УДК 539.3

РЕШЕНИЕ ЗАДАЧИ ОБ ЭЛЕКТРОМАГНИТОУПРУГОМ ИЗГИБЕ МНОГОСВЯЗНОЙ ПЛИТЫ

С. А. Калоеров, А. В. Сероштанов

Донецкий национальный университет, 83001 Донецк

E-mails: kaloerov@mail.ru, aleks.serosht@gmail.com

С использованием комплексных потенциалов теории изгиба тонких электромагнитоупругих плит получено решение задачи об изгибе плиты с произвольными отверстиями и трещинами. При этом с помощью конформных отображений, разложений голоморфных функций в ряды Лорана или по полиномам Фабера за счет выполнения граничных условий обобщенным методом наименьших квадратов задача сведена к переопределенной системе линейных алгебраических уравнений, решаемой методом сингулярных разложений. Описаны результаты численных исследований для плиты с двумя эллиптическими отверстиями или трещинами, с отверстием и трещиной, в том числе краевой. Исследовано влияние физико-механических свойств материала плиты и геометрических характеристик отверстий и трещин на основные характеристики электромагнитоупругого состояния.

Ключевые слова: пьезоплита с отверстиями и трещинами, комплексные потенциалы, обобщенный метод наименьших квадратов.

DOI: 10.15372/PMTF20220415

Введение. Тонкие пластины из пьезоматериалов широко используются в различных областях современной науки и техники в качестве элементов конструкций [1–4]. В условиях поперечного изгиба такие пластины называются тонкими плитами. При эксплуатации данных конструкций в элементах могут возникать высокие концентрации напряжений, что нужно учитывать при проектировании. Это обусловливает необходимость разработки надежных методов определения электромагнитоупругого состояния (ЭМУС) тонких многосвязных пьезоплит. В работах [5–7] предложены различные методы определения ЭМУС пьезоплит простой геометрической формы из материалов, имеющих простейшую микроструктуру. Однако в большинстве случаев элементы конструкций изготавливаются из материалов, обладающих анизотропными свойствами, более того, они могут иметь технологические отверстия и трещины, вблизи которых возникают высокие концентрации напряжений, приводящие к потере прочности конструкций. Достаточно надежные результаты определения ЭМУС многосвязных тонких плит позволяют получить методы, в которых используются комплексные потенциалы. Эти функции были введены для решения плоских задач электромагнитоупругости [8], а в работе [9] применены при решении задачи об изгибе тонких пьезоплит. В [10] с помощью указанных функций решены задачи об изгибе конечных и бесконечных односвязных плит.

Рис. 1. Схема задачи

В данной работе с использованием комплексных потенциалов электромагнитоупругости построено общее решение задачи об изгибе пьезоплиты с произвольными отверстиями и трещинами. При этом с помощью конформных отображений и разложений голоморфных функций в ряды Лорана и по полиномам Фабера комплексные потенциалы представлены в виде рядов с неизвестными коэффициентами, определение которых сводится к решению переопределенной системы линейных алгебраических уравнений методом сингулярных разложений. Для плиты с двумя отверстиями или трещинами, с отверстием и трещиной (внутренней или краевой) проведены численные исследования, с помощью которых установлены закономерности изменения ЭМУС в зависимости от физико-механических постоянных материала плиты и геометрических характеристик отверстий и трещин.

1. Постановка и метод решения задачи. Рассматривается тонкая электромагнитоупругая плита с отверстиями и трещинами в прямоугольной декартовой системе координат Oxy. В случае криволинейных отверстий их контуры можно аппроксимировать дугами эллипсов или берегами прямолинейных трещин. Поэтому будем считать, что плита занимает многосвязную область S, ограниченную внешним контуром L_0 и контурами эллиптических отверстий L_l ($l = \overline{1, L}$) с полуосями a_l , b_l (рис. 1), причем в локальных системах координат $O_l x_l y_l$ с началами в центрах эллипсов L_l и осями $O_l x_l$, направленными вдоль полуосей a_l , их параметрические уравнения имеют вид

 $x_l = a_l \cos \theta, \qquad y_l = b_l \sin \theta,$ а в основной системе координат Oxy — вид

 $x = x_{0l} + x_l \cos \varphi_l - y_l \sin \varphi_l, \qquad y = y_{0l} + x_l \sin \varphi_l + y_l \cos \varphi_l.$

Здесь φ_l — угол между положительными направлениями осей Ox и $O_l x_l$, отсчитываемый от положительного направления Ox против часовой стрелки; x_{0l} , y_{0l} — координаты начала локальной системы $O_l x_l y_l$ в основной системе Oxy; θ — параметр, изменяющийся в интервале от 0 до 2π . Плита находится под действием приложенных к ее контурам L_l ($l = \overline{0, L}$) механических изгибающих моментов $m_l(s)$, поперечных сил $p_l(s)$, моментов электрической индукции $m_{dl}(s)$ и магнитной индукции $m_{bl}(s)$, сосредоточенных сил, механических и индукционных моментов во внутренних точках $z_r^0(x_r^0, y_r^0)$ области S. В частном случае, когда контур L_0 полностью уходит в бесконечность, будем рассматривать бесконечную многосвязную плиту. При этом будем предполагать, что на бесконечности действуют механические изгибающие и крутящие моменты M_x^{∞} , M_y^{∞} , H_{xy}^{∞} и моменты индукций (векторов индукций) M_{dx}^{∞} , M_{dy}^{∞} , M_{by}^{∞} , в случае необходимости моменты напряженностей

(векторов напряженностей) H_{dx}^{∞} , H_{dy}^{∞} , H_{bx}^{∞} , H_{by}^{∞} можно найти с использованием уравнений состояния. Аналогичная процедура пересчета имеет место в случае задания на бесконечности вместо моментов индукций моментов напряженностей.

