УДК 533.6.011

ВЛИЯНИЕ МАЛОГО ПРИТУПЛЕНИЯ НА ФОРМИРОВАНИЕ ВИХРЕЙ ГЕРТЛЕРА ПРИ СВЕРХЗВУКОВОМ ОБТЕКАНИИ УГЛА СЖАТИЯ

П. В. Чувахов^{*,**}, В. Я. Боровой^{*}, И. В. Егоров^{*,**}, В. Н. Радченко^{*}, Г. Оливье^{***}, А. Рогелиа^{***}

* Центральный аэрогидродинамический институт им. Н. Е. Жуковского, 140180 Жуковский, Россия

** Московский физико-технический институт (МФТИ), 141700 Долгопрудный, Россия

*** Рейнско-Вестфальский технический университет г. Ахен, 52056 Ахен, Германия E-mails: pavel_chuvahov@mail.ru, volf.borovoy@gmail.com, ivan.egorov@tsagi.ru, vlradchenko@yandex.ru, olivier@swl.rwth-aachen.de, roghelia@swl.rwth-aachen.de

С использованием метода тонких люминесцентных покрытий, чувствительных к температуре, исследовано влияние малого цилиндрического притупления передней кромки пластины на формирование пространственных структур в номинально двумерном сверхзвуковом течении в угле сжатия при числе Маха $M_{\infty} \approx 8$ и ламинарном состоянии невозмущенного пограничного слоя. В области присоединения оторвавшегося потока в широком диапазоне чисел Рейнольдса $(0,15 \cdot 10^6 \div 2,55 \cdot 10^6)$ при различных углах отклонения потока и длине пластины обнаружены продольные вихри. Показано, что наличие вихрей вызывает колебания коэффициента теплообмена в поперечном направлении, амплитуда которых может достигать 30 %. При значительных неровностях передней кромки пластины зафиксированы максимальные отклонения числа Стэнтона, достигающие 80 %. Установлено, что при малом притуплении передней кромки существенно уменьшаются как максимальные значения числа Стэнтона в области присоединения, так и амплитуды его колебаний в поперечном направлении, вызванных продольными вихрями. Для ряда условий эксперимента получены решения трехмерных уравнений Навье — Стокса. Показано, что результаты расчетов согласуются с экспериментальными данными. Это свидетельствует о значительном стабилизирующем влиянии малого притупления на интенсивность продольных вихрей.

Ключевые слова: малое притупление, высокоэнтропийный слой, пограничный слой, угол сжатия, вихри Гертлера, сверхзвуковое течение, отрыв потока, присоединение потока.

DOI: 10.15372/PMTF20170603

Введение. В последнее время большой интерес вызывает проблема реализации длительного гиперзвукового полета. Об этом свидетельствуют летные испытания гиперзвуковых летательных аппаратов (ГЛА) X41 и X45, проведенные в США, натурные иссле-

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (совместный грант России и Германии) (код проекта 14-01-91332). Численное моделирование выполнено с использованием оборудования центра коллективного пользования "Комплекс моделирования и обработки данных исследовательских установок мегакласса" Научно-исследовательского центра "Курчатовский институт".

[©] Чувахов П. В., Боровой В. Я., Егоров И. В., Радченко В. Н., Оливье Г., Рогелиа А., 2017

дования ламинарно-турбулентного перехода в рамках совместной программы США и Австралии HiFiRe, проекты-демонстраторы гиперзвуковых воздушно-реактивных двигателей (ГПВРД), созданные в Австралии, ГЛА SHEFEX I и II и проект SHEFEX III, разработанные в Германии.

Общей проблемой при создании ГЛА является взаимодействие скачка уплотнения с пограничным слоем вблизи плоских и наклонных поверхностей элементов управления [1]. Вследствие этого исследование сверхзвукового течения в угле сжатия представляет практический и теоретический интерес. Ранее установлено, что при превышении некоторой величины угла отклонения потока пограничный слой отрывается от передней грани угла (плоской пластины) и присоединяется на задней отклоненной грани (рампе). Характеристики чисто ламинарного или чисто турбулентного сверхзвукового отрыва при умеренных углах отклонения потока стационарны и слабо зависят от числа Рейнольдса, а для переходного отрыва, как правило, нестационарны и существенно зависят от числа Рейнольдса [2]. В зоне присоединения наблюдаются максимальные значения величины теплового потока и давления, которые значительно больше, чем при безотрывном течении. Именно максимальные тепловые нагрузки в зоне присоединения определяют размеры элементов необходимой теплозащиты. В настоящее время построено большое количество корреляционных зависимостей, которые, например, связывают максимальные значения давления и величины теплового потока в области присоединения. Такие зависимости основаны на результатах расчетов и экспериментов. При этом расчетные зависимости получены при двумерном моделировании течений и поэтому не могут учитывать влияние эффектов, возникающих при трехмерном обтекании летательного аппарата (ЛА).

В области присоединения газ течет по вогнутой траектории через веер волн сжатия, порождающих скачок присоединения. В таком номинально двумерном течении могут формироваться стационарные продольные вихревые структуры типа вихрей Гертлера. Причины гертлеровской неустойчивости хорошо известны (см., например, [3–5]). Одним из первых достаточно общих экспериментальных исследований, в которых наблюдалась гертлеровская неустойчивость в отрывных сжимаемых течениях, стала работа [6]. Формирование и развитие продольных вихрей в сверхзвуковом течении вблизи угла сжатия исследовалось в ряде экспериментальных работ [7–15], в которых отмечается, что при наличии продольных вихрей возникает поперечная неоднородность распределения давления, напряжений трения и теплового потока. Неоднородность редко имеет строго регулярный характер, несмотря на то что всегда выделяется волна, характерная длина которой равна одной-пяти толщинам пограничного слоя. Локальные максимумы величины теплового потока могут значительно превышать средние в поперечном направлении значения. Такие результаты получены для большого диапазона чисел Маха и для различных состояний пограничного слоя [9]. В работе [15] сообщается, что поперечные колебания теплового потока ограничены турбулентным уровнем теплового потока и затухают, когда на рампе устанавливается полностью турбулентное течение. Однако, если в область присоединения падает скачок уплотнения, изменение средней величины теплового потока может быть более существенным, чем колебания величины теплового потока, обусловленные наличием вихрей [11].

В работах [8, 13, 14, 16] проведены многопараметрические исследования влияния единичного числа Рейнольдса, длины пластины перед рампой и угла наклона рампы на характеристики продольных вихрей и теплообмена за областью присоединения. Показана роль передней кромки в процессе формирования вихрей, влияние единичного числа Рейнольдса связывается с переходным состоянием пограничного слоя в области присоединения.

Зарождение и развитие вихрей в угле сжатия активно исследуется с помощью численных методов, позволяющих интерпретировать экспериментальные результаты и расши-

рить область их использования. Например, в работе [17] показано, что пристенные вихри формируются в результате гертлеровской неустойчивости непосредственно в области присоединения. Размеры наиболее неустойчивой области приблизительно равны 20 % общей толщины пограничного слоя и расположенного на его внешней границе высоконапорного слоя. Показано, что зарождение таких вихрей обусловлено действием положительного градиента давления и представляет собой частный случай трехмерного отрыва.

