УДК 532.526.3

Турбулизация следа за парными элементами шероховатости в гиперзвуковом пограничном слое^{*}

П.А. Поливанов, Ю.В. Громыко, А.А. Маслов

Институт теоретической и прикладной механики им. С.А. Христиановича СО РАН, Новосибирск

E-mail: polivanov@itam.nsc.ru, yurkonsk@gmail.com, maslov@itam.nsc.ru

Проведено экспериментальное исследование влияния двух близко расположенных одиночных элементов шероховатости цилиндрической формы на ламинарно-турбулентный переход. Эксперименты выполнены на конической модели с радиусом затупления 9 мм при числе Маха М = 5. Парные элементы шероховатости с различными наборами высот и углов разнесения размещались на затупленном носике модели. На основе термоанемометрических измерений получена информация о средних и нестационарных параметрах пограничного слоя в следе за шероховатостями. Для всех типов шероховатости подтверждено существование эффективной высоты шероховатости, при превышении которой происходит деформация границы пограничного слоя и увеличение неравновесности течения в следе. Проведено сравнение процессов турбулизации течения в следе за одиночной и парной шероховатостями. Как и для одиночной шероховатости, процесс турбулизации течения за парной шероховатостью сопровождается формированием продольных вихрей, что приводит к деформации профиля скорости. В зависимости от величины деформации происходит либо затухание, либо возрастание пульсаций в следе. В отличие от одиночной шероховатости, парная шероховатость уменьшает массовый расход в более узком диапазоне углов, причем наполнение пограничного слоя в этом диапазоне более существенно. Если для одиночной шероховатости турбулизация происходит непосредственно за шероховатостью, то для парной шероховатости основной рост массового расхода происходит в следе, распространяющемся от границы двух шероховатостей.

Наличие шероховатости оказывает значительное влияние на нестационарные характеристики пограничного слоя при высоте элемента шероховатости меньше эффективной. В следе за парной шероховатостью происходит взаимодействие вихрей, что приводит к уменьшению эффективного числа Рейнольдса по сравнению со случаем одиночной шероховатости.

Ключевые слова: пограничный слой, гиперзвуковые скорости, ламинарно-турбулентный переход, одиночная и парная шероховатости, развитие возмущений.

Введение

Все реальные гиперзвуковые летательные аппараты (ГЛА) имеют шероховатые поверхности. Это свойство поверхности может быть следствием механической её обработки или предусматриваться специально в качестве способа тепловой защиты летательного аппарата (TPS, Thermal Protection Systems). Шероховатость стенки может оказывать

^{*} Работа выполнена в рамках Программы фундаментальных научных исследований государственных академий наук на 2013-2020 годы (проект АААА-А17-117030610126-4) и при финансовой поддержке РФФИ (грант № 18-01-00536А).

[©] Поливанов П.А., Громыко Ю.В., Маслов А.А., 2019

влияние на распределение тепловых потоков по поверхности ГЛА. Интенсивность влияния зависит от характеристик самой шероховатости, которая может быть изолированной в виде отдельных соединений, сочленений или выпуклостей или распределенной по всей поверхности. Кроме того, интенсивность воздействия зависит от состояния пограничного слоя в месте расположения шероховатости — турбулентного или ламинарного. При входе ГЛА в более плотные слои атмосферы возрастают местные числа Рейнольдса, и образовавшаяся шероховатость в большинстве случаев приводит к более раннему ламинарно-турбулентному переходу (ЛТП). Неопределенности в прогнозировании ЛТП приводят к дополнительному весу ТРS и росту производственных затрат, направленных на обеспечение целостности транспортного средства. Таким образом, для проектирования теплозащиты ГЛА необходимы надежные критерии оценки влияния шероховатости на ЛТП вдоль всей траектории движения [1].

Исследованиям по влиянию шероховатости на ЛТП посвящено достаточно большое количество работ, которые можно разделить на две группы. В работах первой группы рассматривается влияние шероховатости (в основном распределенной) на положение ЛТП для затупленных тел, в частности, для возвращаемых космических аппаратов. В этом случае из-за большой интенсивности головной ударной волны шероховатость находится, как правило, в зоне дозвукового течения. Обзор работ, посвященных изучению этой проблемы, приведен в публикации [2]. Работы второй группы посвящены исследованию влияния единичной или распределенной шероховатости на ЛТП в пограничных слоях при гиперзвуковом внешнем обтекании. Обзор этих работ представлен в публикации [3].

