В.Я. КАВУН, С.П. ГАБУДА, С.Г. КОЗЛОВА, Р.Л. ДАВИДОВИЧ

ЯМР 19F, 203,205T и структурные превращения в цепочечных гексафторцирконатах и гексафторграфнатах аммония и таллия

По данным спектроскопии ЯМР высокого разрешения в твердом теле показано, что в гексафторцирконатах и гексафторграфнатах аммония и таллия при 300—420 К наблюдаются необычные структурные превращения. Установлено, что исходная цепочечная структура рассмотренных соединений ромбической сингонии при 300—350 К претерпевает переход в разупорядоченное состояние, а при дальнейшем повышении температуры — в упорядоченную одноосную структуру, близкую к структуре тригональных Cs₂ZrF₆ и Cs₂HfF₆.

ВВЕДЕНИЕ

Вопросы кристаллохимического прогнозу, структура комплексов Tl₂AF₆ и (NH₄)₂AF₆ существенно отличается от структуры аналогичных комплексов Rb₂AF₆ и Cs₂AF₆ (A = Zr, Hf): первые обладают цепочечным строением, тогда как вторые содержат изолированные октаздрические анионы, т.е. относятся к островному типу [1, 2]. По данным спектроскопии ЯМР 203205T в Tl₂ZrF₆ были обнаружены сильные эффекты ковсенных обменных взаимодействий 203205T[3], что может свидетельствовать в пользу гипотезы о существовании взаимодействий обменного типа между однозарядными катионами T₁⁺ и двухзарядными комплексными анионами [(Zr, Hf)F₆]³⁻. Существенным в обменных взаимодействиях может оказаться участие стереоактивных неподеленных электронных пар 6s² ионов T₁⁺, обнаруженное для соионного соединения Tl₂ZrF₆ [4]. Одинаковый характер структур гексафторцирконатов и гексафторграфнатов таллия и аммония ведет к неожиданному предположению о том, что структурный эффект взаимодействий с участием неподеленных электронных пар ионов таллия по своим результатам может быть аналогичен влиянию водородных связей N—Н···F на образование цепочечной структуры в гексафторцирконатах и гексафторграфнатах аммония.

Аргументом в пользу указанной аналогии служат также параллельные ряды данных о фазовых переходах и температурных зависимостях реориентационных и диффузионных движений ионов в M₂ZrF₆ и M₂HfF₆ (M = NH₄, Tl) [3, 5]. С повышением температуры (выше 150 К) наблюдается постепенное уменьшение констант ковсенного обмена для ядер таллия в Tl₂ZrF₆, которое можно свести с уменьшением влияния неподеленных пар 6s². В таком случае можно ожидать, что высокотемпературные фазы таллусодержащих комплексов должны быть аналогичны по их структуре тригональным Cs₂ZrF₆ и Cs₂HfF₆. Точно так же можно ожидать, что в результате ориентационного разупорядочения ионов NH₄ в гексафторцирконатах и гексафторграфнатах аммония будет подавляться влияние водородных связей N—Н···F, стабилизирующих цепочечную структуру низкотемпературной фазы.

© В.Я. Кавун, С.П. Габуда, С.Г. Козлова, Р.Л. Давидович, 1999
Для выяснения особенностей структуры и химических взаимодействий в указанных комплексах нами было предпринято исследование гексафторцирконатов и гексафторграфитов аммония и таллия методом спектроскопии ЯМР 19F высокого разрешения в твердом теле, причем особое внимание было удалено сопоставлению структурных и ЯМР данных для низкотемпературных фаз с данными для области температур выше 350 K, при которых наблюдается диффузионная подвижность ионов фтора.