В расчетной работе [18] показаны различные стадии развития гертлеровской неустойчивости, формирующейся на вогнутой поверхности сжатия в гиперзвуковом потоке. В работе [19] с помощью расчетов, проведенных для начальных ("затравочных") возмущений различного уровня, выявлены значительные нелинейные эффекты при увеличении интенсивности теплообмена в зоне присоединения.

В большинстве исследований течения в угле сжатия передняя кромка плоской пластины была острой. Однако ГЛА должны иметь хотя бы небольшое притупление передних кромок для уменьшения их температуры. Вследствие этого над обтекаемой поверхностью в области притупления за головной ударной волной формируется высокоэнтропийный слой (ВЭС) (см., например, [1, 20]).

Интерес к исследованию влияния притупления на гиперзвуковое течение в угле сжатия обусловлен разработкой воздухозаборных устройств для ГПВРД. Притупление может привести к перестройке сжимающих скачков и изменению характеристик воздухозаборника, в частности к его незапуску [21, 22]. Например, гиперзвуковое воздухозаборное устройство, рассматриваемое в [21], запускается при значении радиуса притупления $r \approx 0,13$ мм и не запускается при $r \approx 2,5$ мм. В работе [22] исследуются малые радиусы притупления (r < 0,25 мм). Аналогичное поведение наблюдается при исследовании влияния притупленных кромок на запуск модельного воздухозаборника [23].

В [6] обнаружено, что генерация продольных структур существенно зависит от толцины и нерегулярностей поверхности передней кромки. В [3] установлено значительное влияние передней кромки на возникающие вихри Гертлера, однако осталось неясным, относится ли это к энтропийному эффекту. В [14] также не определено влияние величины притупления на поперечную длину волны полосчатых структур. В работе [24], посвященной исследованию осесимметричной конфигурации угла сжатия, показано, что притупление приводит к уменьшению числа Гертлера и, следовательно, к стабилизации течения по отношению к формированию продольных вихрей. В частности, вихри фиксировались методом сублимирующих покрытий за острой передней кромкой; при малом (r = 0,1 мм) притуплении вихри ослабевали, а при большом (r = 1,0 мм) притуплении не были обнаружены.

Влияние притупления на ламинарный слой обусловлено тем, что за прямым скачком уменьшаются локальные значения чисел Маха и Рейнольдса. Вследствие этого коэффициент давления, при котором происходит отрыв, увеличивается, а в области присоединения — уменьшается (см., например, [1]). Поэтому с увеличением радиуса притупления сопротивляемость течения отрыву увеличивается и зона отрыва уменьшается. В области присоединения максимальная величина теплового потока может уменьшаться на порядок вследствие притупления передней кромки. Притупление также приводит к стабилизации течения за областью отрыва. В условиях высокоэнтальпийного потока влияние притупления менее существенно. Это объясняется уменьшением отхода ударной волны в результате диссоциации [25] и как следствие уменьшением толщины ВЭС.

Теоретическому исследованию развития пограничного слоя над затупленной пластиной посвящено большое количество работ. Одна из наиболее адекватных аналитических моделей для ламинарных течений предложена в работе [26], в которой введен корреляционный параметр, учитывающий влияние вязкости и притупления. В [27] для корреляции экспериментальных данных этот параметр использовался в виде $\beta_c = \chi_{\varepsilon}/\sqrt{x_{\varepsilon}}$, где x_{ε} параметр, учитывающий влияние радиуса притупления и коэффициента сопротивления передней кромки пластины; χ_{ε} — параметр вязкого взаимодействия. В [27] показано, что при $\beta_c < 0,1$ преобладает энтропийный эффект, при $\beta_c > 1$ течение в основном определяется вытесняющим действием пограничного слоя. Также в [27] отмечалось, что по мере увеличения радиуса притупления отрывная зона в угле сжатия сначала увеличивается, затем уменьшается (рассматривается свободный отрыв, при котором положение точек отрыва и присоединения не зафиксировано). В [27] установлено, что радиус инверсии зависит от характеристик набегающего потока и соответствует значениям величины β_c в диапазоне от 0,5 до 0,7. Данные работ [2, 27] подтверждаются результатами многочисленных экспериментальных и численных исследований.

Двумерные параметрические расчеты влияния притупления на течение в угле сжатия выполнены в [28]. Обсуждается положение точки поглощения ВЭС пограничным слоем. Отмечено существование радиуса инверсии, который соответствует переходу точки поглощения из невозмущенной области, предшествующей отрыву, в область взаимодействия. Аналогичные эффекты обнаружены также в работе [14] и расчетах [8] с прямоугольным притуплением передних кромок.

До настоящего времени экспериментально изучались, как правило, большие радиусы притупления, при которых пограничный слой находится на нижней границе ВЭС. Однако в [29] показано, что именно малое притупление пластины приводит к существенному уменьшению величины тепловых потоков и давления в зоне интерференции скачка как с ламинарным, так и с турбулентным пограничным слоем. Этот эффект усиливается до тех пор, пока не будет достигнуто некоторое пороговое значение радиуса притупления, после чего увеличение притупления приводит лишь к дополнительным потерям полного давления и практически не влияет на распределение тепловых потоков.

В настоящей работе исследуется влияние малого притупления на формирование вихрей Гертлера. Поскольку исследование течений с использованием дискретных датчиков не позволяет выявить влияние притупления на формирование продольных вихрей, в данной работе продольные вихри изучаются с помощью панорамного оптического метода измерения температуры поверхности.

1. Экспериментальная установка, модель, методы исследования. Экспериментальные исследования проводились в работающей по схеме Людвига ударной аэродинамической трубе УТ-1М импульсного действия Центрального аэрогидродинамического института. Полное давление p_0 рабочего газа (воздуха) может меняться в диапазоне $5 \cdot 10^5 \div 100 \cdot 10^5$ Па. Вследствие электрического подогрева покоящегося газа температура торможения может достигать значения $T_0 \approx 870$ К. Время существования стационарного течения составляет приблизительно 40 мс. Труба работает в различных сверхзвуковых режимах с профилированными соплами, рассчитанными на течение с числами Маха $M_{\infty} = 5$; 6 (при диаметре сопла 300 мм) и $M_{\infty} = 6$; 8; 10 (при диаметре сопла 500 мм).

В настоящей работе эксперименты проводились при следующих параметрах набегающего потока: $M_{\infty} = 8, T_0 \approx 760$ K, $\text{Re}_1 = 2.8 \cdot 10^6 \div 17.8 \cdot 10^6 \text{ m}^{-1}$. Вследствие варьирования полного давления p_0 набегающего потока и длины пластины L эксперименты охватывают диапазон чисел Рейнольдса $\text{Re}_L = 0.15 \cdot 10^6 \div 2.55 \cdot 10^6$. Температура модели за время пуска меняется незначительно и приблизительно равна комнатной температуре $T_w \approx 293$ K $(T_w/T_0 \approx 0.4)$.