Анализ указанных выше работ показал, что при решении задач первой группы могут быть использованы эмпирические критерии, основанные на локальном числе Рейнольдса, вычисляемом по высоте элемента шероховатости: $\operatorname{Re}_{kk} = \rho_k u_k k / \mu_w$, где k высота элемента шероховатости, ρ_k , u_k — плотность и скорость невозмущенного потока на высоте, равной высоте элемента шероховатости, $\mu_{\rm w}$ — вязкость газа вблизи стенки. Так, при $\text{Re}_{kk} > 250$ в случае распределенной шероховатости и $\text{Re}_{kk} > 400$ для единичной шероховатости, турбулизация течения происходит непосредственно за элементом шероховатости. В работе [3] такая высота элемента шероховатости была названа эффективной. Высота элемента шероховатости, при которой происходит смещение положения области перехода вниз по потоку от шероховатости, получила название критической, а высота элемента шероховатости, не оказывающая непосредственного влияния на переход, — докритической. Обычно диапазон значений Re_{kk}, в котором высота элемента шероховатости является критической, достаточно мал [4], поэтому поведению ЛТП для этого диапазона чисел Рейнольдса уделялось недостаточно внимания. При решении второй группы задач эмпирические критерии неприменимы, так как значение эффективной высоты шероховатости быстро возрастает с увеличением числа Маха [5]. В настоящее время надежные критерии, определяющие эффективную высоту шероховатости для гиперзвуковых течений, отсутствуют.

Переход к турбулентному режиму при обтекании затупленных тел в аэродинамической трубе достаточно точно определяется с помощью критериев, основанных на числе $\operatorname{Re}_{kk}[6]$. Однако в некоторых летных испытаниях была обнаружена более ранняя турбулизация течения. Так, в работе [7] было показано, что в режиме полета на высоте $2 \div 36$ км при M < 5,6 и значении $\operatorname{Re}_{kk} \approx 34$ на всей поверхности головного обтекателя пограничный слой являлся турбулентным.

Большинство исследований по влиянию шероховатости поверхности на ЛТП при гиперзвуковых скоростях на сегодняшний день проводилось в обычных гиперзвуковых аэродинамических трубах. Основное внимание уделялось построению корреляционных зависимостей. Развитие экспериментальных [8] и расчетных [9] методов позволяет уточнить инженерные методы [10] определения положения области ламинарно-турбулентного перехода для гиперзвуковых течений. Например, в работах [11, 12] на основе трехмерных численных расчетов были получены картины течения вблизи одиночной и распределенной шероховатостей при различных числах Маха. Из представленных в исследовании [12] результатов следует, что за одиночным элементом шероховатости всегда возникает пара продольных вихрей и несколько дополнительных. При этом с уменьшением числа Маха интенсивность дополнительных продольных вихрей возрастает, что, по-видимому, и является причиной увеличения значения Re_{kk} с ростом числа Маха.

Экспериментальных работ по исследованию развития возмущений в следе за шероховатостью известно немного. В работе [13] исследовалось влияние шероховатости, размещенной на затупленном носике конуса, на развитие возмущений и положение области ЛТП при числе Маха M = 6. Было обнаружено, что при определенных параметрах шероховатости происходит резкое смещение области перехода вверх по потоку — от хвостовой части к носику модели. В этом случае в зоне шероховатости и в области ЛТП характерные параметры пограничного слоя существенно различаются, вследствие чего анализировать полученные данные сложно.

В работе [14] были представлены результаты параметрического экспериментального исследования ЛТП за единичным элементом шероховатости, размещенном на затупленной части конической модели. Выбор одиночного элемента шероховатости был выполнен таким же образом, как и в работе [15], что позволило провести сравнение результатов в ходе экспериментов. Было показано, что турбулизация за единичным элементом шероховатости происходит при локальном числе Re_{kk} , равном 400÷500. Установлено, что наличие шероховатости оказывает значительное влияние на нестационарные характеристики пограничного слоя при высоте элемента шероховатости, меньшей эффективной.

