УДК 539.214; 539.375

ОПРЕДЕЛЕНИЕ ПРЕДЕЛЬНЫХ СОСТОЯНИЙ УПРУГОПЛАСТИЧЕСКИХ ТЕЛ

Б. Д. Аннин, В. В. Алехин, С. Н. Коробейников

Институт гидродинамики им. М. А. Лаврентьева СО РАН, 630090 Новосибирск

Рассмотрены уравнения квазистатического деформирования тел из упругопластического материала в геометрически линейной постановке. После дискретизации уравнений по пространственным переменным методом конечных элементов задача определения равновесных конфигураций сводится к интегрированию системы нелинейных обыкновенных дифференциальных уравнений. В предельном состоянии тела из идеального упругопластического материала матрица системы вырождается и задача становится сингулярной. Предложен алгоритм регуляризации, позволяющий находить решения задач в предельных состояниях тел. Численные решения ряда тестовых задач об определении предельных нагрузок и равновесных конфигураций тел из идеального упругопластического материала подтверждают надежность предложенного алгоритма регуляризации.

ВВЕДЕНИЕ

При решении задач о квазистатическом деформировании тел из идеального упругопластического материала [1, 2] при некоторых значениях внешних сил достигаются *предельные состояния* — равновесные конфигурации, в которых деформации обращаются в бесконечность. Соответствующая нагрузка называется *предельной*. Аналитические решения некоторых задач с определением предельных нагрузок приведены в [2].

Универсальным методом решения задач по упругопластическому деформированию тел с произвольной геометрией является метод конечных элементов (МКЭ) [3–5]. После дискретизации исходной системы дифференциальных уравнений МКЭ процедура определения равновесных конфигураций тела сводится к пошаговому интегрированию нелинейной системы обыкновенных дифференциальных уравнений (ОДУ). В предельном состоянии тела вырождается матрица этой системы. В стандартных процедурах пошагового интегрирования системы ОДУ в качестве параметра деформирования используется внешняя сила. В окрестностях предельных нагрузок необходимо использовать мелкие шаги по нагрузке для определения равновесных конфигураций [6]. При этом итерационные процессы уточнения решения сходятся медленно или расходятся. Более надежным алгоритмом определения равновесных конфигураций тела в окрестностях предельных нагрузок является введение параметра внешней силы в число неизвестных с использованием длины дуги интегральной кривой в качестве параметра деформирования [7, 8].

В настоящей работе процедура, предложенная в [8], дополняется регуляризацией системы ОДУ. Эта процедура определения равновесных конфигураций в предельных состояниях введена в вычислительный комплекс PIONER [9]. Ее эффективность демонстрируется на решениях некоторых тестовых задач.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (коды проектов 99-01-00525, 99-01-00556) и программы "Университеты России — фундаментальные исследования" (грант № 1795).

1. РЕГУЛЯРИЗАЦИЯ ОДНОМЕРНОЙ ЗАДАЧИ

Рассмотрим модельную задачу, при решении которой покажем те трудности, которые возникают в задачах о деформировании тел из идеального упругопластического материала в предельном состоянии, и приведем алгоритм регуляризации, далее используемый для решения плоских и объемных задач.

Рассмотрим одноосное однородное деформирование стержня с площадью поперечного сечения A, растягиваемого или сжимаемого продольной силой P (рис. 1). Материал стержня предполагается упругопластическим с билинейной диаграммой одноосного растяжения, представленной на рис. 2 (σ и ε — продольные напряжение и деформация, $\sigma_y^0 > 0$ — начальное значение предела текучести, tg $\alpha = E > 0$ — модуль Юнга, $E_t \ge 0$ — касательный модуль). При использовании теории пластического течения с изотропным упрочнением определяющее соотношение материала стержня записывается в виде

$$\dot{\sigma} = b\dot{\varepsilon},\tag{1.1}$$

где

$$b \equiv \begin{cases} E, & |\sigma| < \sigma_y \quad \text{или} \quad |\sigma| = \sigma_y, \quad \sigma \dot{\varepsilon} \leq 0, \\ E_t, & |\sigma| = \sigma_y, \quad \sigma \dot{\varepsilon} > 0. \end{cases}$$
(1.2)

Здесь $\sigma_y \equiv \max_{0 \leq \tau \leq t} \{ |\sigma(\tau)|, \sigma_y^0 \}$ — текущее значение предела текучести; t — монотонно возрастающий параметр деформирования (с начальным значением t = 0), точка обозначает производную величины по t.