Если для решения задачи определения ЭМУС плиты использовать комплексные потенциалы электромагнитоупругости [9, 10], то оно сводится к определению из соответствующих граничных условий функций $W'_k(z_k)$ $(k = \overline{1, 4})$, где

$$z_k = x + \mu_k y - \tag{1}$$

обобщенные комплексные переменные; μ_k — корни характеристического уравнения

$$\begin{vmatrix} l_{4s}(\mu) & l_{3g}(\mu) & l_{3p}(\mu) \\ l_{3g}(\mu) & l_{2\beta}(\mu) & l_{2\nu}(\mu) \\ l_{3p}(\mu) & l_{2\nu}(\mu) & l_{2\chi}(\mu) \end{vmatrix} = 0,$$

 $l_{ij}(\mu)$ — полиномы вида

$$l_{4s}(\mu) = -(D_{22}\mu^4 + 4D_{26}\mu^3 + 2(D_{12} + 2D_{66})\mu^2 + 4D_{66}\mu + D_{11}),$$

$$l_{3g}(\mu) = C_{g22}\mu^3 + (C_{g12} + 2C_{g26})\mu^2 + (C_{g21} + 2C_{g16})\mu + C_{g11},$$

$$l_{3p}(\mu) = C_{p22}\mu^3 + (C_{p12} + 2C_{p26})\mu^2 + (C_{p21} + 2C_{p16})\mu + C_{p11},$$

$$l_{2\beta}(\mu) = C_{\beta22}\mu^2 + 2C_{\beta12}\mu + C_{\beta11}, \qquad l_{2\nu}(\mu) = C_{\nu22}\mu^2 + 2C_{\nu12}\mu + C_{\nu11},$$

$$l_{2\chi}(\mu) = C_{\chi22}\mu^2 + 2C_{\chi12}\mu + C_{\chi11},$$

 $D_{ij} = b_{ij}D_0$ — упругие жесткости плиты; $C_{gij} = c_{gij}D_0$, $C_{pij} = c_{pij}D_0$, $C_{\beta ij} = c_{\beta ij}D_0$, $C_{\nu ij} = c_{\nu ij}D_0$, $C_{\chi ij} = c_{\chi ij}D_0$ — электромагнитные жесткости плиты; $D_0 = 2h^3/3$ — постоянная, зависящая от толщины плиты h; b_{ij} , c_{gij} , c_{pij} , $c_{\beta ij}$, $c_{\nu ij}$, $c_{\chi ij}$ — элементы обратной матрицы

$$\begin{pmatrix} b_{11} & b_{12} & b_{16} & c_{g11} & c_{g21} & c_{p11} & c_{p21} \\ b_{12} & b_{22} & b_{26} & c_{g12} & c_{g22} & c_{p12} & c_{p22} \\ b_{16} & b_{26} & b_{66} & c_{g16} & c_{g26} & c_{p16} & c_{p26} \\ -c_{g11} & -c_{g12} & -c_{g16} & c_{\beta11} & c_{\beta12} & c_{\nu11} & c_{\nu12} \\ -c_{g21} & -c_{g22} & -c_{g26} & c_{\beta12} & c_{\beta22} & c_{\nu12} & c_{\nu22} \\ -c_{p11} & -c_{p12} & -c_{p16} & c_{\nu11} & c_{\nu12} & c_{\chi11} & c_{\chi12} \\ -c_{p21} & -c_{p22} & -c_{p26} & c_{\nu12} & c_{\nu22} & c_{\chi12} & c_{\chi22} \end{pmatrix}$$

$$= \begin{pmatrix} s_{11} & s_{12} & s_{16} & g_{11} & g_{21} & p_{11} & p_{21} \\ s_{12} & s_{22} & s_{26} & g_{12} & g_{22} & p_{12} & p_{22} \\ s_{16} & s_{26} & s_{66} & g_{16} & g_{26} & p_{16} & p_{26} \\ -g_{11} & -g_{12} & -g_{16} & \beta_{11} & \beta_{12} & \nu_{11} & \nu_{12} \\ -g_{21} & -g_{22} & -g_{26} & \beta_{12} & \beta_{22} & \nu_{12} & \nu_{22} \\ -p_{11} & -p_{12} & -p_{16} & \nu_{11} & \nu_{12} & \chi_{11} & \chi_{12} \\ -p_{21} & -p_{22} & -p_{26} & \nu_{12} & \nu_{22} & \chi_{12} & \chi_{22} \end{pmatrix}^{-1}$$

s_{ij} — коэффициенты деформации материала, измеренные при постоянных индукциях электромагнитного поля; g_{ij}, p_{ij} — пьезоэлектрические и пьезомагнитные модули деформаций и напряженностей, измеренные при постоянных напряжениях и индукциях; β_{ij}, ν_{ij}, χ_{ij} коэффициенты диэлектрической, магнитной и электромагнитной восприимчивости соответственно, измеренные при постоянных напряжениях. Функции $W'_k(z_k)$, определенные в областях S_k , получаемых из области S аффинными преобразованиями (1) и ограниченных контурами L_{kl} , соответствующими контурам L_l при этих преобразованиях, в общем случае многосвязной плиты имеют вид [9, 10]

т

$$W'_{k}(z_{k}) = g\Gamma_{k}z_{k} + \sum_{l=1}^{L} (A_{kl}z_{k} + B_{kl})\ln(z_{k} - z_{kl}) + \sum_{r=1}^{R} (A_{kr}^{0}z_{k} + B_{kr}^{0})\ln(z_{k} - z_{kr}^{0}) + W'_{0k}(z_{k}),$$
(2)

