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Юнитоидом называется квадратная матрица, которая может быть приведена к диагональному виду
посредством конгруэнтного преобразования. Среди различных диагональных форм юнитоида A имеется
лишь одна (с точностью до порядка, принятого для главной диагонали), все ненулевые диагональные
элементы которой суть числа с модулем 1. Она называется канонической формой матрицы A относи-
тельно конгруэнций, а аргументы ее ненулевых диагональных элементов называются каноническими
углами этой матрицы. Если A не вырождена, то ее канонические углы тесно связаны с собственными
значениями матрицы A−∗A, называемой коквадратом матрицы A.

Хотя определение юнитоида напоминает понятие диагонализуемой матрицы в теории подобий, ка-
жущаяся аналогия между этими двумя матричными классами обманчива. Мы показываем, что жорда-
нова клетка Jn(1), которая в теории подобий рассматривается как антипод диагонализуемости, является
юнитоидом. Более того, ее коквадрат Cn(1) имеет n различных унимодулярных собственных значений.
Мы погружаем матрицу Jn(1) в семейство жордановых клеток Jn(λ) с параметром λ, меняющимся в
диапазоне (0, 2]. В некоторой точке, расположенной левее единицы, Jn(λ) перестает быть юнитоидной
матрицей. Мы подробно обсуждаем этот момент в попытке понять, как может произойти подобная
трансформация. Обсуждаются и аналогичные моменты, соответствующие меньшим значениям λ. Ука-
заны некоторые примечательные факты, связанные с собственными значениями коквадратов и числами
обусловленности этих значений.
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A unitoid is a square matrix that can be brought to diagonal form by a congruence transformation. Among
different diagonal forms of a unitoid A, there is only one, up to the order adopted for the principal diagonal,
whose nonzero diagonal entries all have the modulus 1. It is called the congruence canonical form of A, while
the arguments of the nonzero diagonal entries are called the canonical angles of A. If A is nonsingular then
its canonical angles are closely related to the arguments of the eigenvalues of the matrix A−∗A, called the
cosquare of A.

Although the definition of a unitoid reminds the notion of a diagonalizable matrix in the similarity theory,
the analogy between these two matrix classes is misleading. We show that the Jordan block Jn(1), which
is regarded as an antipode of diagonalizability in the similarity theory, is a unitoid. Moreover, its cosquare
Cn(1) has n distinct unimodular eigenvalues. Then we immerse Jn(1) in the family of the Jordan blocks Jn(λ),
where λ is varying in the range (0, 2]. At some point to the left of 1, Jn(λ) is not a unitoid any longer. We
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discuss this moment in detail in order to comprehend how it can happen. Similar moments with even smaller
λ are discussed, and certain remarkable facts about the eigenvalues of cosquares and their condition numbers
are pointed out.

Keywords: congruence transformation, canonical form, cosquare, unitoid matrix, canonical angles.

1. Введение

Термин юнитоидная матрица (или юнитоид) был введен в [1] в контексте теории
конгруэнтных преобразований (или конгруэнций). Последние понимаются как матрич-
ные преобразования вида

A→ P ∗AP, (1)

где P — произвольная невырожденная матрица.
Мы говорим, что A есть юнитоид, если матрица P в (1) может быть выбрана так,

чтобы
B = P ∗AP

стала диагональной матрицей. Посредством дополнительной конгруэнции
B → F = D∗BD

с диагональной матрицей D можно сделать все ненулевые диагональные элементы в B
числами с модулем 1. Эта новая диагональная форма F определяется матрицей A един-
ственным образом (с точностью до порядка диагональных элементов). Она называется
канонической формой A по отношению к конгруэнциям (или конгруэнтной канонической
формой этой матрицы). Аргументы ненулевых диагональных элементов матрицы F на-
зываются каноническими углами матрицы A.

Пусть A — юнитоид. Если A — вырожденная матрица ранга r, то можно найти ее
ядро, а затем выполнить конгруэнцию, преобразующую A к виду(

A11 0
0 0

)
,

где A11 — невырожденная подматрица размера r × r. Это простое замечание позволяет
нам в дальнейшем рассматривать только невырожденные юнитоидные матрицы.