Наличие нескольких уединенных шероховатостей может приводить к интерференции образующихся за ними следов. При этом возможно как усиление, так и ослабление возмущений в зоне взаимодействия. В настоящей работе экспериментально исследован процесс турбулизации в следе за сдвоенной шероховатостью, расположенной на затупленной части конической модели, такой же, как в работе [14].

Оборудование и методы экспериментальных исследований

Эксперименты проводились в аэродинамической трубе Т-3276 ИТПМ СО РАН с длительностью пуска до 50 с. Параметры потока были следующими: число Маха M = 5, температура торможения $T_0 = 295$ K, давление торможения $P_0 = 101,3$ кПа, единичное число Рейнольдса Re₁ = $3,2\cdot10^6$ м⁻¹. В ходе экспериментов использовалось несколько конических моделей с углом полураствора 7°, радиусом сферического притупления R = 9 мм и длиной L = 73,6 мм, различающихся геометрией шероховатостей. Радиус основания модели R₁ = 17 мм. Модель была выставлена под нулевым углом атаки. Использовались цилиндрические шероховатости разной высоты k, диаметром d = 2,6 мм, которые крепились к модели перпендикулярно поверхности. Диаметр основания шероховатости в местах стыковки с поверхностью плавно увеличивался так, что появлялось скругление радиусом 0,5 мм. На каждой из моделей было размещено четыре парных шероховатости, расположенных со смещением на 90° по азимутальной координате β (см. рис. 1). Пары элементов шероховатости располагались в районе затупленного носика при $\theta = 60^\circ$ и $\theta = 83^\circ$ и различных углах разнесения $\Delta\beta$, как это показано на рисунке. Угол θ отсчитывался

Рис. 1. Чертеж модели.

Таблица

№ конфигурации шероховатости	k _{60°} , мм	k _{83°} , мм	Δeta , град
1	0,2	0,4	20
2	0,4	0,4	20
3	0,4	0,8	20
4	0,8	0,8	20
5	0,4	0	20
6	0	0,4	20
7	0,8	0	20
8	0	0,8	20
9	0,4	0,8	10
10	0,4	0,8	15
11	0,4	0,8	20
12	0,4	0,8	25
	•		•

Конфигурации исследуемых шероховатостей

от оси модели, вершина угла совпадала с центром сферического затупления носовой части. Высоты шероховатостей, которые использовались в работе, и угол их разнесения представлены в таблице, где k_{60° — высота шероховатости при $\theta = 60^\circ$, k_{83° — высота шероховатости при $\theta = 83^\circ$.

Измерения осуществлялись термоанемометром постоянного сопротивления, оснащенным однониточным датчиком с вольфрамовой нитью диаметром 5 мкм. Датчик термоанемометра был прокалиброван в свободном потоке стандартным способом при изменении давления в форкамере. Термоанемометр с датчиком был настроен на максимальную частоту — порядка 150 кГц, однако из-за низкого уровня полезного сигнала реальная максимальная частота в измерениях составляла приблизительно 25 кГц. Технические ограничения используемого в эксперименте термоанемометра не позволяли улучшить частотную характеристику, поэтому определить характерные частоты пульсаций, возникающих за элементом шероховатости не представлялось возможным. При подготовке экспериментов и анализе данных учитывалось, что использование датчика термоанемометра с длиной нити 1 мм приводит к осреднению результатов по пространству вдоль координаты β . Соответственно, шаг по углу β выбирался больше или равным длине датчика термоанемометра в заданном сечении.

В ходе экспериментов были измерены массовый расход и пульсации массового расхода в следе за элементом шероховатости. Измерения были выполнены в двух сечениях: при x = 25 и 52 мм (см. рис. 1). При каждом пуске проводилось сканирование потока по азимутальной координате путем вращения модели с одновременным её перемещением по координатам (*x*, *y*). Итоговая матрица данных для каждого поля массового расхода имела размерность 23 (по β) × 15 (по *y*).

Результаты

На рис. 2 показаны распределения массового расхода вдоль азимутальной координаты β для одиночной ($k_{60^\circ} = 0,4$ мм) и парной ($k_{60^\circ} = 0,4$ мм и $k_{83^\circ} = 0,4$ мм, $\Delta\beta = 15^\circ$) шероховатостей в сечении x = 52 мм. За начало системы координат по углу $\beta = 0^\circ$ принимается плоскость симметрии шероховатости, имеющей координату по углу $\theta = 60^\circ$. Угол разнесения парных шероховатостей $\Delta\beta = 15^\circ$. Массовый расход нормировался на значение массового расхода в набегающем потоке, составляющего $\rho U_0 = 9,55$ кг·м⁻²·c⁻¹, а координата *у* нормировалась на локальную толщину невозмущенного ламинарного пограничного слоя.