Уравнение равновесия в скоростях записывается в виде

$$\dot{\sigma} = \dot{P}/A.\tag{1.3}$$

Из (1.1) и (1.3) получаем нелинейное ОДУ

$$k\dot{\varepsilon} = \dot{P},\tag{1.4}$$

которое дополняем начальным условием

$$\varepsilon = 0 \quad \text{при} \quad t = 0. \tag{1.5}$$

Здесь введен *касательный коэффициент жесткости* (аналог касательной матрицы жесткости [3])

$$k(\sigma, \dot{\varepsilon}) \equiv bA$$

Задача (1.4), (1.5) описывает деформирование стержня из упругопластического материала. Уравнение (1.4) является аналогом системы уравнений, которая получается в результате дискретизации МКЭ дифференциальных уравнений, описывающих деформирование тела из упругопластического материала.

Равновесные конфигурации стержня определяются интегрированием уравнения (1.4). При монотонном пластическом деформировании стержня равновесные конфигурации в плоскости (ε, σ) соответствуют диаграмме одноосного деформирования, приведенной на рис. 2.

Рис. 2

Разрешимость задачи (1.4), (1.5) зависит от значения касательного модуля E_t :

— $E_t > 0$ (упругопластический материал с упрочнением). Задача (1.4), (1.5) регулярна как при упругом (k = EA), так и при упругопластическом ($k = E_tA$) деформировании. Решение задачи единственно. Предельные состояния не достигаются;

— $E_t = 0$ (идеальный упругопластический материал). Задача (1.4), (1.5) регулярна при упругом (k = EA) и сингулярна при упругопластическом деформировании (k = 0). В последнем случае при $\dot{P} \neq 0$ решения не существует, а при $\dot{P} = 0$ решение существует и не единственно. Предельное состояние стержня достигается при $P_{\text{lim}} = \sigma_u^0 A$.

Для стержня из упругопластического материала с упрочнением задачу (1.4), (1.5) можно решать, используя в качестве параметра деформирования силу P ($\dot{P} = 1$). Для стержня из идеального упругопластического материала при деформировании за пределом упругости силу P в качестве параметра деформирования использовать нельзя, так как при $\dot{P} = 1$ решения задачи (1.4), (1.5) не существует. Таким образом, стандартная формулировка задачи о деформировании упругопластического тела вида (1.4), (1.5) с заданной внешней силой не позволяет получить равновесные конфигурации в предельном состоянии.

В новой формулировке задачи (1.4), (1.5) предполагается, что внешняя сила неизвестна. Введем неизвестный параметр λ такой, что

$$P = \lambda P_0,$$

где $P_0 = \text{const} \neq 0$. Теперь имеем две неизвестные функции ε и λ . Уравнение (1.4) перепишем в виде

$$k\dot{\varepsilon} - \dot{\lambda}P_0 = 0. \tag{1.6}$$

Вторым уравнением, решаемым совместно с (1.6), является контрольное уравнение

$$\dot{\varepsilon}^2 + \dot{\lambda}^2 = 1, \tag{1.7}$$

соответствующее тому, что в качестве параметра деформирования t используется длина дуги интегральной кривой в пространстве (ε , λ) [7, 8]. Уравнения (1.6), (1.7) дополняются начальными условиями

$$\varepsilon = \lambda = 0 \quad \text{при} \quad t = 0. \tag{1.8}$$

В предельном состоянии стержня система уравнений (1.6), (1.7) преобразуется к виду

$$\dot{\lambda} = 0, \qquad \dot{\varepsilon} = \pm 1. \tag{1.9}$$

Положительный знак в правой части второго уравнения выбирается при растяжении стержня, отрицательный — при сжатии. Выбор длины дуги в качестве параметра деформирования автоматически приводит к тому, что в предельном состоянии параметром деформирования становится абсолютная величина деформации (см. второе равенство в (1.9)). В отличие от задачи (1.4), (1.5), сингулярной в предельном состоянии, задача (1.9), (1.8) регулярна и разрешима. Нелинейное уравнение (1.7) свелось ко второму уравнению (1.9), которое является линейным, так как $\lambda = 0$. Последнее равенство является условием разрешимости уравнения (1.6) при k = 0. В общем случае (при решении задач большой размерности) уравнение вида (1.7) требует линеаризации, а замена системы уравнений вида (1.4) системой вида (1.6) нарушает структуру матрицы исходной системы уравнений.