С невырожденной матрицей A можно связать матрицу
CA = A−∗A,

называемую коквадратом матрицы A. Если A подвергается конгруэнтному преобразова-
нию

A→ Ã = X∗AX,
то

CA → CÃ = X−1CAX,

т. е. коквадрат этой матрицы претерпевает подобие, задаваемое той же трансформирую-
щей матрицей X. Тем самым коквадраты конгруэнтных матриц должны быть подобны-
ми матрицами. Более того, жорданова форма коквадрата CA дает немало информации
о структуре конгруэнтной канонической формы матрицы A. Связь обеих форм в са-
мом общем случае подробно обсуждается в [2, § 4.5]. Для юнитоидных матриц эта связь
особенно проста и является следствием указанного обсуждения.

Предложение. Невырожденная матрица A тогда и только тогда является юнитои-
дом, когда ее коквадрат CA есть матрица, диагонализуемая подобием, причем спектр
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коквадрата состоит только из унимодулярных чисел. Для каждого такого числа eiψ с
аргументом ψ, выбираемым в полуинтервале [0, 2π), каноническим углом матрицы A
будет одно из чисел φ того же полуинтервала, удовлетворяющих соотношению

eiψ = e2iφ.

Определение юнитоидов может создать впечатление, что эти матрицы аналогичны
диагонализуемым матрицам в теории подобий. Однако эта аналогия обманчива.

Рассмотрим матрицу

Jn(1) =



1 1
1 1
· ·
· ·
· ·

1 1
1


, n > 1.

В теории подобий эта матрица считается антиподом понятия диагонализуемости. В то
же время в пункте 2 мы покажем, что Jn(1) есть юнитоид. Более того, ее коквадрат Cn(1)
имеет n различных унимодулярных собственных значений.

В п. 3 мы погружаем матрицу Jn(1) в семейство жордановых клеток Jn(λ) с па-
раметром λ, меняющимся в диапазоне (0, 2]. В некоторой точке, расположенной левее
единицы, Jn(λ) перестает быть юнитоидной матрицей. Мы подробно обсуждаем этот мо-
мент в попытке понять, как может произойти подобная трансформация. Обсуждаются
и аналогичные моменты, соответствующие меньшим значениям λ.

2. Спектр матрицы Cn(1)

То обстоятельство, что матрица Jn(1) является юнитоидом, есть следствие известно-
го факта: всякая аккретивная матрица юнитоидна (см., например, [3]). Напомним, что
квадратную матрицу A называют аккретивной, если ее вещественная часть

Re A =
1

2
(A+A∗)

является положительно определенной матрицей. Положительная определенность матри-
цы

Re Jn(1) =
1

2
×



2 1
1 2 1
· · ·
· · ·
· · ·

1 2 1
1 2


хорошо известна.

Согласно предложению из предыдущего пункта, коквадрат Cn(1) клетки Jn(1) дол-
жен быть диагонализуемой матрицей с унимодулярным спектром. Найдем собственные
значения матрицы Cn(1). Удобно переписать уравнение(

Jn(1)
)−>

Jn(1)x = µx,

определяющее ее собственные значения и собственные векторы, в виде

Jn(1)x = µJ>n (1)x.
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Таким образом, вместо характеристического многочлена мы можем иметь дело с его
кратным

fn(µ) = det
(
Jn(1)− µJ>n (1)

)
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1− µ 1
−µ 1− µ 1

−µ 1− µ 1
· · ·

· · ·
· · ·
−µ 1− µ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (2)

Вычисляя fn(µ) для малых n, имеем

f2(µ) = 1− µ+ µ2,

f3(µ) = 1− µ+ µ2 − µ3, (3)

f4(µ) = 1− µ+ µ2 − µ3 + µ4.

Заметив простую закономерность в строении этих многочленов, мы покажем теперь
по индукции, что

fn(µ) = 1− µ+ µ2 − µ3 + · · ·+ (−1)nµn =
1 + (−1)nµn+1

1 + µ
. (4)

Формулы (3) дают нам базис индукции.
Разлагая определитель (2) по его первой строке, находим

fn(µ) = (1− µ)fn−1(µ)− gn−1(µ),
где

gn−1(µ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−µ 1
1− µ 1
−µ 1− µ 1
· · ·

· · ·
· · ·
−µ 1− µ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= −µfn−2(µ).