Экспериментальная модель показана на рис. 1. На пластине, изготовленной из стеклопластика (длина 225 мм, ширина 150 мм), установлен стальной клин (рампа), имеющий форму прямой треугольной призмы с длиной обтекаемой части, равной 150 мм. В рампу вставляются теплоизоляционные вкладки, выполненные из стеклопластика или органи-

Рис. 1. Экспериментальная модель: 1 — пластина, 2 — рампа (клин сжатия) с теплоизоляционной вкладкой из органического стекла, 3 — боковые накладки

ческого стекла. Рампа крепится к пластине с помощью боковых накладок, которые выступают над моделью, препятствуя вытеканию газа из области повышенного давления. Предусмотрена возможность установки рамп с углами наклона $\alpha = 15, 20, 25^{\circ}$ на расстояниях L = 50, 100, 150 мм от острой передней кромки пластины до острой передней кромки рампы — линии излома угла сжатия. Притупление передней кромки пластины создается за счет крепления к ней снизу передних накладок. Поверхность накладок плавно сопрягается с поверхностью пластины. Накладки выполнены из закаленной стали и формируют цилиндрическое притупление с радиусами r в диапазоне от 0,02 мм (острая кромка) до 4 мм. В настоящей работе использовались притупления с радиусами 0,02, 0,30, 0,50, 1,00 мм и рампы с углами наклона $\alpha = 15, 25^{\circ}$, установленные на расстояниях L = 50, 150 мм. Для исследования теплообмена использовались тонкие люминесцентные покрытия, чувствительные к температуре [30]. По величине приращения температуры поверхности, измеренной за выбранный интервал времени, определяется величина теплового потока от газа к модели в каждой точке поверхности. Для этого используется аналитическое решение одномерного уравнения теплопроводности, а также теплофизические свойства применяемых теплоизоляционных материалов.

Для визуализации течения над моделью применяется метод Теплера. Параметры потока при тепловых и теневых испытаниях близки.

2. Результаты экспериментальных исследований. Проведена серия экспериментов, в которых получены тепловые и теневые картины течения в угле сжатия.

2.1. *Теневые испытания*. Примеры теневых картин представлены на рис. 2. Видны характерные особенности течения в угле сжатия: головная ударная волна; область отрыва, начало которой отмечается скачком отрыва; область присоединения, в которой формируется скачок присоединения; слой смешения. Положение точек отрыва и присоединения можно определить приближенно, продолжая соответствующие скачки до пересечения с об-

Рис. 2. Теневые картины при $M_{\infty} = 8$, L = 50 мм, $\text{Re}_L \approx 4 \cdot 10^5$, $\alpha = 25^\circ$ и различных радиусах притупления: a - r = 0, $\delta - r = 1$ мм

текаемой поверхностью. Головная ударная волна пересекается со скачками отрыва и присоединения и падает на обтекаемую поверхность за областью присоединения. При наличии малого притупления головная ударная волна отходит от передней кромки пластины и от модели в целом. Формирование за областью притупления ВЭС приводит к уменьшению градиентов газодинамических величин. Этот эффект усиливается с увеличением радиуса притупления. Особенности течения на теневых картинах видны менее отчетливо (см. рис. 2).

На рис. 3 приведена зависимость угла наклона α_{ml} границы зоны отрыва относительно поверхности пластины от числа Рейнольдса Re_L за острой передней кромкой. Малые значения α_{ml} и их монотонное убывание с увеличением Re_L характерны для ламинарного течения в отрывной области. Об этом также свидетельствует большая протяженность зоны отрыва.

Зависимость длины зоны отрыва L_s от радиуса притупления представлена на рис. 4. Практически во всех случаях при увеличении радиуса притупления r зона отрыва сначала увеличивается, затем уменьшается. При наибольшем значении $\text{Re}_L \approx 25 \cdot 10^5$ реверсивное поведение меняется на монотонное. Это обусловлено, по-видимому, уменьшением толщины пограничного слоя и смещением точки поглощения ВЭС в область взаимодействия, что соответствует данным расчетов и экспериментов.

На рис. 3, 4 также показано влияние длины пластины L на рассматриваемые характеристики течения при фиксированной величине Re_L , т. е. влияние единичного числа Рейнольдса $\operatorname{Re}_1 = \operatorname{Re}_L/L$. Такое влияние обычно объясняется переходным характером течения в области присоединения. По мнению авторов настоящей работы, оно также может быть обусловлено наличием интенсивных вихрей в области присоединения и независимостью спектра возмущений от толщины пограничного слоя, увеличивающейся с ростом L.

Рис. 3. Зависимость угла наклона границы отрывной зоны к поверхности пластины от числа Рейнольдса Re_L при r = 0:

точки — эксперимент, линии — аппроксимация кубическим сплайном; 1, 3 — L=50мм, 2, 4 — L=150мм; 1, 2, 5 — $\alpha=15^\circ,$ 3, 4, 6 — $\alpha=25^\circ$

Рис. 4. Зависимость длины зоны отрыва от радиуса притупления при $\alpha = 15^{\circ}$ (1–5) и $\alpha = 25^{\circ}$ (6–8) и различных значениях L и Re_L:

1-3, 6, 7 — L = 50 mm, 4, 5, 8 — L = 150 mm; 1 — Re_L = $2 \cdot 10^5$, 2 — Re_L = $4 \cdot 10^5$, 3 — Re_L = $8 \cdot 10^5$, 4 — Re_L = $6 \cdot 10^5$, 5 — Re_L = $25 \cdot 10^5$, 6 — Re_L = $2, 2 \cdot 10^5$, 7 — Re_L = $4 \cdot 10^5$, 8 — Re_L = $5, 5 \cdot 10^5$

2.2. *Тепловые испытания*. Результатом тепловых испытаний является панорамное (по всей поверхности) распределение безразмерного коэффициента теплоотдачи, или числа Стэнтона

$$St = \frac{q_w}{\rho_\infty U_\infty c_p (T_0 - T_w)}$$

 $(q_w - величина теплового потока).$

Характерное продольное распределение St(x, z) по линии симметрии модели z = 0, средняя по $z \in [z_{\min}, z_{\max}]$ величина St(x) и область колебаний числа Стэнтона St на поверхности представлены на рис. 5, а для рамп с углами $\alpha = 15, 25^{\circ}$. Положению острой передней кромки пластины соответствует координата x = 0. Видно, что влияние продольных вихрей на тепловой поток наиболее существенно за линией присоединения на некотором расстоянии от нее. Вниз по потоку от этой зоны влияние вихрей ослабевает, а тепловой поток в поперечном направлении становится более равномерным. Результаты расчета полных уравнений Навье — Стокса удовлетворительно согласуются с экспериментальными данными, в том числе в области присоединения. Однако за этой областью значение числа Стэнтона St(x), полученное при двумерном расчете, достигает максимума и начинает уменьшаться, а аналогичные осредненные по z зависимости, полученные в эксперименте и трехмерном расчете с учетом вихрей, продолжают увеличиваться. Таким образом, наличие регулярных продольных вихрей Гертлера, по-видимому, приводит не только к колебаниям коэффициента теплообмена на обтекаемой поверхности, но и к увеличению его среднего значения. Увеличение среднего значения интенсивности теплообмена в эксперименте можно объяснить переходным состоянием пограничного слоя в области присоединения, однако расчет проводился в ламинарной постановке, что свидетельствует о влиянии продольных вихрей на увеличение интенсивности теплообмена.