Рассмотрим другой способ регуляризации, более подходящий для численной реализации. Систему (1.6), (1.7) решаем в два этапа. На первом этапе решается уравнение (1.6), которое при введении новой переменной

$$x \equiv \dot{\varepsilon}/\lambda \tag{1.10}$$

преобразуется к виду

$$kx = P_0. \tag{1.11}$$

Уравнение (1.11) имеет вид, аналогичный (1.4), и также является сингулярным. Регуляризуем это уравнение заменой $E_t = 0$ на $E'_t > 0$ ($E'_t \ll E$), т. е. идеальный упругопластический материал стержня заменяем материалом с упрочнением с небольшим (по сравнению с модулем Юнга) касательным модулем. Для нового материала введем обозначение $k' \equiv b'A$, b' получается заменой E_t на E'_t . Таким образом, вместо сингулярного уравнения (1.11) рассматриваем регуляризованное уравнение

$$k'x = P_0. \tag{1.12}$$

На втором этапе находим $\dot{\lambda}$ из контрольного уравнения (1.7):

$$\dot{\lambda} = \pm \frac{1}{\sqrt{1+x^2}},\tag{1.13}$$

а $\dot{\varepsilon}$ — из (1.10): $\dot{\varepsilon} = x\dot{\lambda}$. Знак в правой части (1.13) выбирается из условия большей гладкости интегральной кривой в (ε , λ)-пространстве.

Так как при регуляризации задачи исходное уравнение (1.11) заменено на (1.12), то для получения решения исходной задачи надо использовать процедуру итерационного уточнения решения.

2. РЕГУЛЯРИЗАЦИЯ СИСТЕМЫ КОНЕЧНО-ЭЛЕМЕНТНЫХ УРАВНЕНИЙ

Предложенная выше процедура регуляризации одномерной задачи положена в основу численного алгоритма решения задач о деформировании тел из идеального упругопластического материала в предельных состояниях.

Система уравнений квазистатического деформирования упругопластического тела после дискретизации МКЭ по пространственным переменным записывается в виде [3–5]

$$K\dot{\boldsymbol{U}} = \dot{\boldsymbol{R}}.\tag{2.1}$$

Здесь K — симметричная касательная матрица жесткости; U — вектор узловых перемещений; R — вектор внешних сил, остальные обозначения совпадают с принятыми в п. 1. Система (2.1) дополняется начальными условиями

$$\boldsymbol{U} = \boldsymbol{U}_0 \quad \text{при} \quad t = 0. \tag{2.2}$$

Определяющие соотношения, используемые при вычислении матрицы K, имеют следующий вид:

$$\dot{\sigma}_{ij} = C_{ijkl} \dot{\varepsilon}_{kl} \qquad (C_{ijkl} = C_{klij} = C_{jikl} = C_{ijlk}), \tag{2.3}$$

где σ_{ij} , ε_{kl} — компоненты тензоров напряжений и деформаций; C_{ijkl} — компоненты тензора четвертого ранга определяющих соотношений; индексы пробегают значения от 1 до 3, по повторяющимся индексам проводится суммирование. Для теории пластического течения с изотропным упрочнением компоненты тензора определяющих соотношений имеют следующий вид [10]:

$$C_{ijkl} = \frac{E}{1+\nu} \Big[\frac{1}{2} \left(\delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk} \right) + \frac{\nu}{1-2\nu} \delta_{ij} \delta_{kl} - c \frac{d\sigma'_{ij} \sigma'_{kl}}{1+\nu+2dJ_2} \Big],$$
(2.4)

$$c = \begin{cases} 0, & f_y < 0 & \text{или} \quad f_y = 0, \quad \sigma'_{ij} \dot{\varepsilon}_{ij} \leq 0, \\ 1, & f_y = 0, \quad \sigma'_{ij} \dot{\varepsilon}_{ij} > 0; \end{cases}$$
(2.5)

где

)