МЕТОДИКА ЭКСПЕРИМЕНТА

Исследуемые аммонийные соединения готовили упразднением растворов, приготовленных из ZrO$_2$ (HfO$_2$) во фтористоводородной кислоте и фторида аммония при мольном отношении NH$_4$F : Zr (Hf), равном 2. Таллиевые соединения были синтезированы взаимодействием Tl$_2$CO$_3$ с ZrO$_2$ (HfO$_2$) в плавиковой кислоте при мольном отношении компонентов 1:1 с последующим упразднением раствора. Идентификацию образцов проводили с помощью рентгенофазового анализа и ИК спектроскопии. Для получения высокого разрешения спектров ЯМР 19F в твердом теле во многиых случаях достаточно эффективным является применение стандартных сужающих многоимпульсных последовательностей [6]. Однако в рассматриваемых комплексах присутствует вторая (помимо 19F) спиновая подсистема с большими магнитными моментами (ядра 1H и 203,205Tl), требующая применения технически сложных систем спиновой развязки [7]. Для твердых электролитов простым решением оказалась съемка спектров ЯМР 19F в области высоких температур, когда ядерные спиновые диполь-дипольные взаимодействия вследствие диффузионного движения ионов усредняются фактически целиком.

Спектры ЯМР 19F регистрировали на спектрометре БРУКЕР AC-200 на ларморовской частоте 188,31 МГц. Длительность импульса 1 мкс, скважность 6 мкс, время рецикклирования 10 с, число накоплений составляло примерно 20-50 и 200-300 интерферограмм — при низких температурах. Изменение температуры осуществляли промывкой паров азота, точность установления температуры составляла ~1°, образцы термостатировали в пределах 180 — 410 K.

Для определения анизотропии химических сдвигов сигналов ЯМР 203,205Tl использовали спектры, записанные на стационарном спектрометре широких линий на ларморовских частотах 12 и 37 МГц методом непрерывного сканирования.

Химические сдвиги сигналов ЯМР 19F измеряли относительно внешнего эталона — CCl$_4$, и пересчитывали относительно сигнала от газообразного F$_2$. При определении химических сдвигов ЯМР 203,205Tl в качестве стандарта использовали концентрированный водный раствор нитрата таллия. При этом под химическим сдвигом $\delta(X)$ изучаемого вещества X подразумевался разность констант экранирования ядер 19F в стандартном образце $\sigma(R)$ и в изучаемом образце $\sigma(X)$: $\delta(X) = \sigma(R) - \sigma(X)$. При определении, соответствующем рекомендациям IUPAC [8], уменьшение магнитного экранирования ядер $\sigma(X)$ в изучаемом веществе X отвечает уменьшению химического сдвига $\delta(X)$ спектра ЯМР этого вещества относительно стандартного вещества R. При этом абсолютное значение константы экранирования $\sigma(R)$, как правило, остается неизвестным.

РЕЗУЛЬТАТЫ

Наиболее типичные спектры ЯМР 19F рассматриваемых соединений представлены на рис. 1, а в табл. 1 дана свodka их экспериментальных параметров. Из качественного рассмотрения видно заметное отличие спектров ЯМР 19F изотропных Tl_2ZrF_6 и Tl_2HfF_6. Отметим, что формы спектров ЯМР 19F для бинарных ZrF$_4$ и HfF$_4$ также существенно различаются и это различие связано с влиянием заполненной 4f12-оболочки иона Hf$^{4+}$, отсутствующей у иона Zr$^{4+}$ [9].
Температурные зависимости параметров спектров ЯМР 203,205Tl Tl_2ZrF_6 описаны ранее [3]. Химические сдвиги сигналов ЯМР 203,205Tl для Tl_2ZrF_6 и Tl_2HfF_6 равны -270 и -215 м.д. соответственно (для $\text{NH}_4\text{TlZrF}_6 \delta = -244$ м.д.). Таким образом, наблюдается значительное уменьшение экранирования ядер таллия в изучаемых комплексных соединениях по сравнению с бинарным TIF, для которого $\delta = 790$ м.д. [10]. Параллельно с этим наблюдается уменьшение анизотропии химического сдвига в Tl_2ZrF_6 (560 м.д.) по сравнению с TIF (1260 м.д.). Аналогичные явления также соотношения констант косвенного спин-спинового взаимодействия изотопов 203,205Tl и 205Tl: $J(\text{Tl}^--\text{Tl}) = 8$ кГц в Tl_2ZrF_6 и 24 кГц в TIF. Таким образом, все характеристики обменных взаимодействий Tl^--F в Tl_2ZrF_6 значительно уменьшены по сравнению с бинарным TIF, что может указывать на существенное влияние четырехзаряженного катиона на характер связей Tl^--F и на неаддитивность бинарных частично ковалентных взаимодействий в рамках трехцентровых груп-пировок типа $\text{Tl}^--\text{F}--\text{Zr}$ в изучаемых гексафторокомплексах.