Рис. 5. Характерные продольное (a) и поперечное (b) распределения числа Стэнтона St при различных режимах течения:

точки — эксперимент, линии — расчет; 1 — в сечении z = 0, 2, 3 — средняя по z величина St(x) ($z \in [0, 15 \text{ мм}]$), 4 — двумерный расчет без учета вихрей, 5 — средняя по z величина St(x), полученная при трехмерном расчете с учетом вихрей, 6 — в сечении за областью присоединения, 7 — средняя величина St(z); 1, 2, 4, 5 — $\alpha = 15^{\circ}$, $\operatorname{Re}_{L} = 3,71 \cdot 10^{5}$, 3, 6, 7 — $\alpha = 25^{\circ}$, $\operatorname{Re}_{L} = 3,55 \cdot 10^{5}$, L = 50 мм, r = 0; x_s , x_r — точки отрыва и присоединения при $\alpha = 15^{\circ}$ соответственно; заштрихованные области — области вариаций St(x) при наличии вихрей

Характерное поперечное распределение St(z) представлено на рис. 5,6 при $\alpha = 25^{\circ}$, $Re_L = 3,55 \cdot 10^5$. Характерная длина волны наблюдаемых возмущений не выделяется, можно указать ее приближенное значение, равное 3,4 мм, при толщине пограничного слоя над плоской пластиной вблизи линии отрыва $\delta(x_s) \approx 0,75$ мм при $x_s \approx 0,2L$ и вблизи линии излома (в отсутствие отрыва) $\delta(x_s) \approx 2,24$ мм при $x_s \approx L$. Переменное среднее значение $St_f(z)$ получено методом фильтрации Савицкого — Голея.

На рис. 6 представлены экспериментальные тепловые картины (поля числа Стэнтона на поверхности рампы). Видно, что поток отрывается от поверхности пластины и присоединяется к поверхности рампы, на пластине вихри не наблюдались. Они формируются на рампе за линией присоединения и далее сносятся вниз по потоку. При $\alpha = 15^{\circ}$ вихри распространяются практически вдоль всей поверхности рампы, при $\alpha = 25^{\circ}$ вихри быстро сливаются и не видны за линией падения головного скачка на рампу (см. рис. 6,*e*,*e*). При $\alpha = 15^{\circ}$ число Стэнтона St незначительно увеличивается в области $x \approx 130$ мм, что соответствует области падения головной ударной волны и скачка отрыва на поверхность рампы. Незначительное локальное увеличение числа Стэнтона на правой границе рампы при $x \approx 150$ мм, по-видимому, обусловлено турбулизацией течения.

На рис. 6 показано также влияние малого притупления на вихри Гертлера при $\alpha = 15$, 25° , которое проявляется в размывании вихрей и значительном уменьшении среднего значения числа Стэнтона St и амплитуды его поперечных колебаний. Длина волны продольных вихрей увеличивается при малом радиусе притупления r = 0,3 мм. Результаты экспериментов, проведенных при других радиусах притупления, показывают, что дальнейшее увеличение радиуса r практически не влияет на длину волны вихрей.

Наличие вихрей за острой передней кромкой зафиксировано в широком диапазоне чисел Рейнольдса $\text{Re}_L = 0.15 \cdot 10^6 \div 2.55 \cdot 10^6$. При наличии притупления вихревая картина размывается, однако вихри обнаруживаются при $\text{Re}_L \leq 10^6$. При $\text{Re}_L > 10^6$ на тепловых картинах вихри практически не наблюдаются даже при наименьшем исследованном значении радиуса притупления r = 0.3 мм.

Рис. 6. Поля числа Стэнтона St на поверхности рампы при $\text{Re}_L \approx 3,7 \cdot 10^5$, L = 50 мм и различных значениях угла наклона и радиуса притупления: $a, \delta - \alpha = 15^\circ, 6, c - \alpha = 25^\circ; a, 6 - r = 0$ (острая передняя кромка), $\delta, c - r = 0,3$ мм; штриховые линии — линии падения головного скачка на рампу

Основные результаты получены для рампы с углом наклона $\alpha = 15^{\circ}$. Зависимость величины St_{max} от числа Рейнольдса Re_L за острой передней кромкой представлена на рис. 7. При увеличении Re_L наблюдается уменьшение максимального теплового потока, что согласуется с результатами других исследований. Уменьшение амплитуды поперечных колебаний менее существенно.

Влияние единичного числа Рейнольдса Re_1 , отмеченное при обсуждении результатов теневых испытаний, проявляется в увеличении St_{max} с ростом L при фиксированном Re_L . Такое поведение числа Стэнтона St_{max} можно объяснить, сделав два предположения, которые подтверждаются расчетами, выполненными в настоящей работе: 1) средняя величина интенсивности теплообмена увеличивается при наличии продольных вихрей (линии 4, 5 на рис. 5, a); 2) увеличение интенсивности теплообмена зависит от характеристик вихрей. Влияние числа Рейнольдса Re_1 , по-видимому, обусловлено тем, что существует отличный от L масштаб длины, зависящий от спектра возмущений в набегающем потоке, ге-

Рис. 7. Зависимость максимального числа Стэнтона St_{max} от числа Рейнольдса Re_L при $\alpha = 15^{\circ}$ и различных значениях длины пластины: 1 - L = 50 мм, 2 - L = 150 мм; штриховые линии — границы областей среднеквадратичных отклонений, вертикальные линии — максимальные отклонения, обусловленные наличием вихрей

нерируемых передней кромкой пластины. Эти возмущения порождают продольные вихри в области присоединения. Очевидно, что характеристики спектра возмущений зависят не от величины Re_L , а от величины Re_1 и от распределения нерегулярностей на передней кромке. При этом изменение длины пластины L при фиксированном значении Re_L приводит к изменению свойств продольных вихрей и как следствие к изменению их влияния на среднюю величину интенсивности теплообмена.

Влияние единичного числа Рейнольдса, как правило, проявляется в изменении положения ламинарно-турбулентного перехода, о чем свидетельствует увеличение средней величины теплового потока в исследуемой области. Однако расчеты, выполненные в настоящей работе, показывают, что такое увеличение может происходить и при неизменном (ламинарном) характере течения при наличии в нем продольных вихрей.

На рис. 7 видно, что средняя величина теплового потока больше при L = 150 мм, когда вихри имеют большую длину волны. Следует также отметить, что наличие вихрей приводит к слабой линейной зависимости $St(x)\sqrt{\text{Re}_x} = C_1(\text{Re}_x)$, которую нетрудно получить на основе рис. 7. Это не характерно для ламинарных течений в отсутствие продольных вихрей.

На рис. 8 представлена зависимость осредненного по z максимального числа Стэнтона St_{max} от радиуса притупления при $\alpha = 15^{\circ}$ и различных значениях L, Re_L . Во всех случаях при увеличении радиуса притупления St_{max} уменьшается, также уменьшается амплитуда поперечных колебаний ΔSt .