где коэффициент g = 0 в случае конечной плиты и g = 1 в случае бесконечной плиты; Γ_k , A_{kl} , B_{kl} — постоянные, определяемые из решения следующих систем линейных алгебраических уравнений восьмого порядка:

$$2 \operatorname{Re} \sum_{k=1}^{4} (D_{11} + 2D_{16}\mu_{k} + D_{12}\mu_{k}^{2} - \nu_{k}(C_{g11} + C_{g21}\mu_{k}) - \rho_{k}(C_{p11} + C_{p21}\mu_{k}))\Gamma_{k} = -M_{x}^{\infty},$$

$$2 \operatorname{Re} \sum_{k=1}^{4} (D_{12} + 2D_{26}\mu_{k} + D_{22}\mu_{k}^{2} - \nu_{k}(C_{g12} + C_{g22}\mu_{k}) - \rho_{k}(C_{p12} + C_{p22}\mu_{k}))\Gamma_{k} = -M_{y}^{\infty},$$

$$2 \operatorname{Re} \sum_{k=1}^{4} (D_{16} + 2D_{66}\mu_{k} + D_{26}\mu_{k}^{2} - \nu_{k}(C_{g16} + C_{g26}\mu_{k}) - \rho_{k}(C_{p16} + C_{p26}\mu_{k}))\Gamma_{k} = -H_{xy}^{\infty},$$

$$2 \operatorname{Re} \sum_{k=1}^{4} (C_{g11} + C_{g16}\mu_{k} + C_{g12}\mu_{k}^{2} + \nu_{k}(C_{g11} + C_{\beta12}\mu_{k}) + \rho_{k}(C_{v11} + C_{v12}\mu_{k}))\Gamma_{k} = -M_{dx}^{\infty},$$

$$2 \operatorname{Re} \sum_{k=1}^{4} (C_{g21} + C_{g26}\mu_{k} + C_{g22}\mu_{k}^{2} + \nu_{k}(C_{\beta12} + C_{\beta22}\mu_{k}) + \rho_{k}(C_{v12} + C_{v22}\mu_{k}))\Gamma_{k} = -M_{dy}^{\infty},$$

$$2 \operatorname{Re} \sum_{k=1}^{4} (C_{p11} + C_{p16}\mu_{k} + C_{p12}\mu_{k}^{2} + \nu_{k}(C_{\nu11} + C_{\nu12}\mu_{k}) + \rho_{k}(C_{\chi11} + C_{\chi12}\mu_{k}))\Gamma_{k} = -M_{bx}^{\infty},$$

$$2 \operatorname{Re} \sum_{k=1}^{4} (C_{p21} + C_{p26}\mu_{k} + C_{p22}\mu_{k}^{2} + \nu_{k}(C_{\nu11} + C_{\nu12}\mu_{k}) + \rho_{k}(C_{\chi11} + C_{\chi12}\mu_{k}))\Gamma_{k} = -M_{bx}^{\infty},$$

$$2 \operatorname{Re} \sum_{k=1}^{4} (C_{p21} + C_{p26}\mu_{k} + C_{p22}\mu_{k}^{2} + \nu_{k}(C_{\nu12} + C_{\nu22}\mu_{k}) + \rho_{k}(C_{\chi11} + C_{\chi12}\mu_{k}))\Gamma_{k} = -M_{by}^{\infty},$$

$$2 \operatorname{Re} \sum_{k=1}^{4} (1, \mu_{k}, \nu_{k}, \rho_{k}, \mu_{k}^{2}, \frac{1}{\mu_{k}}, d_{y}, b_{y}) iA_{kl} = (0, 0, 0, 0, 0, \frac{P_{l}}{2\pi D_{11}}, 0, 0),$$

$$2 \operatorname{Re} \sum_{k=1}^{4} (1, \mu_{k}, \nu_{k}, \rho_{k}, \mu_{k}^{2}, \frac{1}{\mu_{k}}, d_{y}, b_{y}) iB_{kl} = (0, 0, 0, 0, -\frac{M_{xl}}{2\pi D_{22}}, -\frac{M_{yl}}{2\pi D_{11}}, M_{Dl}, M_{Bl}),$$
(3)
$$\nu_{k} = \frac{\Delta_{1k}}{\Delta_{0k}}, \quad \rho_{k} = \frac{\Delta_{2k}}{\Delta_{0k}},$$

$$\Delta_{1k} = \begin{vmatrix} -l_{3g}(\mu_k) & l_{2\nu}(\mu_k) \\ -l_{3p}(\mu_k) & l_{2\chi}(\mu_k) \end{vmatrix}, \quad \Delta_{2k} = \begin{vmatrix} l_{2\beta}(\mu_k) & -l_{3g}(\mu_k) \\ l_{2\nu}(\mu_k) & -l_{3p}(\mu_k) \end{vmatrix}, \quad \Delta_{0k} = \begin{vmatrix} l_{2\beta}(\mu_k) & l_{2\nu}(\mu_k) \\ l_{2\nu}(\mu_k) & l_{2\chi}(\mu_k) \end{vmatrix},$$

 P_l, M_{xl}, M_{yl} — главный вектор и компоненты главного момента механических усилий, приложенных к контуру отверстия L_l ; M_{Dl}, M_{Bl} — суммарные моменты электрической и магнитной индукций на контуре L_l ; A_{kr}^0, B_{kr}^0 — постоянные, определяемые решением систем, получаемых из уравнений (3) путем замены A_{kl}, B_{kl} на A_{kr}^0, B_{kr}^0 , а $P_l, M_{xl}, M_{yl},$ M_{Dl}, M_{Bl} на сосредоточенную силу P_r^0 и компоненты сосредоточенных моментов $M_{xr}^0,$ $M_{yr}^0, M_{Dr}^0, M_{Br}^0$ во внутренней точке плиты $z_r^0; z_{kl}, z_{kr}^0$ — точки в областях S_k , соответствующие при аффинных преобразованиях произвольным точкам внутри контуров L_l и точкам, в которых приложены сосредоточенные силы $z_r^0; W'_{0k}(z_k)$ — голоморфные в областях S_k функции, которые можно представить в виде

$$W'_{0k}(z_k) = \sum_{l=g}^{L} W'_{kl}(z_k),$$

 $W'_{k0}(z_k)$ — функции, голоморфные внутри внешних контуров L_{k0} ; $W'_{kl}(z_k)$ $(l = \overline{1, L})$ — функции, голоморфные вне контуров отверстий L_{kl} . Для построения указанных функций используются конформные отображения.