![Diagram](image)

Рис. 1. Экспериментальные спектры ЯМР 19F (188,31 МГц) Tl_2ZrF_6 (a, b) и Tl_2HfF_6 (в) при температурах 180 (a, b) и 370 К (в)

Таблица 1

Параметры тензоров химических сдвигов сигналов ЯМР 19F (м.д.) при температурах 180 и 410 К

<table>
<thead>
<tr>
<th>Соединение</th>
<th>180 K</th>
<th>410 K</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>δ_{11}</td>
<td>δ_{22}</td>
</tr>
<tr>
<td>Tl_2ZrF_6</td>
<td>270</td>
<td>400</td>
</tr>
<tr>
<td>$\text{Tl}(\text{NH}_4)_2\text{ZrF}_6$</td>
<td>270</td>
<td>410</td>
</tr>
<tr>
<td>Tl_2HfF_6</td>
<td>300</td>
<td>425</td>
</tr>
<tr>
<td>$(\text{NH}_4)_2\text{ZrF}_6$</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>$[\text{Rb(Cs)}]_2\text{ZrF}_6$</td>
<td>367</td>
<td>367</td>
</tr>
<tr>
<td>$[\text{Rb(Cs)}]_2\text{HfF}_6$</td>
<td>417</td>
<td>417</td>
</tr>
</tbody>
</table>

ТЕОРЕТИЧЕСКИЙ АНАЛИЗ

Кристаллическая структура ромбических Tl_2ZrF_6 и Tl_2HfF_6 аналогична структуре $(\text{NH}_4)_2\text{ZrF}_6$ (пр.гр. Pnma, $a = 1,34$, $b = 0,77$, $c = 1,17$ нм, $Z = 8$ [1, 2]). Основной особенностью структур являются наличие бесконечных обособленных цепочек из полизидров $[\text{ZrF}_6]$, параллельных оси b. Координационные полизидры двух независимых атомов циркония — искаженная двухшапочная тригональная призма и пе-реходная форма от нее к додекаэдру. Катионы Tl^+ и NH_4^+ размещаются в про- странстве между цепями, образуя мостики $\text{F}--\text{Tl}^+--\text{F}$ и $\text{F}--\text{NH}_4^+--\text{F}$.

666

В.Я. Кабун, С.П. Габуда, С.Г. Козлов, Р.Д. Давидович
Анализ формы спектров ЯМР 19F. Для проведения анализа существенно необходимо определение координационных сфер фтор-ионов в исследуемых соединениях, определяющих тензоры экранирования ядер фтора. Согласно структурным данным [1], которые в общем справедливы и для Tl$_2$AF$_6$ (A = Zr, Hf) [2], полиэдры [ZrF$_6$] соединены друг с другом поочередно по общей вершине F(1) и по общей треугольной грани F(6)F(7)F(8) (рис. 2). Три атома F(6), F(7), F(8) соединяют полиэдры попарно с образованием димеров, которые соединяются друг с другом одиночными атомами F(1) на их вершинах. В итоге атомы F(1), F(6), F(7), F(8) образуют мостики Zr—F—Zr, а все остальные атомы фтора в структуре — F(2), F(3), F(4), F(5), F(9), F(10), F(11) и F(12) — являются "концевыми" — они образуют связи только с одним четырехзарядным катионом. Кроме того, все концевые фтор-ионы, а также мостиковые атомы F(6) и F(8) связаны с однозарядными катионами NH$_3^+$ (Tl$^+$). Только два из двенадцати независимых атомов фтора, входящих в состав димера, — F(1) и F(7) — оказываются относительно удаленными от однозарядных катионов.