Формирование следа за одиночной и двойной шероховатостями существенно различны. За одиночным элементом шероховатости при $\theta = 60^{\circ}$ в некотором диапазоне углов наблюдается увеличение наполненности профиля массового расхода (рис. 2*a*), что свидетельствует о турбулизации пограничного слоя. Массовый расход существенно уменьшается в диапазоне $\beta = -10^{\circ} \div 10^{\circ}$. Таким образом, турбулизация течения происходит в относительно узком следе, в то время как возмущение пограничного слоя наблюдается во всей зоне измерения, о чем свидетельствует неравномерность распределения массового расхода в трансверсальном направлении.

Течение за двойной шероховатостью при $\theta = 60^{\circ}$ существенно отличается от течения за одиночной шероховатостью (рис. 2b). Здесь наблюдается существенная несимметричность течения. Увеличение массового расхода происходит в более узком диапазоне углов — при $\beta \approx 9^{\circ} \div 13^{\circ}$. Наполнение пограничного слоя в этом диапазоне углов более существенно. Кроме того, распределение массового расхода в диапазоне $\beta \approx -30^{\circ} \div 0^{\circ}$ является неравномерным, что можно интерпретировать как формирование большого размазанного вихря за элементом шероховатости или влияние волн сжатия-разрежения, формируемых за шероховатостями. Течение в диапазоне углов $\beta \approx 20^{\circ} \div 40^{\circ}$ остается ламинарным. Можно сделать вывод о том, что наличие второй шероховатости приводит к перестройке течения и существенному изменению процесса турбулизации.

Рис. 2. Распределение массового расхода для x = 52 мм. *а* — одиночная шероховатость ($k_{60^\circ} = 0,4$ мм), *b* — парная шероховатость ($k_{60^\circ} = 0,4$ мм и $k_{83^\circ} = 0,4$ мм, $\Delta\beta = 15^\circ$).

Для упрощения анализа данных были построены изолинии массового расхода y_{75} (см. рис. 3). Здесь y_{75} — обезразмеренные на толщину пограничного слоя координаты, где массовый расход равен 75 % от массового расхода основного потока на границе пограничного слоя. Значение массового расхода основного потока для x = 25 мм составляет $\rho U_0 = 4,5 \text{ кг} \cdot \text{m}^{-2} \cdot \text{c}^{-1}$, для $x = 52 \text{ мм} - \rho U_0 = 5,5 \text{ кг} \cdot \text{m}^{-2} \cdot \text{c}^{-1}$. Также на рис. 3 представлены данные об изменении формы пограничного слоя в трансверсальном направлении для сечения x = 25 мм за одиночной и парной шероховатостями. Угол разнесения парных шероховатостей $\Delta\beta = 20^{\circ}$. Результаты, полученные для одиночных шероховатостей, не отличаются от результатов, представленных в работе [15]. Шероховатость высотой $k_{83^{\circ}} = 0,4$ мм, установленная при $\theta = 83^{\circ}$ (рис. 3a), оказывает слабое влияние на пограничный слой. Для шероховатости той же высоты, но установленной при $\theta = 60^{\circ}$ (рис. 3a, $k_{60^{\circ}} = 0,4$ мм), происходит увеличение наполненности профиля в диапазоне $\beta = -10^{\circ} \div 20^{\circ}$, что свидетельствует о турбулизации течения. Это объясняется тем, что шероховатость, установленная при $\theta = 60^{\circ}$, имеет величину Re_{kk}, превышающую эффективное значение Re_{kk} ≈ 400 , в отличие от случая с $\theta = 83^{\circ}$.

На рис. 3b видно, что для двойной шероховатости с $k_{60^\circ} = 0,2$ мм и $k_{83^\circ} = 0,4$ мм в диапазоне $\beta \approx 0^\circ \div 20^\circ$ профиль является наполненным. В работе [14] было показано, что при наличии одиночных шероховатостей высотой $k_{60^\circ} = 0,25$ мм $u k_{83^\circ} = 0,4$ мм среднее течение остается ламинарным с небольшими неравномерностями во всей области измерения, без зон с наполненным профилем. Можно сделать вывод о том, что в следе за двойной шероховатостью происходит взаимодействие вихрей, что приводит к более интенсивной турбулизации течения.