 $\sigma'_{ij} \equiv \sigma_{ij} - \delta_{ij}\sigma_{kk}/3$ — компоненты девиатора тензора напряжений; ν — коэффициент Пуассона; $f_y \equiv \sqrt{3J_2} - \sigma_y$ — функция текучести Мизеса; δ_{ij} — символы Кронекера; второй инвариант девиатора тензора напряжений J_2 и текущий предел текучести σ_y определяются по формулам

$$J_2 \equiv \sigma'_{ij} \sigma'_{ij}/2, \qquad \sigma_y \equiv \max_{0 \leqslant \tau \leqslant t} \{\sqrt{3J_2(\tau)}, \sigma_y^0\}.$$

В (2.4) введена функция

$$d(J_2) \equiv \frac{3}{4J_2} \left(\frac{E}{E_t} - 1\right).$$

Для идеального упругопластического материала $(E_t = 0)$ необходимо сделать замену последнего слагаемого в правой части (2.4)

$$c \frac{d\sigma'_{ij}\sigma'_{kl}}{1+\nu+2dJ_2} \to c \frac{\sigma'_{ij}\sigma'_{kl}}{2J_2}.$$
(2.6)

Определяющие соотношения (2.3), (2.4), (2.6) обобщают соотношения (1.1), (1.2) одноосного деформирования стержня.

В силу (2.5) матрица K = K(U), поэтому (2.1), (2.2) представляют собой задачу Коши для системы нелинейных ОДУ.

Предполагаем, что вектор внешних сил зависит только от параметра λ , характеризующего интенсивность действия внешних сил:

$$\mathbf{R} = \lambda \mathbf{R}_0. \tag{2.7}$$

Здесь вектор \mathbf{R}_0 характеризует распределение внешних сил. С учетом (2.7) система (2.1) переписывается в виде

$$K\dot{\boldsymbol{U}} = \dot{\lambda}\boldsymbol{R}_0. \tag{2.8}$$

Предельная нагрузка (параметр λ принимает значение λ_{lim}) соответствует вырождению матрицы K. Последнее возможно только для тела из идеального упругопластического материала. Стандартные схемы интегрирования нелинейной задачи (2.8), (2.2) в окрестностях предельных нагрузок перестают работать.

Регуляризуем задачу с вырожденной (или почти вырожденной) матрицей K по схеме, представленной в п. 1. Параметр λ полагаем неизвестным. К системе (2.8) добавляем новое (контрольное) уравнение, соответствующее выбору в качестве параметра t длины дуги интегральной кривой в (U, λ)-пространстве:

$$\dot{\lambda}^2 + \dot{\boldsymbol{U}}^{\mathrm{T}} \dot{\boldsymbol{U}} = 1, \tag{2.9}$$

где индекс т обозначает транспонирование вектор-столбца в вектор-строку.

Система (2.8), (2.9) относительно $(\dot{U}, \dot{\lambda})$ решается в два этапа. Сначала решается вспомогательная система алгебраических уравнений относительно вектора \hat{U}

$$K\hat{\boldsymbol{U}} = \boldsymbol{R}_0$$
 или $K'\hat{\boldsymbol{U}} = \boldsymbol{R}_0,$ (2.10)

затем с помощью вектора \hat{U} определяются $\dot{\lambda}$ и \dot{U} по формулам

$$\dot{\lambda}_{1,2} = \pm 1 / \sqrt{1 + \hat{\boldsymbol{U}}^{\mathrm{T}} \hat{\boldsymbol{U}}}, \qquad \dot{\boldsymbol{U}} = \hat{\boldsymbol{U}} \dot{\lambda}.$$
 (2.11)

В (2.11) при определении λ знак выбирается из условия большей гладкости интегральной кривой в (U, λ)-пространстве [11]. Матрица K' в (2.10) получается из матрицы K заменой

касательного модуля $E_t = 0$ на $E'_t > 0$ $(E'_t \ll E)$, т. е. вместо идеального упругопластического материала используется материал с небольшим упрочнением.

Задача (2.10), (2.11), (2.2) (с учетом $\lambda = 0$ при t = 0) решается пошаговым интегрированием с итерационным уточнением решения методом Крисфилда, подробно изложенным в [8, 12]. Отметим, что при итерационном уточнении решения задач о деформировании тел из идеального упругопластического материала при определении вектора внутренних сил F [3] используется значение касательного модуля $E_t = 0$. Модифицированное значение $E'_t > 0$ используется только для регуляризации задачи при определении пробного вектора \hat{U} .