Отобразим конформно внешности единичных кругов $|\zeta_{kl}| \ge 1$ на внешности эллипсов L_{kl} , используя формулы

$$z_k = z_{kl} + R_{kl}(\zeta_{kl} + m_{kl}/\zeta_{kl}),$$
(4)

где $z_{kl} = x_{0l} + \mu_k y_{0l}$; $R_{kl} = [a_l(\cos \varphi_l + \mu_k \sin \varphi_l) + ib_l(\sin \varphi_l - \mu_k \cos \varphi_l)]/2$; $m_{kl} = [a_l(\cos \varphi_l + \mu_k \sin \varphi_l) - ib_l(\sin \varphi_l - \mu_k \cos \varphi_l)]/(2R_{kl})$. В результате конформных отображений функции $W'_{k0}(z_k)$, голоморфные внутри L_{k0} , можно разложить в ряды по полиномам Фабера для внутренностей контуров L_{k0} или в степенные ряды

$$W_{k0}'(z_k) = \sum_{n=0}^{\infty} a_{k0n} \left(\frac{z_k - z_{k0}}{R_{k0}}\right)^n,$$

где R_{k0} — постоянные, определяемые из конформных отображений (4) для контуров L_{k0} . Функции $W'_{kl}(z_k)$ $(l = \overline{1,L})$, голоморфные вне отверстий с контурами L_{kl} , в результате конформных отображений (4) в областях переменных ζ_{kl} являются голоморфными вне единичных кругов $|\zeta_{kl}| \ge 1$, включая бесконечно удаленную точку, и их можно разложить в ряды Лорана по отрицательным степеням ζ_{kl} , т. е.

$$W_{kl}'(z_k) = \sum_{n=1}^{\infty} \frac{a_{kln}}{\zeta_{kl}^n}$$

Окончательно для комплексных потенциалов (2) имеем

$$W'_{k}(z_{k}) = (1-g)a_{k00} + g\Gamma_{k}z_{k} + N_{k}(z_{k}) + \sum_{l=g}^{L}\sum_{n=1}^{\infty}a_{kln}\varphi_{kln}(z_{k}),$$

где

$$N_k(z_k) = \sum_{l=1}^{L} (A_{kl} z_k + B_{kl}) \ln (z_k - z_{kl}) + \sum_{r=1}^{R} (A_{kr}^0 z_k + B_{kr}^0) \ln (z_k - z_{kr}^0)$$
$$\varphi_{k0n}(z_k) = \left(\frac{z_k - z_{k0}}{R_{k0}}\right)^n, \qquad \varphi_{kln}(z_k) = \frac{1}{\zeta_{kl}^n} \quad (l = \overline{1, L}),$$

 a_{kln} — неизвестные постоянные, определяемые из граничных условий на контурах плиты

$$2 \operatorname{Re} \sum_{k=1}^{4} g_{ikp} W'_k(t_k) = f_{ip}(t), \qquad (5)$$

 g_{ikp} — постоянные; $f_{ip}(t)$ — функции, зависящие от способа нагружения или подкрепления контура L_p .

Для многосвязных областей граничные условия удобнее задавать в дифференциальной форме, чтобы они не содержали аддитивных постоянных. Граничные условия, полученные из соотношений (5) путем дифференцирования по дугам контуров, имеют вид

$$2\operatorname{Re}\sum_{k=1}^{4}g_{ikp}\delta_{k,s}W_{k}''(t_{k}) = \frac{df_{ip}(t)}{ds} \qquad (i = \overline{1, 4}),$$

$$(6)$$

где

$$W_k''(z_k) = g\Gamma_k + N_k'(z_k) + \sum_{l=g}^{L} \sum_{n=1}^{\infty} a_{kln} \varphi_{kln}'(z_k),$$

$$N_k'(z_k) = \sum_{l=1}^{L} \left(A_{kl} \ln (z_k - z_{kl}) + \frac{A_{kl} z_k + B_{kl}}{z_k - z_{kl}} \right) + \sum_{r=1}^{R} \left(A_{kr}^0 \ln (z_k - z_{kr}^0) + \frac{A_{kr}^0 z_k + B_{kr}^0}{z_k - z_{kr}^0} \right),$$

$$\delta_{k,s} = \frac{dz_k}{ds}, \qquad \varphi_{k0n}'(z_k) = \frac{n(z_k - z_{k0})^{n-1}}{R_{k0}^n},$$

$$\varphi_{kln}'(z_k) = -\frac{n}{R_{kl} \zeta_{kl}^{n-1} (\zeta_{kl}^2 - m_{kl})} \qquad (l = \overline{1, L}).$$
(7)

Для того чтобы были выполнены граничные условия (6), необходимо использовать обобщенный метод наименьших квадратов [11, 12]. Для этого на каждом контуре L_p выберем систему точек $M_{pm}(x_{pm}, y_{pm})$ ($p = \overline{0, L}$; $m = \overline{1, M_p}$), в которых потребуем выполнения соответствующих граничных условий. Подставляя функции (7) в граничные условия (6) в точках $M_{pm}(x_{pm}, y_{pm})$, для определения неизвестных постоянных a_{kln} получаем систему линейных алгебраических уравнений вида

$$2\operatorname{Re}\sum_{k=1}^{4}\sum_{l=g}^{L}\sum_{n=1}^{\infty}g_{ikp}\delta_{k,s}\varphi_{kln}'(t_{kpm})a_{kln} = -2\operatorname{Re}\sum_{k=1}^{4}g_{ikp}\delta_{k,s}(g\Gamma_{k}+N_{k}'(t_{kpm})) + \frac{df_{ip}(t_{pm})}{ds}$$

$$(i=\overline{1,4}; \quad p=\overline{g,L}; \quad m=\overline{1,M_{p}}).$$
(8)

Помимо уравнений (8) для каждого контура отверстия должны выполняться уравнения

$$2\operatorname{Re}\sum_{k=1}^{4} ia_{kp1} = 0 \qquad (p = \overline{1, L}),$$
(9)

следующие из условия однозначности прогиба при полном обходе контуров отверстий L_p .