Увеличение в два раза высот шероховатостей приводит к более существенной наполненности профиля как для одиночных (рис. 3*a*), так и для парных (рис. 3*b*) шероховатостей. Для случая одиночной шероховатости с $k_{60^\circ} = 0.8$ мм рост наполненности происходит в диапазоне $\beta \approx -15^\circ \div 15^\circ$, при этом в диапазоне $\beta \approx -5^\circ \div 5^\circ$ наполненность профиля пограничного слоя уменьшается и становиться близкой к ламинарному случаю. Это объясняется более существенным влиянием пары продольных вихрей, формирующихся за цилиндром, интенсивность которых растет с ростом высоты шероховатости.

Рис. 3. Линии равного массового расхода для x = 25 мм и для разных высот одиночной (a) и двойной с Δβ = 20° (b) шероховатостей.
a: k_{60°} = 0,4 (1), k_{83°} = 0,4 (2), k_{60°} = 0,8 (3); b: k_{60°} = 0,2 (1), 0,4 (2), 0,8 (3), k_{83°} = 0,4 (1, 3), 0,8 (2) мм.

Для случая двойной шероховатости с $k_{60^\circ} = 0,8$ мм и $k_{83^\circ} = 0,4$ мм наблюдается неравномерное искажение профиля массового расхода, пик в диапазоне углов $\beta \approx -30^\circ \div -5^\circ$ имеет меньшую амплитуду, чем в диапазоне $\beta \approx 13 \div 28^\circ$, что объясняется появлением несимметричных вихрей в следе за шероховатостью.

На рис. 4 приведено сравнение линий равного массового расхода y_{75} и коэффициентов асимметрии γ_1 в следе за шероховатостями. Здесь $\gamma_1 = \mu_3/\sigma$, μ_3 — третий центральный момент, σ — стандартное отклонение. Сравнение данных, представленных на рисунке для сечений x = 25 и x = 52 мм (рис. 3, рис. 4*a* и 4*b*), показывает, что ширина турбулентного участка изменяется слабо. Для одиночных шероховатостей высотой k = 0,4 мм (рис. 4*a*) наблюдается уменьшение наполненности профиля массового расхода в сечении x = 52 мм, что можно объяснить затуханием процессов турбулизации течения и ослаблением вниз по потоку продольных вихрей. Для двойной шероховатости профили более наполнены и наблюдается существенное отклонение в отрицательную зону коэффициентов асимметрии от нуля в зоне турбулентного участка, что означает наличие неравновесности для турбулентного потока (см. рис. 4*c*). Для шероховатости с бо́льшей высотой (см. рис. 4*b*) наполненность профиля не уменьшается, а коэффициенты

Рис. 4. Линии равного массового расхода (*a*, *b*) и коэффициентов асимметрии (*c*, *d*) при *x* = 52 мм, $\Delta\beta$ = 15°. *a*: $k_{60^{\circ}}$ = 0,4 (*1*, 4), 0,0 (*2*), 0,2 (*3*) мм, $k_{83^{\circ}}$ = 0,0 (*1*), 0,4 (2–4) мм; *b*: $k_{60^{\circ}}$ = 0,8 (*1*, 4), 0,0 (*2*), 0,4 (*3*) мм, $k_{83^{\circ}}$ = 0,0 (*1*), 0,8 (2–4) мм; *c*: $k_{60^{\circ}}$ = 0,4 (*1*, 4), 0,0 (*2*), 0,2 (*3*) мм, $k_{83^{\circ}}$ = 0,0 (*1*), 0,4 (2–4) мм; *d*: $k_{60^{\circ}}$ = 0,8 (*1*, 4), 0,0 (*2*), 0,4 (*3*) мм, $k_{83^{\circ}}$ = 0,0 (*1*), 0,8 (2–4) мм.

