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На основе полных уравнений Навье — Стокса обсуждается роль скрытого интеграла
движения для корректного описания дальнего поля скорости и давления в случае неав-
томодельных затопленных струй несжимаемой вязкой жидкости, когда источник движе-
ния имеет ненулевой характерный размер. Показано, что появление скрытого интеграла
сохранения обусловлено тем, что координаты точки эффективного источника импульса
и точки эффективного источника массы могут не совпадать для реальных протяженных
в пространстве источников струйного течения. С использованием специальных функций
получено точное аналитическое решение для всех членов асимптотического разложения
дальнего поля неавтомодельной затопленной струи, описываемое всеми интегралами
движения: сохранения полного потока импульса, сохранения полного потока момента
импульса, сохранения полного потока массы и связанного с сохранением полного пото-
ка момента импульса дополнительного скрытого интеграла сохранения. Показано, что
впервые скрытый интеграл фактически был получен Л. Г. Лойцянским при изучении
неавтомодельного решения для затопленной струи в рамках приближения погранично-
го слоя, но был ошибочно интерпретирован как интеграл сохранения потока массы,
вытекающей из источника струи. На основе полученного точного решения проведены
расчеты полей скорости и давления при различных числах Рейнольдса и различных зна-
чениях скрытого интеграла для модели истечения струи из круглой трубки конечного
размера. Анализируется влияние скрытого интеграла движения на картину течения.

Ключевые слова: скрытый интеграл движения, уравнения Навье — Стокса, неавто-
модельные затопленные струи

1. О проблеме скрытого интеграла сохранения в теории неавтомодельных

затопленных струй. Рассмотрим причины, по которым в теории неавтомодельных за-
топленных струй, основанной на полных стационарных уравнениях Навье — Стокса

(v,∇)v = −1

ρ
∇p+ ν∆v, div v = 0, (1)

появляется скрытый интеграл сохранения. Вопрос о скрытом интеграле движения в тео-
рии неавтомодельных затопленных струй вязкой несжимаемой жидкости возник достаточ-
но давно, однако до сих пор не было предложено адекватной физической интерпретации
этого интеграла. Как было показано Л. Д. Ландау [1], главный член асимптотического
разложения решения уравнений Навье — Стокса для поля скорости струйного течения
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на бесконечности является автомодельным решением конического класса, которое ранее
обнаружил Н. Н. Слезкин [2]:

v(r) =
ν

R
V (θ), (2)

и описывается точным интегралом уравнений, соответствующих законам сохранения пол-
ного потока импульса, вытекающего из точечного источника:

F =

∮
SR

Π · n dS = const . (3)

Здесь Π — тензор полного потока импульса:

Π = ρv ⊗ v + p(nR ⊗ nR + nθ ⊗ nθ + nϕ ⊗ nϕ)−

− µ
[(

nR ⊗
∂v

∂R
+

nθ

R
⊗ ∂v

∂θ
+

nϕ

R sin θ
⊗ ∂v

∂ϕ

)
+

+
(
nR ⊗

∂v

∂R
+

nθ

R
⊗ ∂v

∂θ
+

nϕ

R sin θ
⊗ ∂v

∂ϕ

)т]
, (4)

R, θ, ϕ — сферические координаты; ν — кинематическая вязкость; nR, nθ, nϕ — орты

сферической системы координат; ρ — плотность; p — давление; µ = ρν — динамическая

вязкость; знак “⊗” обозначает операцию тензорного произведения. Величина F есть сила,
приложенная в точке r = 0, лежащей внутри шара любого радиуса R с поверхностью SR.
Таким образом, постановка задачи, которую фактически решал Л. Д. Ландау, при усло-
вии (3) принимает вид

div Π = F δ(r), div v = 0, (5)

где δ(r) — δ-функция Дирака. Из (1), (3), (4) следует, что решение должно иметь вид (2).
В работе Ю. Б. Румера [3] было найдено осесимметричное решение, которое связы-

валось со следующим членом асимптотического разложения дальнего поля струи. Это
решение определяется законом сохранения полного потока массы с ненулевым расходом Q,
вытекающей из точечного источника струи:

Q =

∮
SR

ρv · n dS = ρ

2π∫
0

π∫
0

vRR
2 sin θ dθ dϕ. (6)

Вследствие наличия интеграла сохранения (6) выражение для скорости должно содержать
слагаемое, пропорциональное 1/R2, при этом остальные слагаемые, зависимость которых
от сферического радиуса имеет другой вид, не должны давать вклад в расход. Следует
отметить, что с учетом размерности источник струи с ненулевым расходом не может

быть точечным и должен иметь некоторый ненулевой характерный размер a0. Решение
для такой неавтомодельной струи можно представить в виде

v(r) = v1(r) + w(r), v1(r) = O(1/R), w(r) = O(1/R2),

p(r) = p1(r) + q(r), p1(r) = O(1/R2), q(r) = O(1/R3),
(7)

где v1(r), p1(r) — решение Ландау задачи (5) (позднее решение этой задачи получил также
Г. Сквайр [4]), в котором полагается, что сила F направлена вдоль оси симметрии задачи

θ = 0, соответственно, затопленная струя направлена в положительном направлении оси z.
В силу осевой симметрии поле скорости имеет функцию тока

ψ1 = νf1(cos θ)R.
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Вводя переменную t = cos θ, решение задачи (5) можно представить в виде

f1(t) = 2
1− t2

A− t
, A > 1; (8)

v1R =
1

R2 sin θ

∂ψ1

∂θ
= − ν

R
f ′1(t), v1θ = − 1

R sin θ

∂ψ1

∂R
= − ν

R

f1(t)√
1− t2

, v1ϕ(R, θ) = 0; (9)

p1 =
ρν2g(t)

R2
, g(t) = 4

At− 1

(A− t)2
. (10)

Параметр A, введенный в работе [1], связан с интенсивностью точечного источника им-
пульса (силы), равной интегралу от полного потока импульса (3), (4) по любой замкнутой
поверхности, окружающей источник импульса (например, сферы произвольного радиуса):

F =

2π∫
0

π∫
0

Π · nRR
2 sin θ dθ dϕ = 16πρν2A

(
1 +

4

3(A2 − 1)
− A

2
ln
A+ 1

A− 1

)
nz, (11)

при этом Fz(A) — монотонная функция параметра A, которая стремится к бесконечности
при A→ +1 и стремится к нулю при A→∞. С помощью Fz определено число Рейнольдса

(см. [1]):

Re =
√
Fz/(πρν2) . (12)

