УДК 534.222.2+532.529

ИНИЦИИРОВАНИЕ ОБЪЕМА ГАЗА НАД ГРАНИЦЕЙ ГАЗОЖИДКОСТНОЙ СРЕДЫ ВОЛНОЙ ПУЗЫРЬКОВОЙ ДЕТОНАЦИИ

А. В. Пинаев, И. И. Кочетков

Институт гидродинамики им. М. А. Лаврентьева СО РАН, 630090 Новосибирск avpin@ngs.ru, kii@hydro.nsc.ru

Установлена возможность передачи детонации из пузырьковой реагирующей среды в объем взрывчатого газа, находящийся над поверхностью раздела. Опыты выполнены в постановке, когда пузырьковую детонацию возбуждали взрывом проводника в газожидкостной среде. Исследована динамика границы газожидкостной среды после прихода к ней волны пузырьковой детонации. Расстояние между проволочкой и границей пузырьковой среды уменьшали вплоть до 1 см, когда происходило инициирование объема газа горячими продуктами от взрыва проводника и разрядной плазмой. Определена вероятность передачи детонации из пузырьковой среды в объем газовой смеси в зависимости от глубины погружения проволочки, и описаны механизмы воспламенения объема взрывчатого газа.

Ключевые слова: взрыв проволочки, плазменный разрядный пузырь, ударная волна, пузырьковая детонация, воспламенение пенистой среды, инициирование газовой смеси.

DOI 10.15372/FGV20160111

ВВЕДЕНИЕ

В [1–3] пузырьковую детонацию (ПД) инициировали не традиционным способом — плоской волной газовой детонации или ударной волной, падающей сверху на границу газожидкостной среды, а в новой постановке — короткой ударной волной от взрыва небольшого проводника, расположенного внутри пузырьковой среды. Установлено, что при таком способе инициирования существенно сокращается время формирования пузырьковой детонации. В [2, 3] показано, что при малых околокритических запасенных энергиях конденсатора $W_0 =$ $12 \div 64$ Дж стационарная волна ПД формируется быстрее, чем при большой энергии $W_0 =$ 0.3÷1 кДж. В данной работе пузырьковую детонацию инициировали взрывом проволочки при малых значениях $W_0 = 18 \div 40.5$ Дж.

При подготовке опыта над пузырьковой средой поддерживается постоянное атмосферное давление, для установления границы среды на фиксированном уровне (с целью достижения необходимой объемной концентрации газовой фазы β_0) требуется несколько минут. В

течение этого времени газ из верхнего участка трубы непрерывно отводится по трубке в атмосферу и постепенно замещается взрывчатой газовой смесью практически до того же состава, что и в пузырьках. В [4] установлено, что пузырьки воспламеняются не ближе 8÷10 мм от границы и горячие продукты сгорания в пузырьках изолированы приповерхностным слоем жидкости от газового объема. После прихода волны ПД к границе раздела газожидкостная среда становится разреженной (пенистой) и движется вверх. При анализе выхода волны ПД на границу среды возникают следующие задачи. Существует ли какая-либо вероятность непосредственного попадания горячих продуктов сгорания газовой смеси из пузырьков в объем газа, расположенный над границей пузырьковой среды, и инициирования в нем химических реакций? Могут ли образоваться очаги воспламенения в микрообъемах несгоревшей газовой смеси, находящихся внутри движущейся пенистой среды? Способен ли самовоспламениться в верхнем участке трубы газ, сжимаемый пенистой средой?

Цель настоящей работы — выяснить возможность и механизмы передачи пузырьковой детонации в объем взрывчатого газа, находящийся над границей раздела, а также возможность воспламенения этого газа с помощью

Работа выполнена при частичной поддержке Российского фонда фундаментальных исследований (проект № 15-01-01154а).

[©] Пинаев А. В., Кочетков И. И., 2016.

взрывающегося проводника, расположенного в пузырьковой среде в непосредственной близости от ее границы.

ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА И МЕТОДИКА ИЗМЕРЕНИЙ

Опыты проводили в вертикальной ударной трубе внутреннего диаметра 35 мм и длиной 4.5 м (рис. 1). Трубу заполняли водой или жидкостью 0.75H₂O + 0.25 глицерина. Снизу трубы расположены трубочки, создающие пузырьки смеси $C_2H_2 + 2.5O_2$ размером $d_0 = 3 \div 4$ мм и объемной концентрацией $\beta_0 = 1 \div 4$ %. К нижним концам медных электродов диаметром 3 мм, покрытых изоляцией, припаивали оловом манганиновые проволочки. Диаметр проволочек 0.14 мм, длина l = $9.5 \div 13.5$ мм, их сопротивление с двумя контактами $0.26 \div 0.48$ Ом соответственно. Активное сопротивление электрической цепи между проволочкой и конденсатором 0.11 Ом. Расстояние L от проволочки до поверхности пузырьковой среды изменяли от 35 до 1 см.

В течение примерно 5 мин по мере всплывания пузырьков взрывчатый газ вытеснял через выходной патрубок воздух и заполнял все пространство над пузырьковой средой, после чего осуществляли взрыв проволочки.

Напряжение $U_0 = 6 \div 9$ кВ на конденсаторе емкостью $C_0 = 1$ мкФ, коэффициент передачи энергии в проволочку $\approx 2/3$, разрядный ток измеряли на шунте сопротивлением 7.06 мОм. Период собственных колебаний

Рис. 1. Принципиальная схема верхней части вертикальной ударной трубы:

1 — электроды, 2 — уровень пузырьковой среды, 3 — проволочка, 4 — секция измерений, 5 — ФЭУ, 6 — оптическая камера, 7 — импульсная световая лампа, $Д_1 \div Д_3$ — пьезодатчики разрядного контура 10.7 мкс. Осциллограммы напряжения, разрядного тока и свечения при взрыве проволочки в пузырьковой среде приведены в [1–4].

Профили давления измеряли пьезокерамическими датчиками с собственной частотой $f_s = 300$ кГц, постоянная времени пьезодатчиков превышала 1 с, погрешность измерения давления — не более 5 %. Интенсивность свечения регистрировали фотоумножителем (ФЭУ) с помощью двух световодов: напротив пьезодатчика Д₂, находящегося в пузырьковой среде, и пьезодатчика Д₁, расположенного над границей среды в газе. Время разрешения фотоумножителя, определяемое выходной электрической цепью, — 0.5 мкс. Электрические сигналы записывали двумя осциллографами Tektronix TDS2014.

Покадровую съемку проводили с помощью цифровой оптической камеры Photron Fastcam, размещенной напротив измерительной секции с двумя продольными щелями размером 8×240 мм. Скорость съемки составляла $f_c = (1 \div 5.25) \cdot 10^5$ кадр/с, время выдержки Δt задавалось в интервале от 1 мкс до $1/f_c$. Подсветку осуществляли импульсной лампой ИФК-120 с противоположной от камеры продольной щели, максимальное время подсветки $1.8 \div 2.2$ мс.

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТОВ

Первая серия опытов была проведена при L = 35 см. На такой глубине погружения проволочки параметры волны ПД к моменту ее выхода на поверхность пузырьковой среды близки к стационарным [1, 3]. Затем L последовательно уменьшали до 20, 11, 4 и 1 см. На каждом расстоянии *L* от границы среды при $\beta_0 = 1, 2,$ 3 и 4~% определяли вероятность P передачи детонации (по 40 опытам на все значения β_0) из пузырьковой среды в объем газа, расположенный над границей пузырьковой среды. Оказалось, что если $L \ge 4$ см, то детонация передается в газовый объем примерно в одном опыте из десяти ($P \approx 10.5 \pm 3.8$ %). При этом явной зависимости величины P от L, β_0 и W_0 не прослеживается. Время задержки воспламенения t₁ над границей пузырьковой среды, измеряемое после момента прихода волны ПД к этой границе, изменяется в пределах $0.1 \div 1.5$ мс и не зависит от β_0 , W_0 и L (для $L \ge 4$ см). Приведенные результаты с учетом выяснения влияния величины W₀ получены на основе примерно 500 опытов.

дующих фотоснимках и осциллограммах начинается от момента подачи тока на проволочку.