При максимальном исследованном значении числа Рейнольдса $\text{Re}_L \approx 23,5 \cdot 10^5$ и длине пластины L = 150 мм (см. рис. 8) даже при минимальном притуплении (r = 0,3 мм) практически отсутствуют поперечные колебания числа Стэнтона St. Вероятно, при таком режиме толщина пограничного слоя очень мала и он расположен на нижней границе ВЭС. При этом вследствие притупления локальные числа Маха и Рейнольдса уменьшаются и интенсивность продольных вихрей увеличивается в меньшей степени. Оценки влияния притупления на интенсивность продольных вихрей, выполненные ниже, подтверждают это предположение.

Следует также отметить, что наблюдается тенденция к "насыщению" зависимости $St_{max}(r)$: начиная с некоторого значения r величина St_{max} меняется незначительно. Такое

Рис. 8. Зависимость максимального числа Стэнтона St_{max} от радиуса притупления r при $\alpha = 15^{\circ}$ и различных значениях длины пластины и числа Рейнольдса: a - L = 50 мм, 6 - L = 150 мм; $1 - \text{Re}_L = 1,7 \cdot 10^5$, $2 - \text{Re}_L = 3,7 \cdot 10^5$, $3 - \text{Re}_L = 5,0 \cdot 10^5$, $4 - \text{Re}_L = 23,5 \cdot 10^5$; штриховые линии — границы областей среднеквадратичных отклонений, вертикальные линии — максимальные отклонения, обусловленные наличием вихрей

α , град	L, mm	$\operatorname{Re}_L \cdot 10^{-5}$	$\Delta St, \%$	
			r = 0	r = 0,3 мм
15	50	1,80	18,1	7,2
15	50	3,70	18,9	7,2
15	150	5,00	9,1	6,1
15	150	$23,\!50$	16,3	4,2
25	50	1,81	30,2	
25	50	3,70	20,8	8,6
25	150	$5,\!64$	8,2	4,2
25	150	$23,\!50$	4,5	2,2

Относительные амплитуды поперечных колебаний числа Стэнтона в области присоединения

поведение обусловлено, вероятно, тем, что характеристики течения на нижней границе ВЭС большой толщины практически не зависят от радиуса притупления. Аналогичная тенденция наблюдалась для максимальных значений St в области падения косого скачка уплотнения на плоскую пластину [29].

Для исследования влияния угла отклонения рампы на течение проводились эксперименты при $\alpha = 25^{\circ}$ в случае острой передней кромки и при r = 0,3 мм. По сравнению со случаем $\alpha = 15^{\circ}$ значения St_{\max} и Δ St увеличиваются. Особенности течения, обусловленные наличием притупления и наблюдаемые при $\alpha = 15^{\circ}$, имеют место также при $\alpha = 25^{\circ}$: величины St_{\max} , Δ St при появлении малого притупления уменьшаются. Значения относительных амплитуд поперечных колебаний числа Стэнтона Δ St = $[(\max(\operatorname{St}(z)) - \min(\operatorname{St}(z)))/(2\operatorname{St}_{\max})] \cdot 100$ приведены в таблице. Максимальный относительный вклад вихрей в максимальное значение St_{\max} наблюдается при минимальных значениях L, Re_L и наибольшем значении α .

3. Оценка влияния высокоэнтропийного слоя на вихри Гертлера. Пусть нижние индексы e, Δ, ∞ обозначают параметры на внешней границе пограничного слоя, внутри ВЭС и в набегающем потоке соответственно. Масштаб пограничного слоя равен $\delta_{ref}(x) = \sqrt{x/\text{Re}_L}, \, \delta_{ref} = \delta_{ref}(1).$ Числа Рейнольдса $\text{Re}_{L,e}, \, \text{Re}_{L,\Delta}, \, \text{Re}_{L,\infty}$ рассчитываются по параметрам, соответствующим нижнему индексу, R — радиус кривизны линии тока. Число Гертлера G определяется не через толщину пограничного слоя ($\delta \approx 20\delta_{ref}$ при $M_{\infty} = 8$), а через масштаб δ_{ref} , как это сделано в работах [4, 13, 19, 31] для сравнения с результатами, полученными с использованием линейной теории: $\text{G} = \text{Re}_{\delta_{ref}}(\delta_{ref}/R)^{1/2}$.

3.1. Влияние ВЭС на число Гертлера. Ниже рассматривается течение на большом расстоянии от точки поглощения, когда параметры потока на границе пограничного слоя соответствуют течению на нижней границе ВЭС. В этом случае $G_e = G_{\Delta} = (R_{\Delta} \delta_{ref,\Delta})^{-1/2} = R_{\Delta}^{-1/2} \operatorname{Re}_{L,\Delta}^{1/4}$.

Параметры течения на нижней границе ВЭС можно оценить, используя закон сохранения массы газа, прошедшего через прямой скачок уплотнения в слое толщиной rи далее расширившегося изоэнтропически таким образом, что давление в нем равно p_{∞} . Следуя работе [29], нетрудно оценить толщину ВЭС Δ . Для режима $M_{\infty} = 8$ получаем $\operatorname{Re}_{L,\infty} / \operatorname{Re}_{L,\Delta} \approx 2,92$, $\Delta \approx 4,4r$. Сравнение Δ с толщиной пограничного слоя на плоской пластине в точке отрыва $\delta(x)|_{x=0,5} \approx 20\sqrt{0.5} \, \delta_{ref}$ показывает, что в настоящей работе условия экспериментов соответствуют как течению на нижней границе ВЭС, так и течению после его поглощения.

Имеем следующую оценку для G_{Δ} при наличии ВЭС:

$$\frac{\mathrm{G}_{\Delta}}{\mathrm{G}_{\infty}} = \left(\frac{R_{\infty}}{R_{\Delta}}\right)^{1/2} \left(\frac{\mathrm{Re}_{L,\Delta}}{\mathrm{Re}_{L,\infty}}\right)^{1/4}.$$

Полагая $R_{\Delta} \approx R_{\infty}$, для режима $M_{\infty} = 8$ получаем $G_{\Delta}/G_{\infty} \approx 1.84$.

Положим радиус кривизны R равным радиусу окружности, касающейся угла сжатия и проходящей через точку присоединения x_r [19]. Для рампы с углом наклона α имеем $R = (x_r - 1)/(\cos{(\alpha)} \operatorname{tg}{(\alpha/2)})$. Оценивая значения G для параметров эксперимента $\alpha = 15^{\circ}$, $\operatorname{Re}_L = 371\,000, L = 50$ мм, $x_r \approx 1.4, R \approx 3.15$, получаем $G_{\infty} = 13.9, G_{\Delta} = 7.6$. Таким образом, при наличии ВЭС большой толщины число Гертлера существенно уменьшается. Интенсивность вихрей вниз по потоку при наличии ВЭС должна увеличиваться в меньшей степени. Следует отметить, что для сжимаемых течений гертлеровская неустойчивость существенна при G ≥ 1.9 [24], что соответствует обнаруженному в [16] порогу устойчивости течения G ≤ 1.6 . В проведенных экспериментах значения G больше порогового. Однако в тепловых испытаниях выявить вихри слабой интенсивности затруднительно вследствие недостаточного нагрева поверхности.