Подставляя разложение (7) в уравнения Навье — Стокса (1), при R → ∞ получаем

линеаризованные уравнения Навье — Стокса, которым должны удовлетворять w, q:

(v1,∇)w + (w,∇)v1 = −ρ−1∇q + ν∆w, div w = 0. (13)

Эти решения свидетельствуют о том, что дальнее поле описывается точными интеграла-
ми сохранения, из которых следует зависимость решения от сферического радиуса в виде
разложения по целым степеням обратного сферического радиуса 1/R в бесконечно удален-
ной точке. Подтверждением этого факта является работа [5], в которой найдено решение
для закрученной струи. Интенсивность закрутки можно определить из закона сохранения
полного потока момента количества движения

L =

∮
SR

(r × Π) · n dS = 2πρR3nz

π∫
0

[
vRvϕ − ν

(∂vϕ

∂R
−
vϕ

R

)]
sin2 θ dθ = Lznz. (14)

На основе (14) аналогичным образом можно установить, что в этом случае появляется
компонента скорости wϕ = O(1/R2), а решение уравнений (13) и момент силы вращения
для такой задачи есть

wϕ = l0
ν

R2

√
1− t2

A− t
, Lz = 4πρν2l0

( 4

3(A2 − 1)
− 2 + A ln

A+ 1

A− 1

)
, l0 = const, (15)

где l0 — постоянная, имеющая размерность длины. Таким образом, был сделан вывод, что
на бесконечности поле скорости описывается аналитическими функциями, первые члены
разложения этого поля в бесконечно удаленной точке описываются точными интегралами

уравнений Навье — Стокса.
Однако в работе [6] было показано, что однородное линейное уравнение (13) может

иметь нетривиальные решения вида

w = W (cos θ)R−α, q = g(cos θ)R−α−1, (16)
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где показатель степени α находится как собственное значение при выполнении соответ-
ствующих однородных граничных условий и условия регулярности решения в особых точ-
ках θ = 0, π или t = ±1. Подставляя (16) в (13) с учетом (8)–(10), в осесимметричном
случае получаем спектральную задачу, которая имеет счетное число решений

[(1− t2)f ′′n ]′ − 2
1− t2

A− t
f ′′n +

(
αn(αn − 5) + 2(αn + 1)

A2 − 1

(A− t)2

)
f ′n −

− 4(αn − 2)
( A2 − 1

(A− t)3
− 1

A− t

)
fn − (αn + 1)gn = 0, (17)

g′n + αnf
′′
n − (αn − 2)

[ 2

A− t
f ′n +

( 4t

A− t
− 2αn

A2 − 1

(A− t)2
− αn(αn − 3)

) fn

1− t2

]
= 0.

Здесь функции fn(t) определяют функцию тока для поля скорости w:

ψw = ν
∞∑

n=2

fn(t)R2−αn . (18)

Согласно (18) выражения для компонент поля скорости w и давления q принимают
вид

wR = −ν
∞∑

n=2

f ′n(t)R−αn , wθ = −ν
∞∑

n=2

(2− αn)
fn(t)√
1− t2

R−αn , wϕ = 0,

q

ρ
= ν2

∞∑
n=2

gn(t)R−αn−1.

(19)

Из (19) следует, что условие регулярности решения для поля скорости и давления обеспе-
чивается условиями

fn(±1) = 0, |f ′n(±1)| <∞, |gn(±1)| <∞. (20)

Система однородных уравнений (17) является системой уравнений типа уравнений Лежан-
дра, поэтому выполнение (20) обусловливает аналитичность функций fn(t), gn(t). Систе-
ма (17) может иметь нетривиальные аналитические решения только при определенных
значениях показателя степени αn. Как отмечено выше, количество таких решений счет-
но. При этом показатели степени сферического радиуса αn оказываются функциями числа

Рейнольдса (рис. 1), за исключением первого показателя α2, который не зависит от Re и
равен двум: α2 = 2. Из [7] и рис. 1 также следует, что при Re = 0 и αn > 2 собственные
значения — целые числа, вырожденные двукратно, а с увеличением числа Рейнольдса вы-
рождение исчезает, показатели степени становятся нецелыми числами. Это означает, что
в бесконечно удаленной точке решения уравнений Навье— Стокса являются неаналитиче-
скими и имеют существенную особенность. В то же время собственное значение α2 = 2 не
вырождено и остается целым числом. Показатель степени сферического радиуса α2 соот-
ветствует двум законам сохранения: закону сохранения массы и закону сохранения потока
момента количества движения. В работе [3] было найдено нетривиальное аналитическое
решение системы однородных уравнений (17) при αn = 2, а затем методом вариации по-
стоянной решалась неоднородная задача с заданным ненулевым расходом. Однако в этом
случае не всегда можно получить регулярное решение. Согласно альтернативе Фредголь-
ма правая часть неоднородного уравнения должна быть ортогональна нетривиальному ре-
шению сопряженного однородного уравнения. Действительно, решение с ненулевым рас-
ходом, приведенное в [3], оказалось некорректным. Это обусловлено тем, что найденное
в [3] решение однородного уравнения для wR

wRum
R = −νa0

R2
c0V0(t), V0(t) = 1− 3(A2 − 1)

(A− t)2
+

2(A2 − 1)
2

A(A− t)3
(21)
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Рис. 1. Зависимость показателей степени αn от числа Рейнольдса Re (12) для
спектральной задачи (17), (20):
1 ′, 1 ′′ — два решения для квадруполя, 2 ′, 2 ′′ — два решения для октуполя, 3 ′, 3 ′′ —
два решения для 16-поля

соответствует функции тока

ψRum = νa0c0U0(t), U0(t) = (1− t2)
1− At

A(A− t)2
,

dU0

dt
= V0(t), a0, c0 = const, (22)

которая на оси струи (t = ±1) обращается в нуль, так же как и функция тока для авто-
модельного решения Ландау (8). Таким образом, было найдено нетривиальное аналити-
ческое решение с нулевым расходом. Поэтому предложенное в [3] решение для ненулевого
расхода оказалось неаналитическим и содержит логарифмическую особенность на всей по-
луоси θ = π, принадлежащей области течения. Это противоречие устранено в работе [6],
в которой показано, что в разложение необходимо добавить член с логарифмом сфериче-
ского радиуса (аналогичный результат был получен позднее в работе [8]). В этом случае
находится аналитическое решение, которое описывает течение с ненулевым расходом. Со-
ответственно, асимптотическое разложение функции тока при R→∞ принимает вид

ψ = νf1(t)R + νa0BU0(t) ln (R/a0) + νa0f2(t) +O(R2−α), α > 2. (23)