стой среды. Отсчет времени t здесь и на после-

2

1

4

по вертикали: 1 — 1 МПа/дел, 2 — 4 МПа/дел, 3 — 10 МПа/дел, 4 — 2 В/дел

На всех рисунках стрелкой слева показано положение датчика Д₁. На кадре в момент времени t = 0.85 мс, когда волна пузырьковой детонации в области съемки движется снизу вверх, зарегистрировано воспламенение газовой смеси в сжатом пузырьке, расположенном примерно на расстоянии 1 см от поверхности среды. На этом же кадре лежащие ниже пузырьки, которые воспламенились раньше, расширяются и разрушаются. Свечение отдельного пузырька длится около 2÷3 мкс. При дальнейшем продвижении волны (t > 0.85 мc) к границе среды, пузырьки, находящиеся от нее на расстоянии ближе $8 \div 10$ мм, не воспламеняются, поскольку в них не достигается необходимая степень сжатия ($n = 3 \div 4$) из-за разгрузки волны давления (эти кадры не приведены, более подробная информация содержится в [4]).

На кадре t = 1.25 мс (см. рис. 2, *a*) граница газожидкостной среды переместилась вверх. Впоследствии происходит выброс газожидкостной среды в газовое пространство, и среда при движении вспенивается. Из-за неровности границы, обусловленной наличием пузырьков и неоднородностью поля давления в волне, выброс жидкой фазы происходит неравномерно по сечению трубы. В промежуток времени 1.65 < t < 2.24 мс газожидкостная среда перекрывает всю верхнюю область подсветки и она становится непрозрачной. При t = 2.24 мс ($t_1 =$ 1.35 мс) в объеме химически активной смеси, расположенном в нижней части пенистой среды, происходит воспламенение (к этому моменту времени свечение импульсной лампы полностью прекращается). Центр слабо светящейся воспламенившейся области пенистой среды расположен примерно на 1.2 см выше датчика Д₁. Затем после перехода в детонацию $(2.26 \leq t \leq 2.4 \text{ мс})$ детонационная волна движется вверх по пенистой среде со средней скоростью $v_1 \approx 1500$ м/с. После выхода детонации из пенистой среды, расположенной в области кадра, свечение исчезает ($t \ge 2.4$ мс). Затем происходит инициирование детонации объема газовой смеси в верхней части трубы, и начиная с момента времени t = 2.55 мс наблюдается приход светящейся взрывной волны, вызывающей сжатие газожидкостной среды (см. кадр t = 2.62 мс). Средняя скорость этой волны в газожидкостной среде $v_2 \approx 800$ м/с ($t \ge$ 2.55 мс). Взрывная волна в объеме газа, распространяясь вверх и вниз по трубе, отражается от нижней, более плотной газожидкост-

t, мс: 0.85

ной среды и верхнего торца трубы. Эти волны при t > 2.55 мс вызывают возвратнопоступательное движение пенистой среды со скоростью $v_3 \approx 80$ м/с. В этом и последующих опытах погрешность измерения скоростей v_1 и v_2 около 15 %, v_3 — около 25 %. Значения средних скоростей волн $v_1 \div v_3$ определялись по измерениям смещения осредненного фронта светящейся области между соседними кадрами. Погрешность измерения скорости волны зависела в основном от ошибки определения положения фронта волны на кадре.

Осциллограмма на рис. $2, \delta$ соответствует опыту на рис. 2, а. Здесь и далее сигналы 1–3 это профили давления на датчиках $\Pi_1 \div \Pi_3$, сигналы 4 — интенсивность свечения, фиксируемая ФЭУ с помощью двух световодов, расположенных напротив $Д_2$ и J_1 (см. рис. 1). На осциллограмме волна детонации проходит вверх мимо датчиков Д₃, Д₂ и Д₁. Амплитуда сигнала на датчике Д $_3$ ($p_3 = 13.35$ МПа) выше, чем на $Д_2$ ($p_2 = 7.58$ МПа). Датчик $Д_3$ находится на расстоянии 45 мм от проволочки — ближе, чем $Д_2$, и регистрирует дополнительно ударную волну от взрыва проволочки. Средняя скорость волны ПД на участке между Д₃ и Д₂ $v_{23} \approx 400$ м/с, погрешность ее измерения около 10 %. Датчик Д₁, расположенный выше поверхности пузырьковой среды на 15 мм, зарегистрировал (сигнал 1) последовательно: первичную волну нестационарной детонации в пенистой среде с амплитудой $p_{11} =$ 0.81 МПа, затем обратную взрывную волну из газового объема (амплитуда $p_{12} = 1.06$ МПа, пик давления через 400 мкс от первой волны) и отраженную волну (пологий слабый пик давления через 1.27 мс после первого фронта детонации).