3.2. Влияние ВЭС на интенсивность вихрей. При увеличении радиуса притупления на интенсивность вихрей влияют два фактора: увеличение кривизны линий тока вблизи точки x_r вследствие уменьшения зоны отрыва и уменьшение длины искривленной области. В соответствии с линейной теорией устойчивости [32] увеличение интенсивности вихрей над вогнутой поверхностью происходит экспоненциально при увеличении продольной координаты (например, возмущение продольной компоненты скорости $u' = u'_0 e^{N(x)}$ при наличии вихрей). Показатель степени (N-фактор) определяется через инкремент увеличения интенсивности вихрей σ :

$$N = \int_{x_0}^x \sigma \, dx \sim \sigma \, dx, \qquad \sigma \approx \text{const} \, .$$

Сравним *N*-факторы за острой (N_{∞}) и притупленной (N_{Δ}) кромками в конце участка, на котором увеличивается интенсивность вихрей, принимая длину этого участка dx равной длине дуги αR между сторонами угла сжатия. Полагая теоретические оценки [32] для

течения над теплоизолированной стенкой пригодными для случая изотермической стенки с $T_w/T_0 \approx 0.4$ (настоящая работа), зависимость между G, β , σ , где $\beta = 2\pi/\lambda$ — поперечное волновое число возмущения, представим в виде

$$G^2 = A\sigma\beta^2 + B\sigma^2/\beta$$

(A, B — некоторые константы). Отсюда для максимально растущего возмущения получаем $\sigma \sim Go^{6/5}$. Тогда

$$\frac{N_{\Delta}}{N_{\infty}} = \frac{\sigma_{\Delta}R_{\Delta}}{\sigma_{\infty}R_{\infty}} = \left(\frac{\mathbf{G}_{\Delta}}{\mathbf{G}_{\infty}}\right)^{6/5} \frac{R_{\Delta}}{R_{\infty}} = \left(\frac{\mathbf{Re}_{L,\Delta}}{\mathbf{Re}_{L,\infty}}\right)^{3/10} \left(\frac{x_{r,\Delta}-1}{x_{r,\infty}-1}\right)^{2/5} \leqslant \left(\frac{\mathbf{Re}_{L,\Delta}}{\mathbf{Re}_{L,\infty}}\right)^{3/10} < 1$$

По оценкам [32], для режима $M_{\infty} = 8$, $\text{Re}_{L,\infty} \approx 5 \cdot 10^5$ характерное значение фактора $N_{\infty} > 10$. Для "шумных" условий ударной трубы УТ-1М примем более строгое ограничение $N_{\infty} > 5$. Следовательно,

$$\frac{N_{\Delta}}{N_{\infty}}\Big|_{M_{\infty}=8} \leqslant 0.48 \quad \longrightarrow \quad \frac{e^{N_{\Delta}}}{e^{N_{\infty}}} \leqslant e^{-0.52N_{\infty}} < \frac{1}{13}$$

Выполненная оценка показывает, что наличие ВЭС большой толщины вызывает существенное уменьшение интенсивности вихрей Гертлера.

4. Численное моделирование течения в угле сжатия. Ниже все переменные приводятся в безразмерном виде, размерные переменные отмечены индексом "*". Проводится стандартное обезразмеривание: $(x, y, z) = (x^*, y^*, z^*)/L$, $(u, v, w) = (u^*, v^*, w^*)/U_{\infty}$, $T = T^*/T_{\infty}$, $p = p^*/(\rho_{\infty}U_{\infty}^2)$.

Рассмотрим влияние малого притупления на формирование вихрей Гертлера с помощью численного моделирования течения в угле сжатия. Расчеты выполнялись с использованием созданного в Центральном аэрогидродинамическом институте пакета прикладных программ HSFlow, реализующего квазимонотонную схему типа схемы Годунова второго порядка точности по пространству и по времени (описание пакета программ приведено в [33]). Поля течений получены методом установления равномерного потока, когда относительное изменение газодинамических переменных за характерное время $t_c = t^* U_{\infty}^*/L = 1$ не превышает 10^{-6} .

В настоящей работе рассматриваются экспериментальные параметры течения за острой передней кромкой при $\alpha = 15^{\circ}$, $\text{Re}_L = 3,71 \cdot 10^5$, L = 50 мм. Граничные условия стандартные: поверхность является изотермической: $T_w = \text{const}$; проскальзывание отсутствует: u = 0, v = 0; на входной границе задаются условия типа условий Дирихле, соответствующие набегающему потоку; на выходной границе используется линейная экстраполяция из расчетной области. Радиус притупления передней кромки варьируется: 0, 0,3, 0,5, 1,0 мм. Двумерные расчеты для случая острой передней кромки и для радиуса притупления $r^* = 0,3$ мм верифицированы на сетках, имеющих в два раза больше узлов в каждом направлении. На рис. 5,a видно, что на участке, где вихри еще не сформировались, результаты расчетов удовлетворительно согласуются с экспериментальными данными.

Продольные вихревые структуры моделируются следующим образом. Сначала с использованием сеток размером приблизительно 900 × 300 узлов рассчитывается двумерное стационарное течение. Для выполнения трехмерного расчета двумерные сетки и поля течения дублируются в трансверсальном направлении от значения $z_{\min} = 0$ до $z_{\max} = \lambda$, где λ — длина волны рассматриваемого возмущения. На образовавшихся боковых гранях используются периодические граничные условия. Таким образом, моделируется только одна длина волны. При моделировании трех и девяти длин волн значительных различий не выявляется, однако существенно увеличиваются требования к вычислительным ресурсам.

Для формирования вихревой картины в потоке должны присутствовать возмущения, которые могут быть созданы искусственно [18, 19] или появиться вследствие численных

Рис. 9. Экспериментальная (*вверху*) и расчетная (*внизу*) теневые картины при $\alpha = 15^{\circ}$, $\text{Re}_L = 3,71 \cdot 10^5$, L = 50 мм, $r^* = 0$

эффектов [17, 34, 35]. В настоящей работе малые возмущения вводятся в поток с помощью генератора типа "вдув-отсос", размещенного на поверхности пластины перед областью взаимодействия, по следующей формуле:

$$(\rho v)' = \varepsilon \sin\left(k_x \frac{x - x_0}{x_1 - x_0}\right) \sin\left(\frac{2\pi}{\lambda_0} \frac{z - z_{\min}}{z_{\max} - z_{\min}}\right),$$
$$z_{\min} = 0, \quad z_{\max} = \lambda, \quad x_0 = 0, 1, \quad x_1 = 0, 13, \quad y = y_w = 0, \quad \varepsilon = 0, 01.$$

Такое граничное условие обеспечивает нулевой средний расход вдуваемого газа. Длина волны $\lambda_{r0} = 0.062 = \lambda^*/L$ выбрана в соответствии с экспериментом. Расчеты проводились с целью исследовать влияние притупления на формирующиеся вихри с заданной длиной волны λ_{r0} .

4.1. *Расчетная картина течения*. На рис. 9 приведены экспериментальная и расчетная теневые картины за острой передней кромкой. Видно, что структуры течения хорошо согласуются.