Здесь a0 — характерный размер источника струи; безразмерная постоянная B линейно

зависит от величины расхода Q (6).Функция f2(t) содержит два слагаемых:

f2(t) = BU(t) + c0U0(t). (24)

С использованием (8), (22)–(24) формула (6) преобразуется к виду

Q = 2πρνa0B[U(−1)− U(1)]. (25)

Решение U0(t) однородной системы уравнений (17) с условиями (20) соответствует
нулевому расходу, поэтому коэффициент c0 в (22) остается неопределенным. В работах
[6, 7] была предпринята попытка связать член c0U0(t) в (24) с законом сохранения мо-
мента количества движения, но фактически он не дает вклад в поток полного момента
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импульса вследствие осевой симметрии полученных решений. Следует отметить, что раз-
ложение (19) по своему физическому смыслу (по аналогии разложения в ряд решения урав-
нения Лапласа по целым обратным степеням сферического радиуса в бесконечно удален-
ной точке) является мультипольным разложением решения для затопленной струи. В этом
случае можно полагать, что решение U0(t) соответствует некоторому струйному диполю.
Поскольку α2 = 2 при всех числах Рейнольдса, следует ожидать, что этому решению
соответствует еще один (скрытый) интеграл движения, тогда как высшие мультиполи
не порождают дополнительных интегралов движения. Вопрос о физическом смысле этого
скрытого интеграла движения в течение длительного времени оставался не выясненным,
хотя его роль, особенно в случае закрученных струй, как было показано в [7], существенна.
В монографии [7] также приведено полное решение нелинейной задачи для неавтомодель-
ных затопленных струй вязкой несжимаемой жидкости, в том числе неосесимметричных,
в общей постановке, когда решаются полные уравнения Навье — Стокса (1) во внешней
области при заданном произвольном поле скорости на замкнутой поверхности, ограничи-
вающей объем, в котором содержится источник струи. Осуществлена попытка конструи-
рования скрытого интеграла сохранения, но это не привело к решению проблемы скрытого
интеграла движения. В работе [9] получено аналитическое решение для дальнего поля ско-
рости, соответствующее течению с произвольно направленным вектором потока момента
количества движения. Проведенное в [9] исследование не позволило установить физический
смысл скрытого интеграла сохранения, но инициировало проведение настоящего исследо-
вания, в котором окончательно решена рассматриваемая проблема.

2. Решение проблемы. Для нахождения вида скрытого интеграла сохранения ис-
пользуется предположение, что точка приложения внешней силы и точка истечения струи
могут не совпадать, поскольку источник неавтомодельной затопленной струи имеет нену-
левой характерный размер. При постановке задачи об истечении импульса, массы и мо-
мента количества движения из определенного физического устройства требуется задавать

соответствующие распределения скоростей на определенной замкнутой поверхности, окру-
жающей источник струи [7]. В этом случае при переходе к постановке задачи о неавтомо-
дельной затопленной струе, в которой решение строится в виде разложения в бесконечно
удаленной точке, необходимо вычислять, в какой точке пространства расположен эффек-
тивный источник импульса и какой точке соответствует эффективный источник массы.
Полагая, что начало координат находится в точке эффективного источника массы, авто-
модельное решение следует рассматривать в виде

v1(r + a) = v1(r) + (a · ∇) v1(r) + . . . . (26)

Это решение соответствует течению, вызванному точечным источником импульса, рас-
положенным в точке r = −a. Нетрудно показать, что разложение (26) в ряд по a (в
предположении |r| � |a|), по сути, есть разложение по степеням обратного сферического
радиуса 1/R и второй член в разложении (26) имеет порядок O(1/R2). При этом величины

w = (a · ∇) v1(r) = O(1/R2), q = (a · ∇) p1(r) = O(1/R3)

являются точным решением линеаризованного уравнения Навье— Стокса (13). Это можно
установить, если подействовать оператором смещения a ·∇ на полное уравнение Навье —
Стокса (1), в котором скорость и давление есть точное решение автомодельной задачи для
точечного источника импульса (8)–(10):

(a · ∇) | (v1,∇)v1 = −ρ−1∇p1 + ν∆v1, div v1 = 0.
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Отсюда получаем уравнение (13). Таким образом, можно найти аналитическое точное
решение для w:

w = (a · ∇) v1(r) = −2νaz

R2
A

(
1− 3(A2 − 1)

(A− t)2
+

2(A2 − 1)2

A(A− t)3

)
nR +

+
2ν sin θ (cosϕ ax + sinϕ ay)

R2

( A

A− cos θ
+

A2 − 1

(A− cos θ)2
− 2A(A2 − 1)

(A− cos θ)3

)
nR +

+
2ν(cosϕ ax + sinϕ ay)

R2(A− cos θ)
nθ −

2ν(A cos θ − 1)(sinϕ ax − cosϕ ay)

R2(A− cos θ)2
nϕ. (27)

Первое слагаемое в (27) соответствует искомому члену с произвольным коэффициентом c0.
Остальные слагаемые совпадают с решением, полученным путем прямого решения урав-
нения (13), приведенного в работе [9]. Проводя сравнение (27) с соответствующим выра-
жением для wR из (21) с учетом (22)–(24), находим

c0 = 2Aaz/a0. (28)

Таким образом, интенсивность струйного диполя линейно связана со смещением точки
приложения силы F .

Вычислим поток полного момента количества движения, интегрируя по сфере с про-
извольным радиусом R:

L =

2π∫
0

π∫
0

r × Π · nRR
2 sin θ dθ dϕ = Lxnx + Lyny + Lznz.

Заметим, что поток полного момента количества движения для автомодельной струи Слез-
кина — Ландау — Сквайра равен нулю. Это обусловлено тем, что тензор полного потока
импульса для указанной струи имеет только одну отличную от нуля компоненту ΠRR,
что было установлено в работе [1]. Компонента Lz отлична от нуля только для закру-
ченной струи, полученной М. С. Цуккером [5] (см. (15)). Вычисляя остальные слагаемые
с помощью формул (27), получаем

Lxnx + Lyny = (−aynx + axny)Fz.

Эта формула полноcтью соответствует результатам работы [9], за исключением того,
что они не были выражены в обозначениях вектора смещения a и силы F . Приведенные
выше формулы позволяют записать выражение для полного потока момента количества

движения в инвариантном векторном виде

L =

∮
S

(r × Π) · n dS = −a× F + (L · nF )nF , nF =
F

|F |
, (29)

где S — произвольная поверхность, ограничивающая объем, содержащий источник струи.
Из важной формулы (29) следует, что полный поток момента количества движения L есть

сумма момента произвольно направленной силы F , порождающей струю, и момента силы,
вращающего жидкость и направленного вдоль вектора силы F . Из (28), (29) следует, что
константа c0 не определяется заданием величины полного потока момента импульса. Она
связана с компонентой вектора смещения, параллельной F .