ФЭУ зафиксировал (сигнал 4) рассеянное свечение импульсной лампы (слабый пологий сигнал при 0 < $t \leq 1.8$ мс), яркое свечение воспламенившихся пузырьков в сечении датчика Д₂ и затем свечение длительностью 30 и 120 мкс напротив Д₁ соответственно в волне детонации и взрывной обратной волне. Поскольку в обеих волнах напротив Д₁ наблюдаются сравнительно короткая продолжительность свечения и быстрый спад давления (особенно в первой волне), это означает, что за фронтом этих волн происходят охлаждение газообразных продуктов сгорания и подавления химических реакций в результате испарения жидкой фазы в пенистой среде. Расчет задержки воспламенения τ газовой смеси $C_2H_2 + 2.5O_2$, адиабатически сжимаемой газожидкостной средой в цилиндрической трубе, при регистрируемых скоростях границы $50 \div 100$ м/с дает значения $\tau \approx 6 \div 12$ мс — это примерно на порядок больше величин t_1 . При этом необходимо было бы обеспечить сжатие газовой смеси в $16 \div 20$ раз, чего не наблюдается в эксперименте. Учитывая этот факт и полученные выше для $L \ge 20$ см результаты, можно сделать предварительные выводы:

 а) объем взрывчатого газа не инициируется продуктами сгорания газовой смеси в пузырьках непосредственно у границы пузырьковой смеси;

б) первоначальное воспламенение происходит внутри разреженной пенистой среды;

в) цилиндрический объем газовой смеси воспламеняется гораздо раньше, чем это должно произойти в процессе его адиабатического сжатия с помощью движущейся вверх газожидкостной среды;

г) газовая смесь в верхнем объеме трубы инициируется волной детонации, распространяющейся по пенистой среде.

Правильность этих выводов подтвердили опыты, проведенные при L = 11 см, когда проволочка располагалась на 5 см ниже датчика $Д_2$. Воспламенение в опыте на рис. 3 начинается при t = 1.78 мс примерно в той же области пенистой среды, что и на рис. 2, а. На кадре t = 1.79 мс видно, что в пенистой среде распространяется детонация, свечение в среде усиливается. Здесь время воспламенения $t_1 = 1.5$ мс, $v_1 \approx 2000$ м/с. После детонации расположенного выше газового объема взрывная, ярко светящаяся волна из него приходит в верхнюю наблюдаемую часть пенистой среды со скоростью $v_2 \approx 1\,050$ м/с при $t \ge 2.05$ мс. Кадры при t =2.14 и 2.22 мс иллюстрируют процесс сжатия пенистой среды взрывной волной.

На рис. 4,*а* приведен пример наиболее быстрой передачи детонации из пузырьковой среды в объем газа при L = 4 см. Здесь в нижней области наблюдения виден светящийся плазменный пузырь от взрыва проволочки, ФЭУ регистрирует свечение плазмы в течение 0 < t < 0.5 мс (сигнал 4 на рис. 4, δ). Нестационарная волна пузырьковой детонации выходит к поверхности пузырьковой среды при t =450 мкс, после чего часть жидкости выбрасывается в газовое пространство. При $0.9 \leq t <$ 1.19 мс импульсная лампа уже не просвечиваД1

Рис. 3. Фотоснимки передачи пузырьковой детонации в объем газа при $\beta_0 = 4$ %, $C_0 = 1$ мкФ, $W_0 = 40.5$ Дж, L = 11 см, $f_c = 10^5$ с⁻¹, $\Delta t = 10$ мкс, $t_1 = 1.5$ мс