Из сравнения спектров ЯМР 19F соединений Tl$_2$HiF$_6$ и Tl$_2$ZrF$_6$ при 180 К ("жесткая решетка"; см. рис. 1, a, b) видно, что спектр гексафторида галлия характеризуется наличием относительно узкой полосы, которую согласно приведенному выше анализу структур исследуемых соединений можно отнести к атомам F(1) и F(7). Основанием для такого отнесения является ее относительная площадь (интегральная интенсивность), составляющая примерно 1/6 от площади всего спектра, и уменьшенная ширина (~8 Гц) по сравнению с шириной всего спектра (~15 Гц). Такое уменьшение ширины можно ожидать для удаленных от Tl$^+$ атомов F(1) и F(7), связанных только с ионами Hi$^{1+}$. Заметим, что полуширина спектра ЯМР 19F бинарного HiF$_4$ также составляет около 8 Гц, и при этом все атомы фтора

![Diagram](image-url)
в структуре HfF₄ являются мостиковыми точно так же, как атомы F(1) и F(7) в Tl₂HfF₄.

Для Tl₂ZrF₆ аналогичного сужения спектральной полосы ЯМР ¹⁹F, отвечающей атомам F(1) и F(7), нельзя ожидать из-за наличия частично ковалентных взаимодействий в мостиковых связях Zr—F—Zr, приводящих к уширению резонансной линии. Так, в бинарном ZrF₄ ширина спектра ЯМР ¹⁹F (~15 Гц) примерно в два раза превышает ширину спектра ЯМР HfF₄, что было связано с вкладом частично ковалентных взаимодействий донорно-акцепторного типа в мостиках Zr—F—Zr с участием пустых 4f-орбиталей [9]. Такие же взаимодействия в мостиках Hf—F—Hf невозможны из-за того, что электронная конфигурация иона Hf⁴⁺—4f¹⁴ Соответствует полностью заполненной 4f-оболочке.

Представленное рассмотрение подтверждает, что узкая составляющая спектра ЯМР ¹⁹F в Tl₂HfF₄ интенсивностью 1/6 должна принадлежать атомам F(1) и F(7). Остальные 5/6 спектра, характеризуемого такой же, как у Tl₂ZrF₆, асимметричной формой и примерно такой же шириной, должны быть отнесены к атомам F(2—6) и F(8—12). Уширение ширины этой составляющей спектра по сравнению со спектром бинарного HfF₄ связано с вкладом частично ковалентных взаимодействий Tl—F. Такой же вклад в ширину спектра ЯМР ¹⁹F дают взаимодействия Tl—F в Tl₂ZrF₆. Тот факт, что общая ширина спектра ЯМР в Tl₂ZrF₆ превышает ширину в Tl₂HfF₄, согласуется с тем, что ЯМР эффекты частично ковалентного взаимодействия Zr—F с участием пустых 4f-орбиталей заметно больше, чем для взаимодействия Hf—F, в которых 4f¹⁴-оболочки заполнены [9].

Анизотропия химических сдвигов ЯМР ¹⁹F. Для частично ковалентных одинарных связей F—М ионов фтора с центральным комплексообразующим атомом M (M = Zr, Hf) константа экранирования ядер фтора σ зависит от угла θ между направлением внешнего магнитного поля и ориентацией связи F—М [9]:

\[\sigma = -\frac{A}{3}\sin^2\theta = \frac{A}{3}(3\cos^2\theta - 1) + \sigma_0; \sigma_0 = -2A/3, \]

где \(A \) — константа анизотропии магнитного экранирования, зависящая от расстояния F—M, а \(\sigma_0 \) — изотропная составляющая константы экранирования. Численное значение константы \(\sigma \) совпадает со значением анизотропии тензоров экранирования и химического сдвига:

\[A = \sigma_0 + \sigma_\parallel - \delta_\perp, \]

где \(\delta_\parallel \) и \(\sigma_\parallel \) — продольные (вдоль связи F—M) составляющие тензоров химического сдвига и экранирования, соответствующие \(\theta = 0 \), а \(\delta_\perp \) и \(\sigma_\perp \) — их перпендикулярные составляющие, соответствующие \(\theta = \pi/2 \).