асимметрии имеют явно выраженные отрицательные пики (рис. 4*d*). При этом для двойной шероховатости область турбулентного течения сужается по сравнению с одиночной шероховатостью, хотя наполненность профиля возрастает. Очевидно, это можно объяснить объединением одного из вихрей с турбулентной областью. Так, например, для одиночной шероховатости (рис. 4*d*) в центре турбулентной зоны коэффициент асимметрии близок к нулю (изотропная тур-

булентность), два отрицательных пика расположены на краях турбулентной зоны в областях влияния вихрей. Для двойной шероховатости также наблюдаются два отрицательных пика коэффициента асимметрии, но центр одного из пиков совпадает с турбулентной областью.

На рис. 5 представлены данные об изменении формы пограничного слоя в трансверсальном направлении для сечения x = 52 мм и для разных углов разнесения двух шероховатостей ($\Delta\beta = 10^\circ \div 25^\circ$) при $k_{60^\circ} = 0,4$ мм и $k_{83^\circ} = 0,4$ мм. Для них следует отметить схожесть в картинах течения. Также на графиках видно наличие двух зон с наполненностью профиля пограничного слоя в диапазонах $\beta \approx -18^\circ \div 0^\circ$ и $\beta \approx 5^\circ \div 20^\circ$. В отличие от одиночной шероховатости, где турбулизация происходит непосредственно за шероховатостью, для варианта двойной шероховатости основной рост массового расхода происходит в следе, распространяющемся от границы сопряжения двух шероховатостей $(\beta \approx -18^{\circ} \div 0^{\circ})$. Вторая зона роста наполненности пограничного слоя $(\beta \approx 5^{\circ} \div -20^{\circ})$ находится около боковой границы шероховатости, расположенной на стыке сферической и конической частей модели ($\theta = 83^{\circ}$). Турбулизация течения, сопровождающаяся увеличением массового расхода в этой зоне, связанна с дефектом скорости, образующимся из-за формирования продольного вихря на границе шероховатостей. На стыке шероховатостей вихри, формируемые ими, должны иметь разные направления вращения, что должно приводить к уменьшению интенсивности вращения итогового продольного вихря. Но дефект (градиент) скорости в этой области должен увеличиваться, поэтому турбулизация пограничного слоя наступает раньше, что приводит к росту наполненности профиля пограничного слоя. Ослабевание вихревого движения, возможно, является причиной более узкого турбулентного следа на стыке двойной шероховатости. Очевидно, что результирующая картина взаимодействия вихрей имеет более сложный характер и должна быть исследована численно. Вначале изменение угла разнесения шероховатостей слабо сказывается на результирующей картине течения. Но для случая $\Delta\beta = 25^{\circ}$ наблюдается постепенное изменение формы линии равного расхода. Можно заметить уширение пика в области $\beta \approx -15^{\circ} \div 0^{\circ}$ с появлением минимума при $\beta = -8^{\circ}$, что обусловлено влиянием двух противоположно вращающихся продольных вихрей, сформированных за шероховатостью $\theta = 83^\circ$, и характерно для случая одиночной шероховатости большой высоты. Второй пик ($\beta = -20^\circ$), обусловленный шероховатостью при $\theta = 60^\circ$, изменяется менее существенно, что означает слабое влияние шероховатости при $\theta = 83^{\circ}$ на течение в этой области. Соответственно можно отметить, что, начиная с угла разнесения $\Delta\beta = 25^{\circ}$, интерференция течений между шероховатостями начинает уменьшаться.

Заключение

Анализ результатов экспериментального исследования позволяет сделать следующие выводы.

Для всех типов шероховатостей подтверждено существование эффективной высоты шероховатости, при превышении которой происходит деформация границы пограничного слоя и увеличение неравновесности течения в следе.

Наличие парной шероховатости приводит к перестройке течения и существенному изменению процесса турбулизации по сравнению с процессами за одиночной шероховатостью. Как и для одиночной шероховатости, турбулизация течения сопровождается формированием продольных вихрей, что приводит к деформации профиля скорости. В зависимости от величины деформации происходит либо затухание, либо возрастание пульсации в следе за шероховатостью.

В отличие от одиночной шероховатости парная шероховатость увеличивает массовый расход в более узком диапазоне углов по трансверсальной координате, причем наполнение пограничного слоя в этом диапазоне более существенно. Распределение массового расхода в пространстве является неравномерным, один из вихрей, бо́льший по размерам, имеет меньшую интенсивность.