3. ЧИСЛЕННАЯ РЕАЛИЗАЦИЯ АЛГОРИТМА РЕГУЛЯРИЗАЦИИ

Описанный в п. 2 алгоритм регуляризации системы ОДУ с вырожденной матрицей включен в вычислительный комплекс PIONER [9] для решения двумерных и трехмерных задач деформирования тел из идеального упругопластического материала. Приведем решения некоторых тестовых задач, полученных с помощью этого вычислительного комплекса.

3.1. Растяжение стержня. Рассмотрим численное решение задачи, представленной в п. 1. Стержень с геометрическими параметрами, приведенными на рис. 3, *a*, растягивается силой *P*. Материал стержня идеальный упругопластический с механическими константами *E* = 1 ГПа, *ν* = 0,3, $\sigma_y^0 = 10$ МПа.

Первый расчет проводился на основе стержневой (одномерной) модели. Стержень разбивался на 10 двухузловых элементов. Для этой модели определяющие соотношения имеют вид (1.1). Решить задачу без модификации (без замены $E_t = 0$ на $E'_t > 0$) не удалось, так как вспомогательная задача (2.10) с сингулярной матрицей K при ненулевой правой части не имеет решения. Однако регуляризованная задача (с заменой $E_t = 0$ на $E'_t = 0,01E$) решается. Диаграмма одноосного растяжения воспроизводится в численном решении (точки на рис. 3,6) достаточно точно.

Второй расчет проводился на основе двумерной модели (плоское напряженное состояние) стержня. Стержень разбивался на 10 четырехузловых элементов (рис. 3, *a*). При вычислении касательной матрицы жесткости *K* используются определяющие соотношения в виде (2.3), (2.4). При точных вычислениях матрица *K* должна быть сингулярной. Однако из-за ошибок аппроксимации и вычислений матрица *K* в системе (2.10) оказывается несингулярной (неконтролируемая регуляризация задачи). Матрица *K'* несингулярна при замене $E_t = 0$ на $E'_t = 0,01E$ (контролируемая регуляризация). Кривая одноосного деформирования на рис. 3, в хорошо воспроизводится как при контролируемой, так и при неконтролируемой регуляризации задачи. Следующие две задачи решались при контролируемой регуляризации (с заменой $E_t = 0$ на $E'_t = 0,01E$). **3.2. "Чистый" изгиб балки.** Рассмотрим задачу об изгибе балки моментом *M*. В

3.2. "Чистый" изгиб балки. Рассмотрим задачу об изгибе балки моментом M. В силу симметрии рассматривается половина балки (рис. 4,*a*). Материал балки идеальный упругопластический ($E = 3000 \ \Gamma \Pi a$, $\nu = 0,3$, $\sigma_y^0 = 1 \ \Gamma \Pi a$). Так как при геометрически линейном деформировании при действии изгибающего момента отсутствуют продольные деформации оси балки, то при численном решении рассматривается четверть балки. Используется двумерная модель (плоское напряженное состояние) с разбиением балки восьмиузловыми элементами (рис. 4, δ). Момент на торце балки моделируется линейным распределением давления с максимальным значением $p_0 = 75 \ M\Pi a$ (рис. 4, δ), используемым при определении вектора \mathbf{R}_0 в (2.7). Такое распределение давления моделирует чистый изгиб балки в упругой постановке и с некоторой погрешностью (связанной с нелинейным распределением продольного напряжения по сечению балки) в упругопластической постановке.

Аналитическое решение задачи о напряженно-деформированном состоянии балки в трехмерной постановке, полученное полуобратным методом Сен-Венана, приведено в [2]. Зависимость нормального прогиба w торца балки от приложенного момента M на торце, полученная на основе численного и аналитического решений, приведена на рис. 4,6, где $M_{\rm lim}$ — предельное значение момента, равное $12 \cdot 10^3$ H · M [2]. Сплошная кривая соответствует аналитическому решению, точки — равновесным конфигурациям, полученным при численном интегрировании уравнений. Равновесные конфигурации балки, в которых впервые появляются области пластического деформирования, на рис. 4,6 обозначены треугольником и квадратом для аналитического и численного решений соответственно. Отмечается хорошее соответствие решений.