Остается найти интеграл сохранения, соответствующий компоненте az вектора сдвига

точки приложения силы. Таким интегралом оказался индуцированный этим сдвигом до-
полнительный расход на произвольной плоскости, перпендикулярной оси струи (ось струи
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определяется главным членом разложения полного решения задачи в бесконечно удаленной

точке, т. е. направлением силы F ):

Qw = ρ

2π∫
0

π∫
0

wzr dr dϕ = 4πρν
az

A2
= const . (30)

Здесь r, ϕ, z — цилиндрические координаты.
Из (30) следует, что Qw — интеграл движения, поскольку он не зависит от коор-

динаты z точки пересечения плоскости интегрирования с осью струи. Этот интеграл не
зависит от расхода жидкости, вытекающей из источника струи. В частности, при числе
Рейнольдса, стремящемся к бесконечности, параметр A → +1 и Qw → 4πρνaz. В этом
случае он зависит только от величины смещения az. Окончательно получаем

c0 =
A3

2πρνa0
Qw. (31)

Таким образом, скрытым интегралом движения можно считать Qw (30). Этот ин-
теграл связан со сдвигом источника импульса вдоль оси струи az. Введение скрытого
интеграла движения в виде (30) не обязательно. Заметим, что согласно (29) интеграл
движения L содержит два слагаемых, которые по отдельности являются самостоятельны-
ми интегралами движения. Один из них — момент силы −a × F . Поскольку F является

интегралом движения (11), достаточно знать вектор смещения a, чтобы определить этот
момент. В то же время задание постоянного вектора a равносильно заданию также двух
интегралов движения. Момент силы −a × F задается перпендикулярной F компонентой

вектора смещения a⊥. Скрытый интеграл движения определяется, если задана парал-
лельная F компонента вектора смещения a‖ (в данном случае она совпадает с az). Таким
образом, скрытым интегралом движения можно считать

a‖ = (a · nF )nF . (32)

Этот вектор не дает вклад вL и является самостоятельным интегралом движения в теории
затопленных струй.

Следует отметить, что если выбрать член разложения тензора полного потока им-
пульса, линейного по w:

Πw = v1 ⊗w + w ⊗ v1 + q(R, θ)(nR ⊗ nR + nθ ⊗ nθ + nϕ ⊗ nϕ)−

− ν
[(

nR ⊗
∂w

∂R
+

nθ

R
⊗ ∂w

∂θ
+

nϕ

R sin θ
⊗ ∂w

∂ϕ

)
+

+
(
nR ⊗

∂w

∂R
+

nθ

R
⊗ ∂w

∂θ
+

nϕ

R sin θ
⊗ ∂w

∂ϕ

)т]
,

то, выполняя прямое вычисление и используя члены, обеспечивающие ненулевой расход и
вращение струи, выводим формулы

Fw =

2π∫
0

π∫
0

Πw · nRR
2 sin θ dθ dϕ = 0,

L =

2π∫
0

π∫
0

(r × Πw) · nRR
2 sin θ dθ dϕ = −a× F + Lznz,
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подтверждающие правильность полученного решения. Также следует отметить, что по-
следующие члены разложения не влияют на результат, поскольку F , L, Q есть точные

интегралы движения для уравнений Навье — Стокса (1) для стационарных задач о затоп-
ленных струях произвольного вида, в том числе неосесимметричных.

В то же время, если в формуле (30) вместо wz использовать компоненту автомодельно-
го решения v1z, то интеграл становится бесконечным при общем нулевом расходе (малоиз-
вестный факт). Это свидетельствует о том, что струя вовлекает в движение (эжектирует)
бесконечную массу жидкости, что возможно только в том случае, если струя течет беско-
нечно долго. Таким образом, интеграл движения Qw скрыт. Его невозможно определить,
выполняя прямые измерения скорости в эксперименте. Однако можно вычислить все инте-
гралы движения, в том числе расход по площади круга, лежащего в области наблюдаемого
в эксперименте установившегося течения вблизи оси струи. Тогда из приведенных выше
формул теоретически можно будет вычислить величину смещения az.

Следует отметить, что интеграл (30) по форме и физическому содержанию соответ-
ствует интегралу движения, полученному Л. Г. Лойцянским [10] в рамках теории погра-
ничного слоя для неавтомодельной затопленной круглой струи.Однако в [10] этот интеграл
интерпретирован как расход жидкости, истекающей из подводящей трубки, из которой
бьет струя. Данный результат вошел в учебники [11] (формула (199)). Однако решение
Лойцянского для неавтомодельной струи соответствует струйному диполю [7] и его мож-
но получить из решения Румера (21), выполняя предельный переход при Re →∞. Кроме
того, профиль скорости оказывается знакопеременным, причем вблизи оси струи вклад
положительного расхода приводит к уменьшению осевой скорости, а вдали от оси — к

ее увеличению (см. формулу (198) в [11]), что трудно согласовать с ожидаемой карти-
ной течения. Это обусловлено тем, что полученное слагаемое не является вкладом расхо-
да жидкости, вытекающей из источника струи. Полученный в работе [10] вклад в общий
расход создается в результате дополнительной эжекции жидкости вследствие присутствия

струйного диполя, который возникает, в случае если источник импульса и источник мас-
сы находятся в разных точках на оси струи, как было показано выше. Поэтому можно
утверждать, что скрытый интеграл движения для неавтомодельных затопленных струй в
виде (30) впервые был обнаружен Л. Г. Лойцянским в 1953 г., но неверно интерпретирован.