Тем самым получено рекуррентное соотношение

fn(µ) = (1− µ)fn−1(µ) + µfn−2(µ). (5)

Предположим, что формула fk(µ) =
1 + (−1)kµk+1

1 + µ
верна для всех k < n. Используя

эту формулу для k = n− 2 и k = n− 1, выводим из (5)

fn(µ) =
1

1 + µ

[
(1− µ)(1 + (−1)n−1µn) + µ(1 + (−1)nµn−1)

]
=

1 + (−1)nµn+1

1 + µ
.

Таким образом, формула (4) обоснована для всех n. Числитель формулы показывает,
что собственные значения коквадрата Cn(1) суть, с точностью до множителя (-1), корни
степени (n+ 1) из единицы. Из этого правила нужно исключить число µ = −1.

Отметим, что все собственные значения этой матрицы попарно различны.

3. Потеря юнитоидности
Вложим нашу матрицу Jn(1) в семейство жордановых клеток Jn(λ), где λ меняется

в диапазоне (0, 2]. Наша цель состоит в том, чтобы проследить поведение собственных
значений коквадратов Cn(λ) по мере того, как λ движется от правого конца указанного
диапазона к его левому концу.
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Для определенности все диаграммы, приводимые в статье, выполнены для n = 10.
Масштабы, выбираемые для осей x и y, различны, а подчас и весьма различны. Вслед-
ствие этого единичная окружность, присутствующая на всех диаграммах, выглядит как
эллипс. На рисунках 1–5 показаны спектры матриц Cn(λ) для λ = 2, 1.8, 1.6, 1.4, 1.2. Все
эти спектры суть подмножества единичной окружности, что не удивительно. Действи-
тельно, все матрицы Jn(λ) с λ ≥ 1 аккретивны и, следовательно, юнитоидны.

Свойство матрицы быть аккретивной подразумевает, что все ее собственные значения
принадлежат открытой правой полуплоскости в C. Первые четыре диаграммы показы-
вают, что то же самое верно для собственных значений коквадратов. Это означает, что
связь между аргументами этих значений и каноническими углами матриц Jn(λ) стано-
вится особенно простой, а именно, последние суть половины соответствующих аргумен-
тов из Cn(λ). Однако это простое правило не действует при λ = 1.2, поскольку два соб-
ственных значения коквадрата Cn(1.2) перемещаются в левую полуплоскость. Половина
аргумента собственного значения, лежащего в третьем квадранте, все еще больше, чем
π/2, и, следовательно, не может быть аргументом собственного значения аккретивной
матрицы.

Рис. 6, показывающий спектр матрицы Cn(1), находится в полном согласии с ана-
лизом, проведенным в п. 2 : с точностью до множителя (-1) собственные значения суть
корни степени (n+ 1) из единицы; при этом значение µ = −1 отсутствует.

Рис. 1. λ = 2 Рис. 2. λ = 1.8

Рис. 3. λ = 1.6 Рис. 4. λ = 1.4
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Рис. 5. λ = 1.2 Рис. 6. λ = 1

При λ ≤ 0.9 матрица

Jn(λ) =



λ 1
λ 1
· ·
· ·
· ·
λ 1

λ


уже более не является аккретивной, поскольку в спектре матрицы Re Jn(λ) появляет-
ся отрицательное собственное значение. В принципе потеря свойства аккретивности не
обязательно означает, что и юнитоидность также теряется. Однако взглянем на рис. 7,
показывающий спектр матрицы Cn(0.9). Мы видим, что два собственных значения ко-
квадрата покинули единичную окружность. Одно из них находится внутри окружно-
сти, а другое — вне ее. Это снова согласуется с общим правилом, действующим для
коквадратов: неунимодулярные собственные значения всякой матрицы вида A−∗A все-
гда образуют пары типа (µ, µ−1). Тем не менее остается вопрос: как могут некоторые из
собственных значений сойти с единичной окружности?

Рис. 7. λ = 0.9
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Рисунки 8–11, соответствующие значениям λ = 0.98, 0.97, 0.96, 0.95, помогают нам
понять это. Первые три из них показывают, что два самых левых собственных значения
матрицы Cn(λ) устремляются друг к другу. Где-то между λ = 0.96 и λ = 0.95 эти
собственные значения сливаются в одно двойное значение, все еще расположенное на
единичной окружности. Затем, при дальнейшем уменьшении λ, это двойное собственное
значение превращается в пару взаимно обратных чисел, лежащих на вещественной оси.
Мы видим это на рис. 11.