3.3. Поперечный изгиб балки. Рассмотрим задачу о поперечном изгибе балки сосредоточенной силой, приложенной в центре (рис. 5,*a*). Материал балки идеальный упругопластический (E = 20 ГПа, $\nu = 0$, $\sigma_y^0 = 400$ МПа). Аналитическое решение этой задачи приведено в [2]. Конечно-элементное моделирование четверти балки (рис. 5,*б*) проводится по схеме, аналогичной представленной в подп. **3.2**. Приведенная на рис. 5,*в* зависимость нормального прогиба в центре балки от приложенной силы показывает хорошее соответствие между численным и аналитическим решениями (обозначения те же, что на рис. 4,*в*). В аналитическом решении [2] предельное значение половины сосредоточенной силы $P_{\rm lim} = 5$ кH.

ЗАКЛЮЧЕНИЕ

В работе дан алгоритм регуляризации задач о деформировании тел из идеального упругопластического материала в предельных состояниях. Этот алгоритм, являющийся модификацией стандартного алгоритма численного решения (внешняя сила предполагается заданной), состоит из двух основных этапов. На первом этапе параметр интенсивности действия внешней силы вводится в число неизвестных, а за параметр деформирования принимается длина дуги интегральной кривой в (U, λ)-пространстве. На втором этапе в систе-

Рис. 5

ме уравнений вырожденная матрица, соответствующая идеальному упругопластическому материалу, заменяется на матрицу, соответствующую материалу с изотропным упрочнением. Возникающая при такой замене ошибка устраняется при итерационном уточнении решения. Численными экспериментами показано, что некоторые задачи могут решаться и без использования второго этапа регуляризации: при вычислениях вместо сингулярной получается почти сингулярная касательная матрица жесткости. Однако применение неконтролируемой регуляризации может привести к недостоверному решению задачи. Поэтому рекомендуется использовать алгоритм регуляризации, предложенный в настоящей работе.

ЛИТЕРАТУРА

- 1. Аннин Б. Д., Черепанов Г. П. Упругопластическая задача. Новосибирск: Наука. Сиб. отд-ние, 1983.
- 2. Качанов Л. М. Основы теории пластичности. М.: Наука, 1969.
- 3. Bathe K.-J. Finite element procedures in engineering analysis. Englewood Cliffs (New Jersey): Prentice-Hall, 1982.
- 4. Zienkiewicz O. C., Taylor R. L. The finite element method. L.: McGraw-Hill, 1991.
- 5. Коробейников С. Н. Решение двумерных геометрически и физически нелинейных задач методом конечных элементов // Численные методы решения задач теории упругости и пластичности: Материалы X Всесоюз. конф., Красноярск, 23–27 февр. 1987 г. Новосибирск: Ин-т теорет. и прикл. механики СО АН СССР, 1988. С. 134–140.
- Блинов А. Н. Об ограниченности среднего напряжения при малых упругопластических деформациях // Динамика сплошной среды: Сб. науч. тр. / АН СССР. Сиб. отд-ние. Ин-т гидродинамики. 1989. Вып. 92. С. 39–44.
- 7. Шалашилин В. И., Кузнецов Е. Б. Метод продолжения решения по параметру и наилучшая параметризация. М.: Эдиториал УРСС, 1999.

- 8. Bathe K.-J., Dvorkin E. N. On the automatic solution of nonlinear finite element equations // Comput. and Structures. 1983. V. 17, N 5/6. P. 871–879.
- Korobeinikov S. N., Agapov V. P., Bondarenko M. I., Soldatkin A. N. The general purpose non-linear finite element structural analysis program PIONER // Proc. of the Intern. conf. on numer. methods and appl., Sofia, 22–27 Aug., 1988. Sofia: Publ. House of the Bulgarian Acad. of Sci., 1989. P. 228–233.
- Kleiber M. Incremental finite element modelling in non-linear solid mechanics. Chichester: Ellis Horwood, 1989.
- Sokol T., Witkowski M. The equilibrium path determination in non-linear analysis of structures // Advances in non-linear finite element methods: Proc. of the 2nd Intern. conf. on comput. structures technol., Athens, 30 Aug.-1 Sept., 1994. Edinburgh: Civil-Comp Press, 1994. P. 35-45.
- Коробейников С. Н. Применение метода конечных элементов к решению нелинейных задач по деформированию и потере устойчивости атомных решеток. Новосибирск, 1997. (Препр. / РАН. Сиб. отд-ние. Ин-т гидродинамики; № 1-97).

Поступила в редакцию 20/VI 2000 г.