Сопоставление параметров анизотропии химических сдвигов ЯМР ¹⁹F тригональных и ромбических гексафторидоксонатов и гексафторидофосфатов показывает (см. табл. 1), что для них главное видное отличие связано только с параметрами \(\delta_\parallel \) и \(\delta_\perp \) и с неаксиальностью тензоров химических сдвигов. Более точная характеристика неаксиальности связей F—M может быть дана на основе рассмотрения неаксиальных трехцентровых нелинейных группировок M₁—F—M₂ типа Zr—F—Tl. В этом случае константа экранирования уже должна быть представлена в виде суммы двух независимых вкладов:

\[\sigma = -A_1\sin^2\theta_1 - A_2\sin^2\theta_2, \]

где подстрочные индексы относятся к двум связям фтор-ион с катионами M₁ и M₂. Если предположить,

<table>
<thead>
<tr>
<th>Соединение</th>
<th>(A_{4f}), м.д.</th>
<th>(-\delta_{4f}), м.д.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tl₂ZrF₆</td>
<td>285</td>
<td>420</td>
</tr>
<tr>
<td>(Rb₂Cs)₂ZrF₆</td>
<td>232</td>
<td>445</td>
</tr>
<tr>
<td>Tl₂HfF₄</td>
<td>233</td>
<td>440</td>
</tr>
<tr>
<td>(Rb₂Cs)₂HfF₄</td>
<td>186</td>
<td>479</td>
</tr>
</tbody>
</table>
что \(A_2 \ll A_1 \) и связь \(Zr-F-Ti \) ориентированы перпендикулярно друг к другу, то отсюда можно оценить ожидаемые параметры тензора экранирования ядер \(^{19}F\):

\[
\sigma_{11} = -A_1, \quad \sigma_{22} = -A_2, \quad \sigma_{33} = -A_2.
\]

(4)

В количественном отношении отличие тензоров химических сдвигов ЯМР \(^{19}F\) двух типов структур гексафторцирконатных и гексафторграфитных комплексов может иллюстрировать соотношение параметров анисотропии трехосных тензоров химических сдвигов \(A_{\phi} = 1/(2(\delta_{11} - \delta_{22} + \delta_{12})), \) соответствующих параметрам \(A = (\delta_1 - \delta_2) \) для одноосных тензоров. В табл. 2 представлены для сравнения параметры \(A_{\phi} \) и \(A \) вместе со значениями изотропных средних химических сдвигов \(\delta_{\phi} = 1/(3(\delta_{11} + \delta_{22} + \delta_{33})) \) сравниваемых комплексов. Как видно из табл. 2, наблюдается явная тенденция к увеличению параметра \(A_{\phi} \) для таллайсодержащих (ромбических) гексафторкомплексов по сравнению с параметрами \(A \) для цезий- и рубидийсодержащих комплексов. Наблюдаемое увеличение может указывать на влияние взаимодействий \(F-Ti \) с участием неподеленных электронных пар 6\(^{2}S \) ионов таллай.

Из сравнения с данными табл. 1 можно видеть также, что действительный порядок величины \(A_2(F-Ti) \approx 120 \) м.д., что близко к \(A_1 \). Таким образом, предположение о малости вклада взаимодействий \(F-Ti \) с участием неподеленных электронных пар не соответствует экспериментальным данным, а трехцентровые взаимодействия типа \(Zr-F-Zr \) и \(Zr-F-Ti \) в ромбическом гексафторцирконате таллай характеризуются близкими по порядку величинами. Однако в условиях существования 12 структурно неживильтывленных позиций фтор-ионов в рассматриваемых структурах их реальные спектры ЯМР \(^{19}F\) представляют собой суперпозицию близких по форме линий, разрешить которые по порошковым спектрам пока не представляется возможным.