Для определения постоянных a_{kln} и c_j систему (8), дополненную уравнениями (9), будем решать методом сингулярных разложений [13, 14]. После нахождения псевдорешений этой системы функции $W'_k(z_k)$ будут известными, тогда по формулам, приведенным в [9, 10], можно вычислить механические изгибающие моменты, поперечные силы, моменты электрической и магнитной индукции в любой точке плиты. При этом, в случае если некоторый эллипс переходит в прямолинейный разрез-трещину, на его концах можно вычислить также коэффициенты интенсивности моментов (КИМ) [15]. Как частные случаи из приведенного решения задачи электромагнитоупругости (ЭМУ) следуют решения задач электроупругости (ЭУ), магнитоупругости (МУ) и теории упругости (ТУ). Установлено, что при проведении численных исследований эти решения можно получить по одной (общей) программе, если рассматривается материал с электромагнитными постоянными

$$g'_{ij} = \lambda_g g_{ij}, \quad \beta'_{ij} = \beta_{ij}/\lambda_g, \quad p'_{ij} = \lambda_p p_{ij}, \quad \chi'_{ij} = \chi_{ij}/\lambda_p, \quad \nu'_{ij} = \lambda_{gp} \nu_{ij},$$

где λ_g , λ_p , λ_{gp} — параметры. При этом для задач ЭМУ $\lambda_g = \lambda_p = \lambda_{gp} = 1$, для задач ЭУ $\lambda_g = 1$, $\lambda_p = \lambda_{gp} \leq 10^{-3}$, для задач МУ $\lambda_p = 1$, $\lambda_g = \lambda_{gp} \leq 10^{-3}$, для задач ТУ $\lambda_p = \lambda_g = \lambda_{gp} \leq 10^{-3}$. Также заметим, что по общей программе можно решать задачу электромагнитостатики для абсолютно жесткой плиты. В этом случае следует рассмотреть модельный упругий материал с постоянными $s'_{ij} = \lambda_s s_{ij}$ и для задачи элетромагнитостатики выбрать $\lambda_s \leq 10^{-3}$.

2. Результаты численных исследований. Проведены численные исследования для бесконечной плиты с эллиптическими отверстиями и трещинами при их различном положении и сочетании, в случае когда на контурах механические изгибающие моменты, поперечные силы, моменты электрической индукции и магнитной индукции равны нулю. Были выбраны следующие материалы: композит на основе BaTiO₃–CoFe₂O₄ (материал M1) [16, 17]; композит, упругие, пьезоэлектрические и электрические постоянные которого соответствуют селениду кадмия CdSe, а пьезомагнитные и магнитные — BaTiO₃ (материал M2) [18]; композит, упругие, пьезоэлектрические и электрические постоянные которого соответствуют материалу PZT-4, а пьезомагнитные и магнитные — CoFe₂O₄ (материал M3) [18].

При проведении численных исследований количество членов в бесконечных рядах (7) и количество точек M_p на каждом контуре L_p , в которых удовлетворялись краевые условия для системы уравнений (8), увеличивались до тех пор, пока краевые условия на контурах не начинали выполняться с достаточно высокой степенью точности (абсолютная погрешность не превышала 10^{-3}). Как показали численные исследования, для выполнения краевых условий в рассмотренных задачах в зависимости от расстояния между концентраторами напряжений в рядах (7) достаточно оставлять от 10 до 100 членов для каждого отверстия и выбирать на каждом контуре от 100 до 500 точек. Ниже приведены некоторые полученные результаты численных исследований в случае действия на бесконечности изгибающих механических моментов $M_y^{\infty} = m_y$ (при этом $M_x^{\infty} = H_{xy}^{\infty} = M_{dy}^{\infty} = M_{by}^{\infty} = M_{by}^{\infty} = M_{by}^{\infty} = 0$) или моментов магнитной индукции $M_{by}^{\infty} = m_{by}$ (при этом $M_x^{\infty} = M_y^{\infty} = M_{xy}^{\infty} = M_{dy}^{\infty} = M_{by}^{\infty} = M_{by}^{\infty} = 0$). Ниже приводятся значения основники и муста и советия и сове ных характеристик ЭМУС с точностью до множителя, характеризующего интенсивность указанных приложенных воздействий. Исследования проводились для задач ЭМУ, ЭУ, МУ, ТУ. Результаты расчетов представлены только для задач ЭМУ и ТУ, так как учет электрических свойств материала оказывает незначительное влияние на основные характеристики ЭМУС (значения характеристик в задачах ЭУ и ТУ близки), тогда как учет магнитных свойств существенно влияет на них (значения величин в задачах ЭМУ и МУ близки).

В табл. 1 для плиты с двумя круговыми отверстиями радиусом a_1 ($a_2 = b_2 = b_1 = a_1$), центры которых расположены на оси Ox, при действии на бесконечности механических моментов $M_y^{\infty} = m_y$ для задач ЭМУ и ТУ в зависимости от отношения c/a_1 (c — расстояние между контурами отверстий) и центрального угла отверстия θ , отсчитываемого от оси Oxпротив часовой стрелки, приведены значения моментов M_S вблизи контура левого отверстия на площадках, перпендикулярных контуру. При этом расстояние между контурами отверстий равно $c = x_{20} - x_{10} - 2a_1$, где x_{10} , x_{20} — аффиксы центров круговых отверстий;

/ра левого отверстия в плите	и механических моментов $M^{\infty}_y=m_y$
/ра левого отверстия в плит	ии механических моментов Λ