Общая картина течения в различных сечениях и линии тока показаны на рис. 10. Для наглядности один рассчитанный период возмущений продублирован в направлении оси z пять раз. В продольном сечении z = 0 показано поле числа Маха, свидетельствующее о наличии зоны отрыва. В ряде поперечных сечений показаны поля числа Маха перед зоной отрыва, поля продольной компоненты скорости u в области присоединения и за ней, поле трансверсальной компоненты скорости w за областью присоединения. Об интенсивности вихревого движения свидетельствует форма линий тока, которые рассчитываются по точкам, равномерно распределенным вдоль горизонтальной линии над пограничным слоем перед областью вдува: $x = 0,1, y = 0,0075, z \in [\lambda_{r0}, 4\lambda_{r0}]$. Волнообразная структура линий тока формируется непосредственно за линией отрыва. Однако наибольшая интенсивность вихрей достигается в области присоединения, о чем свидетельствуют выраженное закручивание линий вблизи продольных осей и появление линий стекания и растекания. Вследствие вихревого движения низконапорная жидкость перемещается от стенки во внешнее течение, а высоконапорная жидкость — из внешнего течения к стенке. Вниз по потоку вихри постепенно затухают.

4.2. Влияние малого притупления. На рис. 11 представлены продольные распределения осредненного по z числа Стэнтона St и области колебаний St при наличии вихрей. При минимальном притуплении $r^* = 0,3$ мм наблюдается значительное уменьшение коэффициента теплообмена за областью присоединения. При увеличении r^* область наибольших колебаний коэффициента теплообмена St становится менее выраженной, и при наибольшем значении радиуса притупления $r^* = 1,0$ мм максимум не достигается. На рис. 11 видно, что отклонения теплового потока от средней величины также значительно уменьшаются с

Рис. 10. Результаты трехмерного расчета с учетом вихрей за острой передней кромкой на сетке размером 600×300 :

а — поля числа Маха М в плоскости z = 0, 6 — поля продольной компоненты скорости u в различных поперечных сечениях x = const: 1 - x = 0,28, 2 - x = 0,7, 3 - x = 1,3, 4 - x = 1,68, 5 - x = 1,78, 6 - x = 1,88, 7 - x = 1,98; сплошные линии — линии тока

Рис. 11. Распределение осредненного по z числа Стэнтона St(x) и амплитуды его поперечных колебаний (заштрихованные области), обусловленных наличием продольных вихрей, при различных значениях радиуса притупления: 1, 4 — $r^* = 0, 2, 5 - r^* = 0,3$ мм, 3, 6 — $r^* = 1,0$ мм; 1–3 — трехмерный расчет с учетом вихрей, 4–6 — двумерный расчет без учета вихрей

увеличением радиуса притупления. Такие отклонения имеют место преимущественно при минимальном радиусе $r^* = 0.3$ мм, дальнейшее увеличение r^* оказывает меньшее влияние. Кривые St(x) для $r^* = 0.5$ мм, не представленные на рис. 11, соответствуют описанной тенденции.

Следует отметить значительное различие осредненных по z распределений St(x) с учетом и без учета вихрей. Для всех рассмотренных радиусов притупления учет вихрей приводит не только к появлению поперечных колебаний величины теплового потока, но и к увеличению ее среднего значения.

В эксперименте при $r^* = 0,3$ мм длина волны $\lambda_{r0,3}$ больше, чем в случае острой передней кромки λ_{r0} ($\lambda_{r0,3} \approx 0,11 \approx 2\lambda_{r0}$). Для оценки влияния длины волны возмущений на среднее максимальное значение St_{max} и отклонения от него проведены расчеты при $r^* = 0,3$ мм и длинах волн $\lambda = 2\lambda_{r0}, 4\lambda_{r0}$. Для длины волны $\lambda = 2\lambda_{r0}$, которая близка к наблюдаемой в эксперименте, значение числа Стэнтона, осредненное по координате z, незначительно (не более чем на 7 % по сравнению со случаем $\lambda = \lambda_{r0}$) увеличивается за областью присоединения. При дальнейшем увеличении длины волны ($\lambda = 4\lambda_{r0}$) значительно уменьшается как средняя величина тепловых потоков, так и амплитуда ее колебаний вследствие наличия вихрей. Такое реверсивное поведение по отношению к масштабу возмущения известно из анализа линейной теории устойчивости [31, 32]. В то же время результаты расчетов показывают, что масштаб возмущений оказывает менее значительное влияние на величину теплового потока по сравнению с влиянием ВЭС, порожденного малым притуплением.

Таким образом, результаты расчетов и экспериментов свидетельствуют о том, что малое притупление передней кромки пластины приводит к значительному уменьшению средней величины тепловых потоков и амплитуды их колебаний при наличии вихрей Гертлера за областью присоединения.

Заключение. В широком диапазоне чисел Рейнольдса $\operatorname{Re}_L = 0,15 \cdot 10^6 \div 2,55 \cdot 10^6$ при значении числа Маха $M_{\infty} \approx 8$ проведены экспериментальные исследования влияния малого притупления передней кромки пластины на продольные вихри типа вихрей Гертлера, которые формируются на наклонной поверхности угла сжатия в области присоединения оторвавшегося потока. Варьировались длина пластины и угол отклонения потока. Вихри генерируются возмущениями набегающего потока и неровностями элементов модели. Для выявления вихревой структуры использовался метод тонких термочувствительных покрытий.

Вихри обнаружены на всех моделях с острой передней кромкой. Установлено, что наличие малого притупления приводит к существенному ослаблению теплообмена в области присоединения, а также к уменьшению интенсивности вихревых структур. При радиусе притупления $r \ge 0.5$ мм влияние вихрей на колебания коэффициента теплообмена St мало. Показано, что с увеличением радиуса стабилизирующее влияние притупления ослабевает: средняя величина интенсивности теплообмена в области присоединения (St_{max}) перестает меняться, а поперечные колебания St исчезают.

При увеличении угла отклонения рампы α или длины пластины L стабилизирующее влияние притупления сохраняется. При этом значение St_{max} и абсолютное значение амплитуды колебаний St, обусловленных наличием вихрей, увеличиваются. Относительные значения амплитуд слабо зависят от угла α и существенно уменьшаются при увеличении длины пластины L. Наибольшее (на 30 %) увеличение коэффициента теплообмена обнаружено в области за острой передней кромкой при наименьших рассмотренных значениях L, Re_L и наибольшем угле наклона $\alpha = 25^{\circ}$. За наиболее существенными неровностями передних кромок максимальное значение коэффициента теплообмена может увеличиваться на 80 %. Выполнены теоретические оценки и расчеты ламинарных полей течения в условиях эксперимента и показано, что их результаты согласуются с результатами экспериментов, а также свидетельствуют о значительном увеличении среднего значения интенсивности теплообмена вследствие формирования вихрей Гертлера.