3. Точные аналитические решения для затопленной струи с ненулевым рас-
ходом. Прежде всего следует отметить, что с учетом результатов, приведенных в п. 2,
струя с ненулевым расходом имеет пять источников движения, которые описываются со-
ответствующими точными интегралами движения. Первый источник (главный, без него
струя отсутствует) — источник импульса— сила F (5). Второй источник— полный поток

массы или интенсивность источника массы — расход Q (6). Третий и четвертый источни-
ки — компоненты полного потока момента импульса L (29), который фактически состоит
из двух независимых источников движения: момента силы −a×F и момента силы, враща-
ющей жидкость, (L ·nF )nF , который направлен вдоль F и равен нулю в случае незакру-
ченной струи. Пятый источник, связанный со скрытым интегралом движения a‖ (32) или
Qw (30), представляет собой струйный диполь, ориентированный вдоль F . Интенсивность
струйного диполя определяется параметром c0 (28), (31). Интенсивность всех источников
зависит от величины F , о чем свидетельствует их зависимость от параметра A (см. (11),
(15), (25), (28)–(31)). Заметим, что для задания третьего и пятого источников требуется
знать полный вектор смещения эффективной точки приложения всех сил a относительно
эффективной точки источника массы. В зависимости от количества источников движения
можно ввести соответствующее количество безразмерных критериев подобия. В частно-
сти, для незакрученной осесимметричной струи имеется только три ненулевых критерия
подобия: два числа Рейнольдса, построенные по интенсивностям источников импульса и
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массы, и λ — безразмерная компонента вектора смещения вдоль F :

ReF =

√
|F |
πρν2

, ReQ =
Q

πρνa0
, λ =

a · nF

a0
. (33)

Для расчетов струйных течений с ненулевым расходом требуется определить функ-
цию U(t) в (24), которая определяет расход Q (25). Для этого нужно решить уравнения (17)
при αn = 2 с правой частью, в которую также входит дополнительное слагаемое вслед-
ствие наличия члена с ln (R/a0) в разложении для функции тока (23). Как показано в [3],
в отсутствие члена с логарифмом правая часть линейно связана с расходом Q. Однако,
поскольку однородное уравнение имеет нетривиальное аналитическое решение U0(t) (22),
согласно альтернативе Фредгольма разрешимость неоднородной задачи возможна толь-
ко в том случае, если правая часть ортогональна в соответствующем функциональном
пространстве решению однородного сопряженного уравнения. В [6, 7] подробно изложена
процедура, в которой преодолевается появляющаяся в этом случае неразрешимость задачи.
Вводя в разложение функции тока член с ln (R/a), задачу можно сделать разрешимой, при
этом коэффициент B при слагаемом в (23) однозначно определяется из указанного выше
условия ортогональности. В результате коэффициент B оказывается пропорциональным

расходу и равен

B = ReQ /q(A); (34)

где

q(A) =
4

d0

(
2A(A2 − 1)2 ln2 A+ 1

A− 1
− (3A4 − 11A2 + 4) ln

A+ 1

A− 1
−

− 18A6 + 66A4 − 106A2 + 6

9A(A2 − 1)

)
; (35)

d0 = 10A2 − 6A4 + 3A(A2 − 1)2 ln
A+ 1

A− 1
. (36)

Соответственно, уравнение для функции U(t) в (24), (25) принимает вид

d

dt

(
(1− t2)(A− t)2

d2U

dt2

)
+ (6A2 − 1)

dU

dt
= S(t), (37)

где правая часть есть

S(t) =
6(A2 − 1)2

(A− t)2
− 8A(A2 − 1)

A− t
+ 3(A2 − 1) +

2− 6A2

A
(A− t) +

+
3− 5A2

d0

(
− 6A2 + 3(A2 − 1)A ln

A+ 1

A− 1
+ 4

)
(A− t)2. (38)

Уравнение (37) записано таким образом, чтобы в левой части получился самосопря-
женный оператор, так же как и в работе [3]. В случае B = 0 уравнение однородное и имеет
нетривиальное решение V0(t) (21). Функция U(t) определяется с точностью до постоянной.
Постоянная определяется из условия нормировки функции тока (см. (23), (24)). В данной
работе нормировка функции тока выбрана таким образом, чтобы она была равна нулю при
t = 1 (θ = 0), т. е. на оси струи. Это соответствует выполнению условия U(1) = 0. Пу-
тем прямой подстановки можно подтвердить, что условие ортогональности правой части
решению однородного уравнения выполнено:

B

1∫
−1

S(t)V0(t) dt = 0.
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Заметим также, что уравнение (37) является уравнением типа уравнения Лежандра. Тео-
рия таких уравнений достаточно хорошо разработана [12]. У них имеется две особые точ-
ки t = ±1, в которых решение может быть аналитическим либо иметь логарифмическую
особенность. При построении решения неоднородного уравнения необходимо установить
наличие решений с логарифмической особенностью, поскольку при использовании раз-
личных методов, в частности метода вариации постоянной, в полученном решении неод-
нородного уравнения может появиться слагаемое с сингулярным решением (так же, как в
работе [3]). При использовании различных вариантов численных методов необходимо так-
же следить за тем, чтобы в решении не появилась логарифмическая особенность. В данной
работе удалось построить точное аналитическое решение неоднородного уравнения (37),
(38). Следует отметить, что при построении решения было найдено сингулярное точное
решение однородного уравнения (36) при B = 0, имеющее вид

Us(t) =
12A3 − 6A

A− t
− 6A4 − 10A2 + 4

(A− t)2
− 3A(1− t2)(At− 1)

(A− t)2
ln

1 + t

1− t
+ const . (39)

C использованием сингулярного решения Us(t) в явном виде (39) вклад сингулярности
в аналитических формулах для неоднородного уравнения был исключен. Помимо исклю-
чения сингулярной части требуется исключить вклад в решение неоднородного уравне-
ния (37) аналитического решения однородного уравнения U0(t) (22), поскольку постоян-
ный коэффициент c0 в решении (24) должен определяться скрытым интегралом сохра-
нения (32). Для того чтобы исключить этот струйный диполь, более предпочтительно
использовать производную искомого решения. Ниже приведена аналитическая формула
этого решения

V (t) =
dU

dt
=

1

d0

{
P (t) + 2(5A2 − 3)

(2(A2 − 1)2

(A− t)2
− (A2 − 1)A

A− t
+

2

3
− A2

)
ln (A− t) +

+ (A2 − 1)(5A2 − 3)A
(2(A2 − 1)2

A(A− t)3
− 3(A2 − 1)

(A− t)2
+ 1

)[
Li2

( t+ 1

A+ 1

)
− Li2

( t− 1

A− 1

)]}
, (40)

где P (t) — полином второго порядка от переменной (A− t)−1:

P (t) = p0 +
p1

A− t
+

p2

(A− t)2
,

p0 = − 16

9(A2 − 1)
− 4

9
+

(
2− 19

3
A2 + 5A4

)
ln (A2 − 1) +

+ (11A2 − 9)
(
A2 − A

6
(3A2 − 1) ln

A+ 1

A− 1

)
,

p1 = 28A5 − 136

3
A3 + 12A+ (41)

+ (A2 − 1)
(
A(5A2 − 3) ln (A2 − 1)− (14A4 − 15A2 + 3) ln

A+ 1

A− 1

)
,

p2 = (A2 − 1)2
(
(6− 10A2) ln (A2 − 1)− A

2
(29A2 − 21) ln

A+ 1

A− 1

)
−

− (A2 − 1)(29A4 − 47A2 + 12).