							M_S				
Материал	θ				Задача Эl	My				Задача ТУ	
		$c/a_1 = \infty$	$c/a_1 = 2$	$c/a_1 = 1$	$c/a_{1} = 0.5$	$c/a_1 = 0,1$	$c/a_1 = -0.5$	$c/a_1 = -1$	$c/a_1 = \infty$	$c/a_1 = 1$	$c/a_{1} = 0,1$
111 111	0	1,845	2,075	2,416	3,039	6,051			1,835	2,407	6,022
TTAT	$\pi/2$	0,215	0,203	0,203	0,207	0,217	0,223	0,218	0,215	0,203	0,218
	0	2,184	2,378	2,703	3,381	6,971		_	1,876	2,454	6,147
	$\pi/6$	1,457	1,547	1,646	1,737	1,509			1,424	1,617	1,385
	$\pi/3$	0,336	0,324	0,317	0,304	0,243	0,122		0,565	0,519	0,280
M2	$\pi/2$	0,231	0,218	0,219	0,225	0,237	0,240	0,233	0,146	0,138	0,148
	$2\pi/3$	0,336	0,341	0,354	0,373	0,418	0,451	0,418	0,565	0,632	0,743
	$5\pi/6$	1,457	1,517	1,568	1,629	1,755	1,808	1,702	1,424	1,691	1,540
	π	2,184	2,267	2,332	2,406	2,554	2,605	2,475	1,876	2,010	2,173
M3	0	1,719	1,967	2,317	2,921	5,724			1,507	2,103	4,950
GTAI	$\pi/2$	-0,008	-0,007	-0,006	-0,005	-0,005	-0,007	-0,007	-0,048	-0.047	-0,049

Рис. 2. Схема плиты из материала M2 с двумя круговыми отверстиями и распределение моментов M_S/m_y вблизи контура левого отверстия при действии механических моментов $M_y^{\infty} = m_y$:

сплошные линии — задача Э́МУ, штриховые — задача ТУ; 1 — $c/a_1=0,\!\!1,\,2$ — $c/a_1=1,\!0$

значения c = 0 и c < 0 соответствуют случаям, когда контуры отверстий соответственно соприкасаются и пересекаются. На рис. 2 в случае плиты из "наиболее" анизотропного по упругим свойствам материала M2 ("степень анизотропии" характеризуется отношением s_{11}/s_{22}) приведены распределения моментов M_S при различных значениях c/a_1 . В табл. 2 для плиты с двумя круговыми отверстиями при действии на бесконечности моментов магнитной индукции $M_{by}^{\infty} = m_{by}$ приведены значения механических моментов M_S вблизи контура левого отверстия с точностью до множителя m_{by} .

Из табл. 1, 2, рис. 2 и других полученных результатов следует, что при сближении отверстий значения основных характеристик ЭМУС в зоне между ними резко увеличиваются, незначительно изменяясь в других зонах. В тех случаях, когда контуры отверстий пересекаются, по мере сближения центров отверстий значения основных характеристик уменьшаются, а при совпадении этих центров $(x_{20} = x_{10}, c = -2a_1)$, как и следовало ожидать, значения этих характеристик оказываются такими же, как и в плите с одним отверстием. При действии механических моментов наибольшие изгибающие моменты возникают в плите из "наиболее" анизотропного по упругим свойствам материала М2; при действии моментов магнитной индукции наибольшие механические моменты возникают в плите из материала M3. Учет пьезосвойств материала (ср. значения моментов в задачах ЭМУ и ТУ) оказывает значительное влияние на значения изгибающих моментов, особенно в зонах их наибольшей концентрации. Следовательно, при исследовании прочности элементов конструкций с отверстиями, изготовленных из пьезоматериалов, нельзя ограничиваться решением задачи ТУ, а нужно решать задачу ЭМУ. При действии на плиту моментов индукции электромагнитного поля в ней возникают значительные механические моменты, которые можно определить, только решив задачу ЭМУ с учетом пьезосвойств. Эти моменты очень большие для плиты из "наиболее анизотропного по магнитным свойствам" материала МЗ. Из приведенных результатов также следует, что с увеличением расстояния между отверстиями значения основных характеристик ЭМУС вблизи конту-

Моториол	ρ	M_S							
материал	0	$c/a_1 = \infty$	$c/a_1 = 2$	$c/a_1 = 1$	$c/a_1 = 0.5$	$c/a_1 = 0,1$			
M1	0	-0,529	-0,396	-0,377	-0,534	-1,631			
1011	$\pi/2$	-1,372	-1,301	-1,308	-1,339	-1,404			
MO	0	-7,576	-2,573	1,836	3,163	$-14,\!643$			
1112	$\pi/2$	-31,091	-29,329	$-29,\!052$	$-29,\!442$	$-30,\!867$			
	0	-17,809	-15,824	-15,087	-17,860	-48,795			
	$\pi/6$	24,514	$32,\!142$	$38,\!546$	$43,\!982$	36,769			
	$\pi/3$	$1,\!674$	3,466	2,027	-2,335	$-17,\!462$			
M3	$\pi/2$	$-38,\!654$	$-37,\!345$	-37,044	$-37,\!292$	$-38,\!546$			
	$2\pi/3$	$1,\!674$	$5,\!539$	8,012	$10,\!389$	$14,\!558$			
	$5\pi/6$	24,514	$27,\!606$	$29,\!133$	$30,\!433$	$32,\!415$			
	π	-17,809	-18,041	-18,673	-19,611	-21,968			

Значения моментов M_S вблизи контура левого отверстия в плите с двумя круговыми отверстиями при действии моментов $M_{by}^\infty=m_{by}$

Рис. 3. Схема плиты с двумя одинаковыми эллиптическими отверстиями $(a_2 = a_1, b_2 = b_1)$ из материала М2 и распределение моментов M_S/m_y вблизи контура левого отверстия в случае действия моментов $M_y^{\infty} = m_y$ $(c/a_1 = 0,5)$ при различных значениях отношения b_1/a_1 : $1 - b_1/a_1 = 0, 2 - b_1/a_1 = 0,1, 3 - b_1/a_1 = 1,0$

ров отверстий уменьшаются и при расстояниях между контурами, больших диаметра отверстия $(c/a_1 > 2)$, влияние одного отверстия на ЭМУС плиты вблизи другого отверстия незначительно и им можно пренебречь, считая плиту ослабленной одним отверстием.