ЛИТЕРАТУРА

- 1. Holger Babinsky J. K. H. Shock wave-boundary-layer interactions: Cambridge Aerospace. Cambridge: Cambridge Univ. Press, 2011.
- Chang P. K. Characteristics of separated flows // Separation of flow / Ed. by P. K. Chang. Oxford; L.; Edinburgh etc.: Pergamon Press, 1970. Chap. 7. P. 272–335.
- 3. Hirschel E. H. Basics of aerothermodynamics. S. l.: Springer Intern. Publ., 2015.
- 4. Schlichting H. Boundary layer theory. N. Y.: McGraw Hill Publ., 1960.
- Spall R. E., Malik M. R. Goertler vortices in supersonic and hypersonic boundary layers // Phys. Fluids. A. Fluid Dynamics. 1989. V. 1, N 11. P. 1822–1835.
- Ginoux J. J. On some properties of reattaching laminat and transitional high speed flows. Rhode-Saint-Genese, 1969. (Tech. note Karman inst. for fluid dynamics; N 53).
- 7. Бражко В. Н. Периодическая структура течения и теплопередачи в области присоединения сверхзвуковых потоков // Учен. зап. Центр. аэрогидродинам. ин-та. 1979. Т. 10, № 2. С. 113–118.
- 8. de la Chevalerie D. A., Fonteneau A., de Luca L., Cardone G. Görtler-type vortices in hypersonic flows: the ramp problem // Experiment. Thermal Fluid Sci. 1997. V. 15, N 2. P. 69–81.
- Ginoux J. J. Streamwise vortices in reattaching high-speed flows A suggested approach// AIAA J. 1971. V. 9, N 4. P. 759–760.
- 10. Глотов Г. Ф., Мороз Э. К. Продольные вихри в сверхзвуковых течениях с отрывными зонами // Учен. зап. Центр. аэрогидродинам. ин-та. 1977. Т. 8, № 4. С. 44–53.
- 11. Ishiguro Y., Nagai H., Asai K., Nakakita K. Visualization of hypersonic compression corner flows using temperature- and pressure-sensitive paints. Reno, 2007. (Paper / AIAA; N 2007-118).
- Kuriki T., Sakaue H., Imamura O., Suzuki K. Temperature-cancelled anodized-aluminum pressure sensitive paint for hypersonic compression corner flows. Atlanta, 2010. (Paper / AIAA; N 2010-673).
- de Luca L., Cardone G., Carlomagno G. G. M. Goertler vortices in hypersonic flow detected by IR thermography// Proc. of the Intern. congr. instrument. in aerospace simulat. facilities, Saint Louis (France), 20–23 Sept. 1993. S. l.: IEEE, 1993.
- 14. de Luca L., Cardone G., de la Chevalerie D. A., Fonteneau A. Viscous interaction phenomena in hypersonic wedge flow // AIAA J. 1995. V. 33, N 12. P. 2293–2298.
- 15. Simeonides G., Haase W. Experimental and computational investigations of hypersonic flow about compression ramps // J. Fluid Mech. 1995. V. 283, N 1. P. 17–42.
- de Luca L., Cardone G., de la Chevalerie D. A., Fonteneau A. Goertler instability of a hypersonic boundary layer // Experiments Fluids. 1993. V. 16, N 1. P. 10–16.
- 17. Запрягаев В. И., Кавун И. Н. Механизм формирования продольных вихрей за линией присоединения сверхзвукового отрывного течения в угле сжатия // Учен. зап. Центр. аэрогидродинам. ин-та. 2016. Т. 47, № 3. С. 27–37.
- Whang C., Zhong X. Secondary Goertler instability in hypersonic boundary layers. Long Beach, 2001. (Paper / AIAA; N 2001-0273).
- Navarro-Martinez S., Tutty O. R. Numerical simulation of Görtler vortices in hypersonic compression ramps // Comput. Fluids. 2005. V. 34, N 2. P. 225–247.

- 20. Chernyi G. G. Introduction to hypersonic flow. N. Y.; L.: Acad. Press, 1961.
- Ault D., Van Wie D. Comparison of experimental results and computational analysis for the external flowfield of a scramjet inlet at Mach 10 and 13 // Proc. of the 4th Symp. multidisciplinary analysis and optimization, Cleveland (USA), 21–23 Sept. 1992. [Электрон. ресурс]. Режим доступа: https: // doi.org/10.2514/MMAO92.
- Hong-jun Z., Qing S. Experimental investigation of leading edge bluntness effects on hypersonic tow-dimensional inlet // Procedia Engng. 2015. V. 99. P. 1582–1590.
- 23. Боровой В. Я. Влияние затупления клиньев, сжимающих газ, на запуск модельного воздухозаборника // Учен. зап. Центр. аэрогидродинам. ин-та. 2016. Т. 47, № 3. С. 56–70.
- 24. Heffner K., Chpoun A., Lengrand J. Experimental study of transitional axisymmetric shockboundary layer interactions at Mach 5. Orlando, 1993. (Paper / AIAA; N 93-3131).
- 25. Mallinson S. G., Gai S. L., Mudford N. R. Leading-edge bluntness effects in high enthalpy, hypersonic compression corner flow // AIAA J. 1996. V. 34, N 11. P. 2284–2290.
- Cheng H. K., Gordon Hall J., Golian T. C., Hertzberg A. Boundary-layer displacement and leading-edge bluntness effects in high-temperature hypersonic flow // J. Aerospace Sci. 1961. V. 28, N 5. P. 353–381.
- Holden M. S. Boundary-layer displacement and leading-edge bluntness effects on attached and separated laminar boundary layers in a compression corner. 2. Experimental study // AIAA J. 1971. V. 9, N 1. P. 84–93.
- 28. Bibin J., Vinayak K. Effect of leading edge bluntness on the interaction of ramp induced shock wave with laminar boundary layer at hypersonic speed // Comput. Fluids. 2014. V. 96. P. 177–190.
- Borovoy V. Y., Skuratov A. S., Struminskaya I. V. On the existence of a threshold value of the plate bluntness in the interference of an oblique shock with boundary and entropy layers // Fluid Dynamics. 2008. V. 43, N 3. P. 369–379.
- 30. Мошаров В. Е., Радченко В. Н. Измерение полей тепловых потоков в трубах кратковременного действия с помощью люминесцентных преобразователей температуры // Учен. зап. Центр. аэрогидродинам. ин-та. 2007. Т. 38, № 1/2. С. 94–101.
- 31. Saric W. Gurtler vortices // Annual Rev. Fluid Mech. 1994. V. 26, N 1. P. 379-409.
- 32. Жигулев В. Н. Возникновение турбулентности / В. Н. Жигулев, А. М. Тумин. М.: Наука, 1987.
- Egorov I. V., Fedorov A. V., Soudakov V. G. Direct numerical simulation of disturbances generated by periodic suction-blowing in a hypersonic boundary layer // Theoret. Comput. Fluid Dynamics. 2006. V. 20, N 1. P. 41–54.
- 34. Ludeke H., Lrogmann P. Numerical and experimental investigations of laminar/turbulent boundary layer transition // Proc. of the Europ. congr. on computational methods in applied sciences and engineering, Barcelona, 11–14 Sept. 2000. [Электрон. ресурс]. S. l., 2000.
- Shvedchenko V. V. 3D secondary separation at supersonic flow over the compression ramp // TsAGI Sci. J. 2010. V. 41, N 6. P. 631–650.

Поступила в редакцию 23/IX 2016 г., в окончательном варианте — 2/XI 2016 г.