента b, таким образом, относится к протонам гидрофосфатных группировок, не участвующих в обмене. В процессе удаления сорбированной воды при 370—420 K (см. рис. 4) интенсивность компоненты b уменьшается до 3—10 % от общей площади спектра, а при выдерживании образца в условиях атмосферной влажности форма спектров ЯМР 1H возвращается к исходной.

Спектры MAS ЯМР соединения IV (см. рис. 3) содержат три компоненты. Компоненты при 11,3 и 10,1 м.д. относятся к протонам гидрофосфатных группировок, а при 4,9 м.д. — к молекулам кристаллизационной воды. Интегральные интенсивности компонент при температуре 310 K относятся как 1:1:3. Недостаточная интенсивность сигнала, относящегося к H$_2$O, объясняется, по-видимому, началом протонного обмена (см. рис. 3). Трансформация статических спектров ЯМР 1H соединения IV (рис. 5) происходит во всем изученном интервале температур, что говорит о наличии движений протонов или содержащих их атомных групп, сохраняющихся при 135 K. При температурах 200—370 K спектры содержат в качестве компоненты пейковский дублет с величиной расщепления 2α, равной 12 кГц. Данная величина в ~4 раза меньше той, которая характерна для молекул кристаллизационной воды. Уменьшение расщепления пейковского дублета, как правило, происходит вследствие реориентации моле-

Рис. 4. Спектры ЯМР 1H соединения I при различных температурах.
Стрелками указан порядок проведения экспериментов.
Рис. 5. Спектры ЯМР а-Н соединения IV при различных температурах

кул воды по двум или большему числу положений, что может быть совмещено с их трансляционной диффузией [16, 17]. В данном случае ситуация, вероятно, является более сложной. Учитывая, что при всех температурах спектр ЯМР а-Н содержит центральную компоненту, которую нельзя отнести к протонам гидрофосфатных групп из-за существенного несоответствия интенсивности, можно заключить, что в соединении имеет место диполь-дипольное взаимодействие нечетного числа протонов. Вероятнее всего, это происходит за счет образования водородной связи кислород воды—группа ОН гидрофосфат-иона, в результате чего формируется ион H₂O⁺. В пользу этого предположения говорит и то, что спектры ЯМР 19F не испытывают температурных трансформаций. Последнее означает, что атом фтора не участвует в образовании водородной связи с реориентирующимися молекулами воды. Оценка расстояния O—H···O [14] в этом случае дает величину 2,65 Å и соответствует сильной водородной связи. Движения протонов, входящих в ион гидроксона, могут включать перескоки вдоль водородной связи и реориентацию H₂O, а при более высоких температурах имеет место обмен протонов H₂O и HPO₄. Это приводит к трансформации тензоров диполь—дипольных взаимодействий в системе, состоящей из трёх протонов и одного ядра атома фосфора. Анализ возможных вариантов таких движений и расчет соответствующих им спектров ЯМР требует отдельного рассмотрения.

Таким образом, в ФФМе MIV₃H₃MVI₄F₃(PO₄)₅ (MIV — К, Рб; MVI — Зр, Хф) имеются только концевые атомы фтора, ионы PO₄³⁻ и HPO₄²⁻. Сходство спектров ЯМР, данные ИК, РФА позволяют заключить, что эти соединения изоструктурированы либо имеют сходное строение. Учитывая то, что характерным координационным числом циркония по кислороду является 6, можно предложить следующую схему строения ФФМе I—III (рис. 6, a). Структура построена из слоёв, в которых каждый атом MVI соединен мостиковой связью с тремя гидрофосфатными и двумя фосфатными ионами. Шестое координационное место в атоме MVI занимает фтор. Один из атомов кислорода фосфатных групп является концевым, таким образом и PO₄³⁻, и HPO₄²⁻ связаны по три атома MVI. Формулы соединений следует писать в виде MIII₃MVI₄F₃(HPO₄)₃(PO₄)₂.

Рис. 6. Предложенные схемы структурных фрагментов фторофосфатометаллата­тов MIV₃MVI₃F₃(HPO₄)₃(PO₄)₂ (a), CsMIV₃F₃(HPO₄)₃PO₄·2H₂O (б).

На рис. a пунктиров обозначена элементарная ячейка, на рис. б пунктир связывает атомы MVI слоя n. Катионы, молекулы воды, атомы кислорода и фтора для упрощения рисунка не показаны.
ФФMe IV может иметь строение, аналогичное соединениям, относящимся к типу NZP (NASICON). Известно соединение CsZr2P2O7 [18], изоструктурное соответствующему гафниту, в который ФФMe IV переходит при прокаливании [19]. Данный структурный тип характеризуется наличием незанятых катионных позиций, которые обеспечивают высокую подвижность последних. Объем незанятых позиций достаточен для размещения еще двух катионов при сохранении структуры NASICON. В качестве примера можно привести соединение Li3Ti2(PO4)3, полученное из Li2Ti2(PO4)3 при помощи химического или электролитического интеркалирования [20]. Можно предположить, что в соединении IV молекулы воды занимают структурные позиции катионов. На рис. 6, б представлена схема структурного фрагмента соединения. Наличие избыточных структурных позиций приводит к тому, что подвижность молекул воды в соединении достаточно высока. Чередование ионов цезия и молекул воды, вероятно, приводит к независимости атомов MIV соседних "слоев", обозначенных на рис. 6, б как и и n+1. Роль протонов и фтора аналогична описанной для соединений I—III: вместо части связей P—O—Zr в NZP, в ФФMe IV имеются фрагменты P—OH и F—Zr. Формулу соединения IV следует записывать в виде CsHf2F2(HPO4)2(PO4)2·2H2O.

ЗАКЛЮЧЕНИЕ

Установлено, что атомы фтора в соединениях M3IVF3(HPO4)2(PO4)2 и CsHf2F2(HPO4)2·2H2O занимают концевые позиции в координационном окружении переходного металла, а протоны входят в состав гидрофосфатных анионов. Сходство спектров ЯМР 31F, 31P, 1Н ФФMe I–III позволяет предполагать, что они изоструктурные. Предложены возможные варианты строения фтороfosфатометаллатных каркасов соединений. Установлено, что ФФMe I–III характеризуются тенденцией к адсорбции молекул воды. В соединении IV протоны гидрофосфатных групп образуют водородные связи с подвижными молекулами воды, входящими в его состав.

СПИСОК ЛИТЕРАТУРЫ