ет область наблюдения. В момент $t = 1\,190$ мкс в пенистой среде наблюдается воспламенение $(t_1 = 98$ мкс), переходящее в детонацию горючей смеси в разреженной пенистой среде, чему соответствуют на осциллограмме рис. $4, \delta$ первый скачок давления (сигнал 1) и соответствующий короткий сигнал свечения (сигнал 4). Затем детонационный процесс развивается в обе стороны по газожидкостной среде: волна, движущаяся вниз, сжимает пенистую среду, а движущаяся вверх волна инициирует детонацию в объеме газа. На кадре $t = 1\,630$ мкс приведена взрывная, ярко светящаяся волна, распространяющаяся сверху вниз, после детонации верхнего объема газа.

Проволочка в этом опыте расположена на 20 мм выше Д₂, волна ПД распространяется вниз со скоростью $v_{23} \approx 780$ м/с, $p_2 =$ 7.19 МПа, $p_3 = 6.09$ МПа (рис. 4, δ). При t =1.63 мс датчик Д₁ регистрирует взрывную волну, приходящую из объема газовой смеси в нижнюю границу расширяющейся области, а при t = 2.39 мс — отраженную от верхнего торца трубы волну давления с амплитудами $p_{11} =$ 1.66 МПа и $p_{12} = 1.16$ МПа. На соответствующих снимках (см. рис. 4, a) в эти моменты вре-

Рис. 4. Фотоснимки передачи пузырьковой детонации в объем газа (*a*) и соответствующая осциллограмма (*б*) профилей давления (*1*–3) и свечения (*4*) при $\beta_0 = 1$ %, $C_0 = 1$ мкФ, $W_0 = 40.5$ Дж, L = 4 см, $f_c = 10^5$ с⁻¹, $\Delta t = 10$ мкс, $t_1 = 98$ мкс:

по вертикали: 1 — 1 МПа/дел, 2, 3 — 5 МПа/дел, 4 — 5 В/дел

мени фиксируется свечение.

В последней серии опытов проволочка была расположена на расстоянии L = 1 см от границы среды (на 50 мм выше датчика $Д_2$). В этом случае плазменный пузырь при расширении может выходить за границу пузырьковой среды, что способствует более успешной передаче детонации из-за возможности воспламенения газовой смеси горячими продуктами взорвавшейся проволочки и разогретой плазмы. При L = 1 см вероятность передачи детонации из пузырьковой среды в газ $P \approx 63.5 \pm 4.5$ %.

На рис. 5, a приведены характерные снимки передачи детонации в газовый объем (L =1 см). За счет близкого расположения проволочки к границе среды заброс пузырьковой жидкости в газ происходит быстрее и выше, чем при больших значениях L. По этой причине граница пузырьковой среды после прихода взрывной волны из газового объема смещается ниже начального уровня (см. t = 10 и 950 мкс). При t = 490 мкс пенистая среда перекрывает всю область кадра. В этом опыте время воспламенения $t_1 \approx 0.5$ мс, механизм воспламенения и все характерные стадии процесса такие же, как и в предыдущих опытах (при $L \ge 4$ см). На кадре t = 510 мкс наблюдается развитая детонация в пенистой среде, распространяющаяся вверх по трубе со скоростью $v_1 \approx 2\,000$ м/с. На кадрах $t \ge 860$ мкс зафиксирована ярко светящаяся взрывная волна, пришедшая из газового объема. Видно возвратнопоступательное движение взрывной волны в процессе ее отражения от верхнего торца трубы и границы газожидкостной среды.

осциллограмме Ha соответствующей (рис. $5, \delta$) зарегистрирован взрыв проволочки и инициирование пузырьковой детонации: волна проходит от проволочки вниз мимо Д₂ (сигнал 2, первая волна, $p_2 = 3.14$ МПа, см. также сигнал 4, первый пик свечения) и затем мимо Д₃ (сигнал 3, $p_3 = 3.57$ МПа). Средняя скорость волны $v_{23} \approx 480$ м/с. Из-за разгрузки плазменного пузыря вблизи свободной поверхности бо́льшая часть его энергии уходит вверх, поэтому инициирование ПД оказывается околокритическим, а амплитуда давления в волне пузырьковой детонации сравнительно низкой. Плазменный пузырь здесь инициирует детонацию в пенистой среде (сигнал 1, $p_{11} =$ 0.74 МПа, t = 0.5 мс). Взрывная волна приходит на датчик Д₁ сверху после детонации газового объема (сигнал 1, $p_{12} = 1.48$ МПа, t =0.87 мс). Эта волна затем распространяется без реакции по пузырьковой среде, ее регистрирует датчик Π_2 (сигнал 2, вторая волна), на датчике Д₃ волна затухает. Датчик Д₁ регистрирует также третью ударную волну (сигнал 1, t = 1.508 мс) с максимумом свечения при $t \approx 1.51$ мс, а затем четвертую волну