Как показывают расчеты, при уменьшении отношения длин полуосей эллипса, например отношения b_l/a_l , значения основных характеристик ЭМУС вблизи концов большой оси бесконечно увеличиваются, на достаточно большом расстоянии от концов малой оси они уменьшаются и незначительно изменяются от точки к точке. При $b_l/a_l \leq 10^{-3}$ эллипс можно считать трещиной, вычисляя для ее концов КИМ. На рис. 3 для плиты с двумя одинаковыми эллиптическими отверстиями ($a_2 = a_1, b_2 = b_1$), расстояние между которыми равно половине длины большой полуоси эллипса ($c/a_1 = 0.5$), при действии момента $M_y^{\infty} = m_y$ для задачи ЭМУ приведены значения моментов M_S вблизи контура левого отверстия при различных значениях отношения b_1/a_1 .

c/a_1	k_1^-	k_1^+	c/a_1	k_1^-	k_1^+
100	1,000	1,000	0,01	1,224	3,843
2	1,028	1,048	0,001	1,268	9,254
1	1,052	1,112	0	1,414	
0,5	1,081	1,229	-1	1,225	
0,1	1,151	1,795			

Значения КИМ в вершинах левой трещины в плите с двумя трещинами

Таблица 4

Значения моментов M_S вблизи контура отверстия и КИМ в вершинах трещины для плиты с круговым отверстием и внутренней трещиной

c/a_1	<i>M</i> _S								k_1^+
0/ 001	$\theta = 0$	$\theta = \pi/6$	$\theta = \pi/3$	$\theta = \pi/2$	$\theta = 2\pi/3$	$\theta = 5\pi/6$	$\theta = \pi$	<i>n</i> 1	1
2,0	2,304	1,516	0,335	0,229	0,344	$1,\!495$	2,233	1,081	1,047
$1,\!0$	2,501	1,581	0,334	0,233	$0,\!354$	1,526	2,271	$1,\!186$	1,087
$_{0,5}$	2,937	$1,\!639$	0,330	0,239	0,369	1,563	2,314	$1,\!357$	$1,\!136$
0,1	6,299	1,374	0,287	0,247	0,400	$1,\!636$	2,396	1,992	1,244
		D===							
		Рис.	4			Рис.	5		

Рис. 4. Схема плиты с круговым отверстием и внутренней трещиной

Рис. 5. Схема плиты с круговым отверстием и краевой трещиной

В табл. 3 для изготовленной из материала M2 плиты с двумя трещинами на оси Ox, длина каждой из которых равна $2a_1$ ($b_2 = b_1 = 10^{-4}$, $a_2 = a_1$), в зависимости от отношения c/a_1 (c — расстояние между трещинами) в случае механических воздействий $M_y^{\infty} = m_y$ приведены значения соответствующих изгибающему моменту M_y КИМ k_1^- (левая вершина) и k_1^+ (правая вершина) для левой трещины, рассматриваемой как предельный случай эллипса L_1 . Из табл. 3 следует, что при уменьшении расстояния между трещинами КИМ в их вершинах, особенно во внутренних, увеличиваются; при весьма малых расстояниях между трещинами КИМ во внешних вершинах такой же, как для трещины, длина которой в два раза больше. Это обусловлено тем, что для трещины длиной $2a_1$ КИМ вычисляется по формуле $k_1^{\pm} = \sqrt{a_1}$, а для трещины длиной $4a_1$ — по формуле $k_1^{\pm} = \sqrt{2a_1}$, т. е. эти КИМ различаются множителем $\sqrt{2}$. Отрицательное значение параметра c/a_1 в табл. 3 имеет тот же смысл, что и отрицательные значения c/a_1 в табл. 1 для плиты с двумя отверстиями.

Представляет интерес исследование влияния на ЭМУС плиты с отверстием появления в ней внутренних и краевых трещин. Проведено исследование значений изгибающих моментов M_S вблизи контура отверстия и КИМ в вершинах трещины в случае плиты из материала M2 при действии моментов $M_y^{\infty} = m_y$.

Значения моментов M_S вблизи контура отверстия и КИМ в вершине трещины в плите из материала M2 с круговым отверстием и краевой трещиной в зависимости от длины трещины

l/a_1	M_S									
<i>v/ w</i> ₁	$\theta=\pi/180$	$\theta = \pi/12$	$\theta = \pi/6$	$\theta = \pi/4$	$\theta = \pi/3$	$\theta = \pi/2$	$\theta = 2\pi/3$	$\theta = 5\pi/6$	$\theta = \pi$	<i>n</i> 1
0	$2,\!183$	2,003	1,457	0,767	0,336	0,231	0,336	$1,\!457$	2,184	
0,1	$0,\!370$	1,833	1,413	0,751	0,331	0,231	0,338	1,460	2,187	$0,\!635$
$_{0,5}$	$0,\!140$	0,879	0,970	0,581	0,276	0,233	0,361	1,510	2,241	1,115
1,0	0,090	0,531	0,621	0,405	0,224	0,241	0,399	$1,\!603$	2,348	1,283
2,0	$0,\!057$	0,281	0,306	0,205	0,160	0,258	0,468	1,800	2,582	1,518
5,0	0,022	0,007	-0,076	-0,086	0,039	0,275	0,619	2,317	3,226	1,902
$10,\!0$	-0,004	-0,200	-0,385	-0,348	-0,093	0,272	0,787	2,991	4,090	2,521

В табл. 4 для плиты с круговым отверстием радиусом a_1 и внутренней трещиной длиной $2a_1$, находящейся на расстоянии c от контура (рис. 4), приведены значения моментов M_S вблизи контура отверстия и КИМ k_1^- , k_1^+ в вершинах трещины в зависимости от отношения c/a_1 . Из табл. 4 следует, что в плите с круговым отверстием и внутренней трещиной по мере приближения трещины к отверстию (при уменьшении c/a_1) значения изгибающих моментов вблизи его контура и КИМ в вершинах трещины резко увеличиваются в зоне между отверстием и трещиной и незначительно изменяются в других зонах. Если трещина удалена от отверстия на расстояние, превышающее его диаметр (в данном случае длину трещины), влиянием отверстия и трещины на напряженное состояние плиты можно пренебречь. Результаты сравнения данных, приведенных в табл. 1, 3, 4, показывают, что при одних и тех же расстояниях в плите с отверстием и внутренней трещиной концентрация моментов (и соответственно напряжений) вблизи контура отверстия меньше, чем в плите с двумя отверстиями; в плите с отверстием и трещиной значения КИМ в вершинах трещинах трещиной значения концентрация моментов (и соответственно напряжений) вблизи контура отверстия меньше, чем в плите с двумя отверстиями; в плите с отверстием и трещиной значения) больше, чем в плите с двумя трещинами.