СТРУКТУРНЫЕ ПРЕВРАЩЕНИЯ И АНИЗОТРОПИЯ ХИМИЧЕСКИХ СДВИГОВ СИГНАЛОВ ЯМР \(^{19}F\) ПРИ ВЫСОКИХ ТЕМПЕРАТУРАХ

В интервале температур 130…~ 270 К наблюдается плавное сужение спектров ЯМР \(^{19}F\) и \(^{19}F\) Ti\(_2\)ZrF\(_6\), что было объяснено [3] появлением реориентацией подвижности полиmericных цепочек и постепенным нарастанием высокотемпературного процесса диффузии ионов. Уже при комнатной температуре мала ширин спектра ЯМР \(^{19}F\) (~1 Гц) указывает на развитие трансляционной диффузии ионов фтора. Отметим, что для соединений (NH\(_4\))\(_2\)AF\(_6\) (\(A = Zr, \) H\(_2\)) этот процесс сдвигает в область более высоких температур [5]. Можно было предположить, что соответствующее усреднение диполь-дипольных взаимодействий позволяет наблюдать тонкую структуру спектра ЯМР, соответствующую трехосной анисотропии ромбической структуры с 12 структурно неживильтывленными позициями ионов фтора.

Тем не менее практически до температуры 340 К спектры ЯМР \(^{19}F\) Ti\(_2\)ZrF\(_6\) остаются неразрешенными синглетами лоренцевой формы. Подобное поведение скорее характерно для неупорядоченных структур и стекол, в которых химические сдвиги почти непрерывно меняются в окрестностях некоторого среднего значения, соответствующего наиболее распространененным конфигурациям полиmericных цепочек.

Неожиданным оказалось скачкообразное превращение синглетов в высоконачальные спектры ЯМР \(^{19}F\) для всех рассматриваемых комплексов ромбической сингонии при температурах выше 350 К (см. рис. 1, 3). Можно предположить, что обнаруженная трансформация спектров ЯМР при высоких температурах связана со структурным превращением, при котором разрушилась цепочечная структура ромбической сингонии (см. рис. 2) и возникла новая структура, аналогичная трогональным комплексам (Rb\(_x\)Cs\(_y\))\(_2\)ZrF\(_6\). При таком переходе решетка с 12 структурно неживильтывленными ионами фтора трансформируется в новую решетку с единственным типом позиций атомов фтора.
Характер и степень усреднения спектров ЯМР и анизотропии химических сдвигов существенно зависят от типа кристаллической структуры и ее симметрии. Наиболее простым является случай аксиальной симметрии системы, для которого ожидаемая анизотропия химических сдвигов должна быть одноосной. В частности, таким может быть усреднение для случая тривалентной сингонии гексафторанионов [ZrF₆]⁶⁻ и [HfF₆]⁶⁻. В этом случае для проведения усреднения используют теорему сложения полиномов Лежандра:

\[(3\cos^2\theta - 1) = (1/2)(3\cos^2\alpha - 1)(3\cos^2\beta - 1),\]

где \(\alpha\) — угол между связью F—M и осью симметрии системы и \(\beta\) — угол между осью симметрии и направлением магнитного поля. Используя (2), можно рассчитать величину анизотропии для спектра ЯМР \(^{19}\text{F}\), усредненного диффузией:

\[\sigma_{1} - \sigma_{0} = \left(\begin{array}{c} \delta_{1} - \delta_{0} \\ \alpha_{0} \end{array}\right) = (A/2)(3\cos^2\alpha - 1),\]

где \(\delta_1\) и \(\sigma_0\) — продольные (вдоль оси симметрии системы) составляющие тензоров химического сдвига и экранирования, соответствующие \(\beta = 0\), а \(\delta_2\) и \(\sigma_s\) — их перпендикулярные составляющие, соответствующие \(\beta = \pi/2\).