Рис. 5. Фотоснимки передачи детонации в объем газа при взрыве проволочки (*a*) и соответствующая осциллограмма (*б*) профилей давления (1–3) и свечения (4) при $\beta_0 = 4$ %, $C_0 = 1 \text{ мк}\Phi$, $W_0 = 18 \text{ Дж}$, L = 1 см, $t_1 = 0.5 \text{ мс}$, $f_c = 10^5 \text{ c}^{-1}$, $\Delta t = 10 \text{ мкс}$:

по вертикали: 1 — 1 МПа/дел, 2, 3 — 2 МПа/дел, 4 — 5 В/дел

сжатия (максимум свечения при $t \approx 2.32$ мс), которые соответствуют отраженным волнам.

ЗАКЛЮЧЕНИЕ

Проведенные исследования впервые доказали возможность передачи детонационного процесса из пузырьковой среды в находящуюся выше взрывчатую газовую смесь.

На первом этапе при подходе волны пузырьковой детонации снизу к границе среды воспламенившиеся пузырьки изолированы от газового объема приповерхностным слоем жидкости размером не менее $8 \div 10$ мм; пузырьки, оказавшиеся ближе 8 мм к границе, не воспламеняются. После выхода пузырьковой детонации на границу среды происходит выброс части жидкости вверх с образованием пенистой среды.

На втором этапе по истечении времени 0.1÷1.5 мс наблюдается воспламенение небольшого объема горячей невоспламенившейся газовой смеси, находящегося в пенистой среде на расстоянии нескольких сантиметров от границы. После воспламенения газовой смеси по пенистой среде распространяется детонация со скоростью $1500 \div 2000$ м/с. Этим объясняется независимость вероятности передачи детонации от расстояния между проволочкой и границей среды, если $L \ge 4$ см ($P \approx$ 10.5 ± 3.8 %). В случае расположения проволочки вблизи границы (L = 1 см), когда плазменный разрядный пузырь при расширении может выходить за границу пузырьковой среды, появляется дополнительная возможность осуществить инициирование горячими продуктами взорвавшегося проводника или разогретой плазмой. В этом случае вероятность воспламенения возрастает примерно в шесть раз ($P \approx 63.5 \pm 4.5$ %).

На третьем этапе детонация, выходя из пенистой среды, инициирует детонацию в газовом объеме, в результате которой в верхнем участке трубы регистрируются взрывные волны и волны, отраженные от торца трубы и газожидкостной среды.

ЛИТЕРАТУРА

- 1. Кочетков И. И., Пинаев А. В. Ударные и детонационные волны в жидкости и пузырьковых средах при взрыве проволочки // Физика горения и взрыва. — 2012. — Т. 48, № 2. — С. 124– 133.
- Пинаев А. В., Кочетков И. И. Критическая энергия инициирования волны пузырьковой детонации при взрыве проволочки // Физика горения и взрыва. — 2012. — Т. 48, № 3. — С. 133– 139.
- Kochetkov I. I., Pinaev A. V. Comparative characteristics of strong shock and detonation waves in bubble media by an electrical wire explosion // Shock Waves. 2013. V. 23, N 2. P. 139–152. DOI: 10.1007/s00193-012-0422-7.
- Кочетков И. И., Пинаев А. В. Ударноволновые процессы в воде и пузырьковых средах при взрыве проводника // Физика горения и взрыва. — 2015. — Т. 51, № 6. — С. 109–119.

Поступила в редакцию 1/XII 2014 г., в окончательном варианте — 18/VI 2015 г.