В табл. 5 для плиты с круговым отверстием радиусом a_1 и краевой трещиной длиной l (рис. 5) приведены значения изгибающего момента M_S вблизи контура отверстия и КИМ k_1^+ в вершине трещины в зависимости от отношения l/a_1 . Наличие краевой трещины приводит к резкому уменьшению значений изгибающих моментов в зоне выхода трещины на контур (в окрестности точки $\theta = 0$) и их увеличению в окрестности точки $\theta = \pi$, причем с увеличением длины трещины значения момента в указанной зоне и КИМ в вершине трещины растут. Если длина трещины большая, то значение момента вблизи указанной точки также большое, а значения КИМ увеличиваются так же, как в случае плиты с одной трещиной, т. е. по закону \sqrt{l} . Создание отверстия в конце трещины приводит к уменьшению концентрации моментов в этой области, но при этом увеличиваются значения КИМ во второй вершине трещины.

Заключение. Таким образом, с использованием комплексных потенциалов теории изгиба тонких электромагнитоупругих плит [9, 10] решена общая задача определения ЭМУС пьезоплиты с отверстиями и трещинами. При этом с помощью конформных отображений, разложений голоморфных функций в ряды Лорана или по полиномам Фабера за счет выполнения граничных условий обобщенным методом наименьших квадратов задача сведена к переопределенной системе линейных алгебраических уравнений. Для плиты с двумя отверстиями, с двумя трещинами, с отверстием и трещиной проведены численные исследования, с помощью которых установлены закономерности изменения ЭМУС в зависимости от физико-механических постоянных материала плиты и геометрических характеристик отверстий и трещин, их сочетания и положения.

ЛИТЕРАТУРА

- Берлинкур Д. Пьезоэлектрические и пьезомагнитные материалы и их применение в преобразователях // Физическая акустика / Д. Берлинкур, Д. Керран, Г. Жаффе. М.: Мир, 1966. Т. 1, ч. А. С. 204–326.
- 2. Бичурин М. И. Магнитоэлектрические материалы / М. И. Бичурин, В. М. Петров, Д. А. Филиппов, Г. Сринивасан, С. В. Нан. М.: Акад. естествознания, 2006.
- 3. Пятаков А. П. Магнитоэлектрические материалы и их практическое применение // Бюл. Рос. магнит. о-ва. 2006. Т. 5, № 2. С. 1–3.
- Srinivas S., Jiang Y. L. The effective magnetoelectric coefficients of polycrystalline multiferroic composites // Acta Materialia. 2005. V. 53. P. 4135–4142.
- Eringen A. C. Theory of electromagnetic elastic plates // Intern. J. Engng Sci. 1989. V. 27, N 4. P. 363–375.
- Librescu L., Hasanyan D., Ambur D. R. Electromagnetically conducting elastic plates in a magnetic field: modeling and dynamic implications // Intern. J. Non-Linear Mech. 2004. V. 39, N 5. P. 723–739.
- Gales C., Baroiu N. On the bending of plates in the electromagnetic theory of microstretch elasticity // Z. angew. Math. Mech. 2014. Bd 94, N 1/2. S. 55–71.
- 8. Калоеров С. А., Петренко А. В. Двумерная задача электромагнитоупругости для многосвязных сред // Мат. методы и физ.-мех. поля. 2008. Т. 51, № 2. С. 208–221.
- 9. Калоеров С. А. Комплексные потенциалы теории изгиба тонких электромагнитоупругих плит // Вестн. Дон. нац. ун-та. Сер. А. Естеств. науки. 2019. № 3/4. С. 37–57.
- 10. Калоеров С. А., Сероштанов А. В. Исследование изгиба тонких электромагнитоупругих плит // ПМТФ. 2022. Т. 63, № 2. С. 151–165.
- 11. Воеводин В. В. Вычислительные основы линейной алгебры. М.: Наука, 1977.
- 12. Форсайт Дж. Машинные методы математических вычислений / Дж. Форсайт, М. Малькольм, К. Моулер. М.: Мир, 1980.
- Drmaç Z., Veseliç K. New fast and accurate Jacobi SVD algorithm. 1 // SIAM J. Matrix Anal. Appl. 2008. V. 29, N 4. P. 1322–1342.
- Drmaç Z., Veseliç K. New fast and accurate Jacobi SVD algorithm. 2 // SIAM J. Matrix Anal. Appl. 2008. V. 29, N 4. P. 1343–1362.
- 15. Калоеров С. А., Занько А. И. Решение задачи линейной вязкоупругости для многосвязных анизотропных плит // ПМТФ. 2017. Т. 58, № 2. С. 141–151.
- Yamamoto Y. Electromagnetomechanical interactions in deformable solids and structures / Y. Yamamoto, K. Miya. Amsterdam: Elsevier Sci. North Holland, 1987.
- Tian W.-Y., Gabbert U. Multiple crack interaction problem in magnetoelectroelastic solids // Europ. J. Mech. Pt A. 2004. V. 23. P. 599–614.
- Hou P. F., Teng G.-H., Chen H.-R. Three-dimensional Greens function for a point heat source in two-phase transversely isotropic magneto-electro-thermo-elastic material // Mech. Materials. 2009. V. 41. P. 329–338.

Поступила в редакцию 5/VII 2021 г., после доработки — 29/X 2021 г. Принята к публикации 29/XI 2021 г.