Если в случае одиночной шероховатости турбулизация происходит непосредственно за шероховатостью, то в случае парной шероховатости основной рост массового расхода происходит в следе, распространяющемся от границы сопряжения двух шероховатостей. Для условий рассматриваемого эксперимента при углах разнесения шероховатостей больше 25° следы от них развиваются независимо.

Установлено, что наличие шероховатости оказывает значительное влияние на нестационарные характеристики пограничного слоя при высоте элемента шероховатости, меньшей эффективной. В следе за двойной шероховатостью происходит генерация дополнительной неустойчивости при взаимодействии вихрей, что приводит к преждевременной турбулизации течения.

Список литературы

- Berry S.A., Horvath T.J. Discrete-roughness transition for hypersonic flight vehicles // J. Spacecraft Rockets. 2008. Vol. 45, No. 2. P. 216–227.
- Schneider S.P. Summary of hypersonic boundary-layer transition experiments on blunt bodies with roughness // J. Spacecraft Rockets. 2008. Vol. 45, No. 6. P. 1090–1105.
- Schneider S.P. Effects of roughness on hypersonic boundary-layer transition // J. Spacecraft Rockets. 2008. Vol. 45, No. 2. P. 193–209.
- 4. Van Driest E.R., McCauley W.D. The effect of controlled three-dimensional roughness on boundary-layer transition at supersonic speeds // Aeronaut. Sci. 1960. Vol. 27, No. 4. P. 261–271.
- Hicks R.M., Harper W.R. A comparison of spherical and triangular boundary-layer trips on a flat plate at supersonic speeds // NASA, report TM-X-2146. 1970. 41 p.
- 6. Павлюченко А.М., Шийко А.Н. Методы диагностики и результаты измерений характеристик транс-, сверх- и гиперзвукових комплексов различных типов в летных условиях // Авиационно-космическая техника и технология. 2016. № 3. С. 68–91.
- 7. Юрченко И.И., Каракотин И.Н., Кудинов А.С. Турбулентно-ламинарный переход на поверхности ракет в условиях выведения // Наука и образование. 2014. № 9. С. 88–105.
- Sidorenko A.A., Polivanov P.A., Gromyko Y.V., Bountin D.A., Maslov A.A. The evolution of a wave packet to turbulent spot in the boundary layer at high speeds // AIP Conference Proceedings. 2016. Vol. 1770, No. 1. P. 030045-1–030045-10.
- Groskopf G., Kloker M.J. Effects of an oblique roughness on hypersonic boundary-layer transition // High Performance Computing in Sci. and Engng '12. Berlin, Heidelberg: Springer, 2013. P. 255–276.
- 10. Бойко А.В., Кириловский С.В., Маслов А.А., Поплавская Т.В. Инженерное моделирование ламинарнотурбулентного перехода: достижения и проблемы (обзор) // Прикл. механика и техн. физика. 2015. Т. 56, № 5. С. 30–49.

- Iyer P.S., Muppidi S., Mahesh K. Roughness-induced transition in high speed flows // 49th AIAA Aerospace Sci. Meeting. AIAA Paper. 2011. No. 2011–566.
- 12. Кирилловский С.В., Поплавская Т.В. О влиянии одиночной шероховатости на течение в сверхзвуковом пограничном слое на затупленном конусе // Теплофизика и аэромеханика. 2016. Т. 23, № 6. С. 971–974.
- 13. Бунтин Д.А., Громыко Ю.В., Маслов А.А., Поливанов П.А., Сидоренко А.А. Влияние шероховатости затупленной носовой части конуса на положение ламинарно-турбулентного перехода // Теплофизика и аэромеханика. 2016. Т. 23, № 5. С. 655–664.
- 14. Поливанов П.А., Громыко Ю.В., Сидоренко А.А., Маслов А.А. Турбулизация следа за одиночным элементом шероховатости на затупленном теле при гиперзвуковом числе Маха // Прикл. механика и техн. физика. 2017. Т. 58, № 5. С. 102–110.
- Wheaton B.M., Schneider S.P. Roughness-induced instability in a hypersonic laminar boundary layer // AIAA J. 2012. Vol. 50, No. 6. P. 1245–1256.

Статья поступила в редакцию 25 апреля 2019 г., после доработки — 14 мая 2019 г., принята к публикации 4 июня 2019 г.