Заметим, что выражение для V0(t) (21) является полиномом третьей степени переменной
(A−t)−1. При стандартных процедурах нахождения частного решения неоднородного урав-
нения (37), (38) получается решение вида (40), в котором полином P (t) является полино-
мом третьей степени. Это означает, что решение содержит струйный диполь. С помощью
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решения однородного уравнения V0(t) третью степень переменной (A − t)−1 из частного

решения неоднородного уравнения можно исключить, тогда получится решение (40) с ука-
занным выше полиномом второго порядка, которое не содержит струйный диполь. Точное
решение (40) содержит специальную функцию — полилогарифм

Li2(ζ) =
∞∑

k=1

ζk

k2
.

Константы B, d0 определены в (34)–(36).
Для построения картины линий тока будем использовать функцию тока (23), (24).

Функция U(t), входящая в функцию тока ψ, является интегралом от функции V (t) (40) (вы-
ражение не приводится вследствие его громоздкости). Далее будет использоваться функ-
ция U(t)− U(1) в соответствии с принятой выше нормировкой функции тока.

4. Роль скрытого интеграла сохранения в стандартной модели неавтомо-
дельных затопленных струй. Исследуем влияние на картину течения скрытого инте-
грала сохранения на примере численных расчетов полей течения и давления на основе

разложения функции тока (23) для дальнего поля осесимметричной незакрученной неав-
томодельной затопленной струи. Вид разложения (23), (24) был выбран таким образом,
чтобы все члены этого разложения определялись интегралами движения для неавтомо-
дельной затопленной струи — полными потоками импульса, массы, момента количества
движения и скрытым интегралом. Как отмечено в п. 3, в этом случае решение опре-
деляется заданием трех критериев подобия ReF , ReQ, λ (33). Если задано определенное
устройство, генерирующее затопленную струю, то критерии могут оказаться зависимы-
ми. Выберем “стандартную” модель источника струи, описывающую устройство в виде

круглой подводящей трубки, из которой истекает струя в пространство, затопленное той
же жидкостью. В этом случае потоки импульса и массы определяются по формулам

Fz = ρv2
0πa

2
0, Q = ρv0πa

2
0,

где v0 — скорость жидкости в подводящей трубке; a0 — радиус трубки. Тогда (33) пре-
образуется к виду

ReF = ReQ = Re =
v0a0

ν
, λ =

az

a0
.

Обезразмерим сферический радиус, скорость и давление с помощью величин a0, v0 и ρv
2
0

соответственно. Тогда выражения для безразмерных компонент поля скорости и давления
принимают следующий вид (ср. [7]):

vR =
1

Re

[ 2

R

( A2 − 1

(A− cos θ)2
− 1

)
−B

lnR

R2
V0(cos θ)− B

R2
V (cos θ)− c0

R2
V0(cos θ)

]
,

vθ =
1

Re

[
− 1

R

2 sin θ

A− cos θ
− B

R2

U0(cos θ)

sin θ

]
, vϕ = 0;

(42)

p =
1

Re2

[ 4

R2

A cos θ − 1

(A− cos θ)2
− 2B

lnR

R3
V0(cos θ) +

B

R3
g(cos θ)−

− 2B

R3
V (cos θ)− 2c0

R3
V0(cos θ)

]
,

g(cos θ) = − 2(A2 − 1)2

3A(A− cos θ)3
+

4(A2 − 1)

(A− cos θ)2
+

2− 6A2

A(A− cos θ)
+ g0,

g0 =
2

3d0

(
6A4 − 4A2 + 6− 3(A2 − 1)A3 ln

A+ 1

A− 1

)
.
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Безразмерная функция тока есть

ψ =
1

Re

( 2 sin2 θ

A− cos θ
R−B lnR U0(cos θ) +B[U(cos θ)− U(1)] + c0U0(cos θ)

)
. (43)

Число Рейнольдса Re определяется из (11), (12) и равно

Re = 4

√
A

( 4

3(A2 − 1)
+ 1− A

2
ln
A+ 1

A− 1

)
, (44)

константы B и d0 определены в (34)–(36), c0 = 2Aaz/a0 (28). Таким образом, решение (42),
(43) полностью определено, если заданы два параметра: число Рейнольдса Re и безразмер-
ный вектор смещения λ = az/a0. Параметр A вычисляется по заданному числу Рейнольдса
Re (44). В формулах (42) компонента скорости vR имеет четыре слагаемых. Первое сла-
гаемое, соответствующее автомодельному решению, — главный член разложения в беско-
нечно удаленной точке. Второе и четвертое слагаемые соответствуют струйному диполю.
Второе слагаемое — струйный диполь, генерируемый расходом. Четвертое слагаемое —
струйный диполь, возникающий в результате сдвига точки приложения силы и соответ-
ствующий скрытому интегралу движения. Наличие ненулевого расхода определяет только
третье слагаемое, содержащее V (cos θ). В выражении для функции тока (43) слагаемые
имеют тот же физический смысл.

Расчеты были проведены в широком диапазоне чисел Рейнольдса от Remin = 0,05
до Remax = 250 для ламинарных струйных течений при значениях вектора смещения
az = −a0, 0, a0, эффективный источник импульса был расположен в области источ-
ника струи. Все расчеты проводились с высокой степенью точности в пакете Wolfram
Mathematica с мантиссой, превышающей 20 значащих цифр. Особое внимание было уде-
лено точности расчетов вблизи особых точек уравнений, для чего были созданы соответ-
ствующие алгоритмы. Кроме того, приведенные выше формулы были проверены в том же
пакете различными способами.

В формулах (42), (43) слагаемые с коэффициентом B определяются путем задания рас-
хода затопленной струи Q (см. (6), (25), (34)–(36)), а слагаемое с коэффициентом c0 (28)
представляет собой вклад скрытого интеграла сохранения a‖ (32). На рис. 3–11 для иллю-
страции роли скрытого интеграла движения представлены зависимости вкладов различ-
ных интегралов движения на оси струи при удалении от ее источника и соответствующие

картины линий тока.
На рис. 2 представлена зависимость от угла θ третьего слагаемого в разложении для

радиальной компоненты скорости (42), определяющего ненулевой расход, при Re = 0,05.
Видно, что эта зависимость описывает практически изотропное течение жидкости из ис-
точника струи. Вблизи источника струи указанное слагаемое является доминирующим
при малых числах Рейнольдса. Это обусловлено тем, что в данном случае полный поток
импульса Fz является величиной второго порядка, малой по сравнению с расходом Q (32).
Соответственно, вклад струйных диполей будет также второго порядка малости (рис. 3).