Формула (6) может быть использована для "экспериментального" определения угла \(\alpha\) между связями F—M и осью \(C_3\) гексафторанионов в высокотемпературных модификациях изучаемых соединений из данных об анизотропии магнитного экранирования спектров ЯМР \(^{19}\text{F}\). Для расчетов мы воспользовались данными об анизотропии химических сдвигов спектров ЯМР \(^{19}\text{F}\) низкотемпературных фаз гексафторацианатов и гексафторанатов цезия и рубидия (тривалентной сингонии). Отвержив, что экспериментальные значения констант \(A\) равны (232 ± 15) м.д. для Cs\(_2\)ZrF₆ и (186 ± 25) м.д. для CsHFF₆ [11]. С использованием экспериментальных значений \((\delta_1 - \delta_0)\) и приведенных значений констант \(A\) с помощью формулы (6) были рассчитаны параметры тривалентных гексафторанионов в высокотемпературных фазах рассматриваемых соединений (табл. 3). Следует подчеркнуть, что полученные параметры \(\alpha\) вычислены в предположении, что аксиально-симметричные высокотемпературные фазы гексафторацианатов и гексафторанатов таллия и аммония изоструктуры тривалентным комплексам типа (Rb,Cs)ZrF₆. Данное предположение нуждается в независимой проверке с использованием дифракционных данных для высокотемпературных фаз.

Таблица 3

<table>
<thead>
<tr>
<th>Соединение</th>
<th>(A, \text{м.д.})</th>
<th>(\delta_1 - \delta_0, \text{м.д.})</th>
<th>(\alpha, \text{град.})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tl(_2)ZrF₆</td>
<td>232</td>
<td>60,0</td>
<td>66,4</td>
</tr>
<tr>
<td>Tl(NH₄)ZrF₆</td>
<td>232</td>
<td>50,6</td>
<td>64,3</td>
</tr>
<tr>
<td>(NH₄)₂ZrF₆</td>
<td>232</td>
<td>33,5</td>
<td>60,9</td>
</tr>
<tr>
<td>Tl(HF)₂</td>
<td>186</td>
<td>43,6</td>
<td>65,1</td>
</tr>
<tr>
<td>Tl(NH₄)HFF₆</td>
<td>186</td>
<td>37,3</td>
<td>63,4</td>
</tr>
<tr>
<td>(NH₄)HFF₆</td>
<td>186</td>
<td>30,6</td>
<td>61,8</td>
</tr>
</tbody>
</table>

Одним из результатов проведенного исследования являются данные о химических сдвигах ЯМР \(^{19}\text{F}\) низко- и высокотемпературных фаз ромбических комплексов. Как оказалось, значения \(\delta_0\) для ромбических комплексов во всех случаях превышают таковые для тривалентных комплексов. Было показано, что данный эффект связан с влиянием дополнительного вклада взаимодействий Ti—F с участием неподеленных электронных пар б³² катионов Ti\(^{3+}\), как это имеет место в TiZrF₃ и в α- и β-TIF. Поскольку высокотемпературные структурные превраща-
ния из ромбической в аксиально-симметричную модификацию практически не затрагивают этот вклад и само значение \(\delta_{\text{opt}} \), то следует предполагать, что активность неподеленных пар \(6s^2 \) и вклад взаимодействий \(Ti-F \) также не изменяются при этих превращениях.

Хотя данный вывод представляется неожиданным, его можно сопоставить с результатами изучения химических сдвигов ЯМР при переходе из ромбической в тетрагональную модификацию бинарного TiF, где также не наблюдалось изменения изотропного химического сдвига, несмотря на резкое изменение характера "неферминости" ионов таллия в его тетрагональной (\(\alpha \)-TiF) и ромбической (\(\beta \)-TiF) модификациях. В связи с данными результатами можно предположить, что переход к высокотемпературным модификациям гексафторкомплексов таллия также сопровождается разупорядочением ориентаций стереоактивных неподеленных пар \(6s^2 \). Иными словами, полученные данные свидетельствуют в пользу вывода о том, что структурные превращения в изученных комплексах, по-видимому, не связаны с изменением характера активированных неподеленных электронных пар, а лишь с их ориентационным разупорядочением. Таким образом, определенным является отнесение структурных превращений в гексафторцирконатах и гексафторгрифатах таллия и аммония к типу переходов порядок—беспорядок.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (гранты № 97-03-33353а; 96-03-33069а; 96-03-32255а)

СПИСОК ЛИТЕРАТУРЫ

Институт химии ДВО РАН
Владивосток
Институт неорганической химии СО РАН
пр. Акад. Лаврентьева, 3
Новосибирск 630090
E-mail: gabuda@casper.che.nsk.ru

Статья поступила 28 апреля 1998 г.