Рис. 8. λ = 0.98 Рис. 9. λ = 0.97

Рис. 10. λ = 0.96 Рис. 11. λ = 0.95

Только что описанный сценарий повторяется в интервале λ ∈ [0.84, 0.86] (см. диаграм-
мы на рис. 12–14): самые левые собственные значения матрицы Cn(0.86) устремляются
друг к другу с уменьшением λ. При λ = 0.84 мы видим, что Cn(λ) имеет уже две пары
взаимно обратных неунимодулярных собственных значений.

В третий раз подобная ситуация происходит в интервале λ ∈ [0.6, 0.7]. Рисунки
15–17, соответствующие числам λ = 0.68, 0.66, 0.64, иллюстрируют процесс рождения
третьей пары неунимодулярных собственных значений. Заметим, что в связи с пробле-
мами разрешения два наименьших собственных значения покрыты на этих рисунках
единым прямоугольником. Например, для λ = 0.64 эти собственные значения равны
−0.2128 и −0.1461, тогда как обратные им числа, также присутствующие на рис. 17,
равны −4.6984 и −6.8444 соответственно.
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Рис. 12. λ = 0.86 Рис. 13. λ = 0.85

Рис. 14. λ = 0.84 Рис. 15. λ = 0.68

Рис. 16. λ = 0.66 Рис. 17. λ = 0.64
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Таблица показывает собственные значения коквадрата Cn(0.2). Мы видим, что на еди-
ничной окружности остается лишь одна пара собственных значений (−0.0127 + 0.9999i,
−0.0127−0.9999i), в то время как восемь остальных собственных значений находятся на
вещественной оси.

Таблица.

Спектр матрицы C(λ) при λ = 0.2

−90.0516
−68.7562
−40.8598
−15.1911

−0.0127 + 0.9999i
−0.0127 − 0.9999i

−0.0658
−0.0245
−0.0145
−0.0111

При λ, стремящемся к нулю, матрицы Jn(λ) сходятся к вырожденной жордановой
клетке Jn(0). Напротив, коквадраты Cn(λ) не могут иметь предела при λ → 0, так как
коквадрат не имеет смысла для вырожденной матрицы Jn(0). Более того, конгруэнтной
канонической формой для Jn(0) является сама эта матрица! Этим случай λ = 0 коренным
образом отличается от канонических форм матриц Jn(λ) с λ > 0.

В заключение укажем несколько примечательных фактов, связанных с (спектраль-
ными) числами обусловленности собственных значений матриц Cn(λ). Вообще говоря,
собственные значения, расположенные на единичной окружности, обусловлены очень хо-
рошо. Например, числа обусловленности всех собственных значений матрицы Cn(1) не
превосходят 1.35. Даже при λ = 0.2 единственная пара собственных значений, остающая-
ся на единичной окружности, имеет число обусловленности, равное приблизительно 6.45.

Совершенно иное мы наблюдаем относительно собственных значений, находящихся
вне этой окружности. Для определенности проследим за обусловленностью первой пары
собственных значений, покинувшей единичную окружность. Первое, что следует отме-
тить, это то, что оба собственных значения в паре вида (µ, µ−1) имеют одну и ту же
обусловленность. При λ = 0.9 собственные значения −2.0611 и −0.4852 все еще очень
хорошо обусловлены. Их число обусловленности равно всего лишь 2.3474. Однако обу-
словленность ухудшается по мере того, как собственные значения удаляются от окруж-
ности. При λ = 0.84 мы имеем две пары вещественных собственных значений. Те числа,
за которыми мы следим, образуют пару (−2.8706,−0.3484). Она по-прежнему хорошо
обусловлена: ее число обусловленности равно 4.4326.

Теперь мы перейдем к точке λ = 0.64. Здесь мы имеем уже три пары вещественных
собственных значений. “Нашей” является пара (−6.8444,−0.1461). Ее число обусловлен-
ности равно 58.9151.

Наконец, при λ = 0.4 наша пара принимает вид (−20.968,−0.0477), и ее число обу-
словленности достигает действительно впечатляющего значения ≈ 3497.8.

Отметим в заключение, что, в отличие от наших работ [4, 5], предметом которых были
количественные оценки изменения канонических углов при возмущениях элементов мат-
рицы, в этой статье нас интересовали главным образом качественные аспекты поведения
канонических углов.
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