Линии тока вблизи области источника струи, представленного в виде сферы радиу-
сом a0, показаны на рис. 4,а. Вдали от источника струи вклад автомодельного решения в
поле скорости преобладает и картина течения имеет вид потока, обтекающего источник
массы (рис. 4,б). Жидкость, эжектируемая струей, обтекает область, в которой движется
жидкость, вытекающая из источника массы.

С увеличением числа Рейнольдса до значения Re = 2 картина течения вблизи источ-
ника струи радикально изменяется. Истечение жидкости из источника струи становится
существенно асимметричным. На рис. 5 представлено распределение составляющей компо-
ненты радиальной скорости, задающей ненулевой расход. Видно, что на оси струи (θ = 0)
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Рис. 2. Зависимость третьего слагаемого в разложении для радиальной компо-
ненты скорости (42) от угла θ при Re = 0,05
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Рис. 3. Вклады ненулевого расхода на оси струи (пунктирные линии) и скры-
того интеграла движения (штриховые линии) в скорость (а) и давление (б)
(сплошные линии) при Re = 0,05, az/a0 = 1

дополнительная скорость, зависящая от потока массы из источника струи, существенно
уменьшается. На рис. 6 приведены вклады ненулевого расхода и скрытого интеграла в

полный вектор скорости на оси струи. При Re = 2 вклад от источника массы (пунктирная
линия) становится пренебрежимо малым, при этом вклад скрытого интеграла (штриховая
линия) значителен. Существенное влияние оказывает положение эффективного источника
импульса (точки приложения силы). Вклад в скорость может быть как положительным
(см. рис. 6,б), так и отрицательным (см. рис. 6,а). При увеличении расстояния от источ-
ника до величины, равной 3 калибра, влияние неавтомодельности на величину скорости на
оси струи становится незначительным. Однако вне оси струи влияние скрытого интеграла
движения (положения точки приложения силы) и ненулевого расхода остается существен-
ным даже на больших расстояниях. На рис. 7 приведены картины линий тока вблизи

источника струи. Для демонстрации особенностей влияния положения точки приложения
силы F показано течение внутри источника струи (штриховая окружность на рис. 7) в
отсутствие всех других членов разложения. На рис. 7,а точка приложения силы (указана
стрелкой) находится левее эффективного источника массы (сфера радиусом a0/10). Струя
проникает внутрь и обтекает источник массы, образуя зону возвратного течения. Жир-
ной линией ограничена область, занимаемая жидкостью, вытекающей из источника массы.
Эта область значительно шире области, представленной на рис. 7,б, и простирается на
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Рис. 4. Линии тока для затопленной струи с ненулевым расходом при Re = 0,05,
az/a0 = 0:
а — область течения вблизи источника струи в виде шара радиусом a0, б — область

течения, включающая дальнее поле струи на расстоянии, равном 100 калибров подво-
дящей трубки; жирная линия — линия тока ψ = 0,5, разделяющая жидкость, эжекти-
руемую струей, и жидкость, вытекающую из источника струи; стрелка— вектор силы,
формирующей струю

значительное расстояние от источника импульса вдоль струи. Если эффективный источ-
ник массы находится позади эффективного источника импульса (см. рис. 7,б), то линия
тока, отделяющая жидкость, вытекающую из источника массы, от жидкости, эжектиру-
емой струей, смещается в направлении против потока, поскольку воздействие источника
импульса на источник массы становится существенно меньшим, в то же время линии тока
прижимаются к оси струи в силу более интенсивной эжекции в область, примыкающую к
точке эффективного источника импульса.

Известно, что для дальнего поля турбулентных струй применима модель Буссине-
ска с постоянной турбулентной вязкостью. Из результатов экспериментов следует, что
этим течениям соответствует построенное по турбулентной вязкости число Рейнольдса

ReT = 35 (см. [7, 11]). Поэтому можно применить теорию неавтомодельных затопленных
ламинарных струй для описания поля течения в турбулентной струе, положив Re = 35.
На рис. 8–10 представлены зависимости для поля скорости при Re = 35.

На рис. 8 видно, что вклад ненулевого расхода оказывается несущественным (пунк-
тирные линии), вклад струйного диполя, соответствующего скрытому интегралу движе-
ния (штриховые линии), существенный, но быстро уменьшается с ростом координаты z.
Вклад члена разложения радиальной скорости, задающей ненулевой расход, показан на
рис. 9. В диапазоне углов π/4 < θ 6 π скорость практически постоянна, как и в случае
точечного источника массы, но в окрестности оси струи (θ = 0) имеет характер поля ло-
кализованного струйного диполя с интенсивным возвратным течением на оси. На рис. 10
представлены линии тока при различных положениях эффективного источника импульса.
Заметим, что в этом случае области, занимаемые жидкостью, вытекающей из источника
массы, полностью охватывают источник струи. При этом размеры этой области изменя-
ются почти в два раза для рассматриваемых двух положений эффективного источника

импульса.
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Рис. 5. Распределение составляющей компоненты радиальной скорости, зада-
ющей ненулевой расход, при Re = 2, az = 0
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Рис. 6. Вклады ненулевого расхода на оси струи (пунктирные линии) и скры-
того интеграла движения (штриховые линии) в скорость (сплошные линии) при
Re = 2, az/a0 = 1 (а) и az/a0 = −1 (б)
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Рис. 7. Линии тока при различных положениях точки эффективного источника

импульса относительно положения точки эффективного источника массы (Re = 2):
а — az/a0 = 1, z = −a0, б — az/a0 = −1, z = a0
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Рис. 8. Вклады ненулевого расхода (пунктирные линии) и скрытого интеграла
движения (штриховые линии) в скорость на оси струи вблизи источника движе-
ния при различных положениях эффективного источника импульса (Re = 35):
а — z = −a0, az/a0 = 1, б — z = a0, az/a0 = −1; сплошные линии — скорость на оси с

учетом всех членов разложения (42)

Следует отметить, что размер областей, занимаемых жидкостью, вытекающей из ис-
точника массы, с ростом числа Рейнольдса значительно увеличивается (рис. 11). Размер
областей превышает 15 калибров, и они сдвигаются в область дальнего поля струи, поэто-
му разложение поля скорости в бесконечно удаленной точке (42), (43) адекватно описывает
такие течения.

5. Обсуждение результатов и заключение. В работе представлены точные ана-
литические решения уравнений Навье — Стокса для всех главных членов разложения

вектора скорости и давления в бесконечно удаленной точке, соответствующие интегра-
лам движения: полному потоку импульса, полному потоку момента количества движения,
потоку массы и скрытому интегралу движения. В дополнение к известным решениям по-
лучено точное аналитическое решение, описывающее течение с ненулевым расходом.

Выявлен физический смысл скрытого интеграла движения. Показано, что все полу-
ченные ранее аналитические решения [3, 9] для незакрученной струи с произвольно на-
правленным моментом количества движения можно получить из автомодельного решения

Слезкина — Ландау — Сквайра [6], если предположить, что положение эффективного то-
чечного источника импульса струи не совпадает с положением эффективного точечного

источника массы в струе. В этом случае естественным образом возникает момент силы
−a × F , где a — вектор смещения источника импульса относительно источника массы.
Этот момент силы является интегралом движения и был получен ранее для неосесиммет-
ричной струи [9]. Данный интеграл соответствует сохраняющемуся полному потоку мо-
мента импульса L (29) для незакрученной струи. При этом компонента вектора простран-
ственного смещения вдоль вектора полного потока импульса не дает вклад в момент силы.
Тем не менее наличие компоненты вектора смещения az в направлении силы F = Fznz по-
рождает в жидкости дополнительное движение с интенсивностью, пропорциональной это-
му смещению. Дополнительное движение, в свою очередь, создает дополнительную эжек-
цию струи. Количественную характеристику этого движения можно определить, вычис-
лив расход жидкости, возникающий вследствие дополнительной эжекции, через плоскость,
перпендикулярную вектору полного потока импульса F . Результаты расчетов показыва-
ют, что дополнительный расход не зависит от положения плоскости и пропорционален
компоненте вектора пространственного смещения источника импульса az (30). Этот ин-
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Рис. 9. Зависимость третьего слагаемого в разложении для радиальной компонен-
ты скорости (42) от угла θ при Re = 35
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Рис. 10. Линии тока при различном положении точки эффективного источника

импульса относительно положения точки эффективного источника массы (Re = 35):
а — az/a0 = 1, z = −a0, б — az/a0 = −1, z = a0

z/a0

r/a0 r/a0

_100 _50 0 50 100 150 200 z/a0_100 _50 0 50 100 150 200

_60
_40
_20

0
20
40
60

_60
_40
_20

0
20
40
60

à á

Рис. 11. Линии тока при различном положении точки эффективного источника им-
пульса относительно положения точки эффективного источника массы (Re = 250):
а — az/a0 = 1, z = −a0, б — az/a0 = −1, z = a0
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теграл сохранения аналогичен интегралу сохранения, полученному Л. Г. Лойцянским [10]
в рамках приближения пограничного слоя, но неверно интерпретирован как расход жид-
кости от источника струи. В то же время произвольно направленный вектор смещения
источника импульса a обусловливает появление источника момента количества движения
−a × F (29). При этом компонента вектора смещения, параллельная вектору F , не дает
вклад в поток момента количества движения L, но порождает скрытый интеграл дви-
жения a‖ (32) или эквивалентный ему интеграл движения (30). Этот скрытый интеграл
определяет дипольный момент c0 (28) струйного диполя, решение для которого было по-
лучено в [3], а физический смысл установлен в [6]. Наличие струйного диполя физически
соответствует случаю, когда, например, имеются близко расположенные источник и сток
импульса с векторами сил, параллельными вектору расстояния между ними. Для источни-
ка импульса, вытекающего из реального устройства, второй силой может оказаться сила
трения, которая будет направлена против потока. Эффективные точки приложения силы,
порождающей струю, и силы трения (например, на поверхности подводящей трубки) в
осесимметричном случае будут находиться на оси, но в общем случае не будут совпадать.
Величина смещения между точками приложения сил будет зависеть от геометрических

параметров конструкции устройства, генерирующего струю. Это устройство может со-
держать источник массы, так же как в стандартной модели источника затопленной струи,
или не содержать его, в случае если источником струи является, например, вентилятор
или погружной поршневой насос. Заметим, что в случае протяженного в пространстве
источника струи, не содержащего источника массы, строго говоря, не следует считать,
что момент силы F и скрытый интеграл движения можно обратить в нуль, если начало
координат поместить в точку приложения силы F . Это обусловлено тем, что моменты и
диполь возникают в случае ненулевого конечного размера источника, при этом следует
учитывать конкретное для каждого устройства пространственное распределение скоро-
сти, давления и соответственно сил на внутренней границе области струйного течения.
В рамках приближения, рассмотренного в данной работе, можно считать, что источник
массы точечный, поскольку диполь и последующие мультиполи источника массы содер-
жатся в следующих членах разложения, которые не были учтены. Однако в общем случае
нужно решать краевую задачу для внешнего разложения полей скорости и давления с

соответствующими граничными условиями на замкнутой поверхности, ограничивающей
область источника струи, аналогично тому как это было сделано в [7].

В данной работе в рамках стандартной модели источника затопленной струи с помо-
щью полученного аналитического решения показано влияние скрытого интеграла движе-
ния на поле скорости неавтомодельной незакрученной осесимметричной струи несжима-
емой вязкой жидкости. Представлены результаты расчетов при различных числах Рей-
нольдса и значениях безразмерного скрытого интеграла движения λ (см. рис. 2–11). От-
мечается существенное влияние ненулевого расхода, скрытого интеграла движения и ис-
точника массы в струе вне зоны интенсивного струйного течения на картину течения.

В результате исследования получен полный набор из пяти интегралов движения неав-
томодельной неосесимметричной затопленной струи вязкой несжимаемой жидкости, опи-
сывающих дальнее поле течения. Этот результат в совокупности с аналитическим ре-
шением уравнений Навье — Стокса для дальнего поля неавтомодельной струи позволяет

ставить адекватные граничные условия на внешней границе расчетной области при чис-
ленном решении задач о струйном течении в неограниченном пространстве, обеспечиваю-
щие сохранение всех интегралов движения. Следует отметить, что ранее было построено
полное решение нелинейной задачи о затопленной струе в виде мультипольных разложений

в бесконечно удаленной точке полей скорости и давления по обратным степеням сфериче-
ского радиуса с показателями степени, которые являются функциями числа Рейнольдса
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(см. рис. 1) [7]. Приведено доказательство сходимости этих рядов в некоторой окрестности
бесконечно удаленной точки, в том числе для неосесимметричных и закрученных струй.
В совокупности с результатами, полученными в настоящей работе, теория затопленных
ламинарных струй вязкой несжимаемой жидкости, истекающих из источника конечного
размера, приобрела завершенный характер.
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