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Впервые количественно измерены полные и лучистые тепловые потоки из пламени на поверх-
ность твердого топлива (полиметилметакрилат) в зоне горения при горизонтальном распростра-
нении пламени по поверхности топлива с помощью двух миниатюрных водоохлаждаемых датчи-
ков размером 2.3 × 2.3 мм, установленных внутри пластины. Разработана конструкция водяного
охлаждения датчиков размеров 2 × 2 × 0.5 мм (greenTEG AG), которая позволила размещать
их непосредственно в зоне горения. Лучистый тепловой поток измерялся датчиком с защитным
окном из ZnSe, а общий тепловой поток измерялся аналогичным датчиком без защитного окна.
Определенный с помощью датчиков кондуктивный тепловой поток сравнивался с рассчитанным

по данным измерения температуры в пламени полиметилметакрилата тонкими термопарами.
Максимальные, измеренные с помощью термодатчиков лучистый и полный тепловые потоки из
пламени на поверхность полиметилметакрилата составили 30 ÷ 35 и 70 ÷ 75 кВт/м2 соответ-
ственно.
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ВВЕДЕНИЕ

Результаты измерения тепловых потоков

служат важной информацией, в частности, при
оценке влияния теплоизоляции в машиностро-
ении и строительстве, для понимания процес-
сов в котлах, печах, двигателях внутреннего
сгорания и т. д. Одной из важных задач явля-
ется определение величины тепловых потоков

на поверхность топлива при распространении

по нему пожара, в частности определение вкла-
дов различных видов теплопередачи от пламе-
ни к твердому топливу в зоне горения, таких
как кондуктивный, конвективный и лучистый
теплоперенос. Эта информация позволяет ис-
следователям тестировать и совершенствовать

численные модели, описывающие условия воз-
никновения и распространения пожаров, а так-
же модели распространения пламени по твер-
дым горючим материалам [1–5].

Для измерения тепловых потоков рас-
сматривались датчики различной конструк-
ции. Гардон [6] предложил датчик теплово-
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го потока, основанный на измерении разности
температур в центре и на краю тонкого метал-
лического диска, являвшегося чувствительным
элементом прибора. Датчики этого типа обла-
дают низкой чувствительностью и, как прави-
ло, малой механической стойкостью, но имеют
малое время отклика.

Дифференциальные батарейные термопа-
ры, составленные из гальванически покрытых
участков термоэлектрода в паре с непокрыты-
ми участками, нашли достаточно широкое при-
менение. Одно из первых исследований гальва-
нических термопар было предпринято в рабо-
те [7].

Датчики типа Шмидта — Бёльтера ос-
нованы на термоэлементе, состоящем из ря-
да последовательных термопар [8]. Напряже-
ние на выводах такого термоэлемента пропор-
ционально разнице температур на поверхно-
сти чувствительного элемента датчика. Дат-
чики Шмидта — Бёльтера обладают более вы-
сокой чувствительностью (0.5 мкВ/(Вт/м2)),
чем датчики Гардона (5 · 10−4 мкВ/(Вт/м2)),
но по сравнению с последними имеют мень-
шую максимальную температуру нагрева чув-
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ствительного элемента (95 и 200 ◦C соответ-
ственно) и относительно большое время откли-
ка (1 и 0.05 с соответственно). Позднее на этом
принципе были разработаны датчики теплово-
го потока, в которых термопары размещались
на тонких полимерных пленках в виде фольги

или полученных методом вакуумного напыле-
ния соответствующих металлов, что позволи-
ло повысить чувствительность и значительно

сократить время отклика датчика [9–12].
К настоящему времени наиболее развитой

является методика измерения теплового пото-
ка и его поверхностной плотности с помощью

плоских преобразователей теплового потока ге-
нераторного типа [13].

Обзор имеющихся в продаже датчиков

теплового потока, используемых для исследо-
вания процессов горения, и их основных харак-
теристик представлен в работах [14, 15].

В 2009 г. швейцарская компания

«greenTEG AG» разработала датчики тепло-
вого потока gSKIN R© на основе термоэлемента

из теллурида висмута (BiTe). Для измере-
ния высокоинтенсивных тепловых потоков

(до 200 кВт/м2) датчиками gSKIN R© их

необходимо прикреплять к металлическому

водоохлаждаемому основанию, обеспечиваю-
щему интенсивное охлаждение радиатора.

Среди других производителей тепловых

датчиков, имеющихся на рынке, следует

отметить следующие компании: «Medtherm
Co.» (США), «Hukseflux» (Нидерланды), «RdF
Corporation» (США) и «Captec Entreprise»
(Франция).

Для измерения тепловых потоков приме-
няют также косвенные методы, основанные на
измерении градиента температуры у поверх-
ности горящего материала, что позволяет рас-
считать величину теплового потока с учетом

теплопроводности газовой среды. Этот метод
использовался в работах [16–19]. Следует от-
метить, что указанный метод требует хоро-
шего пространственного и временного разре-
шения при измерении градиента температуры

(например, использование тонких термопар и
сканера с большой скоростью их перемещения),
а также знания точного значения коэффициен-
та теплопроводности газовой среды.

В работах других авторов используют-
ся гетерогенные градиентные датчики теп-
лового потока, которые представляют собой

искусственно-анизотропные косослойные тер-
моэлементы [20].

При исследовании горения полимеров в ла-
бораторных условиях датчики теплового пото-
ка различных типов размещали как в непосред-
ственном контакте с зоной пламени [21–24], так
и вне ее [25].

В работах [23, 24] измеряли только сум-
марный тепловой поток на поверхности вер-
тикальных пластин из полиметилметакрила-
та (ПММА) при распространении пламени

снизу вверх, при этом использовали датчи-
ки теплового потока диаметром 9.5 и 25 мм.
В [25] измеряли только радиационную состав-
ляющую теплового потока от распространяю-
щихся вверх пламен с помощью стандартных

датчиков теплового потока диаметром 25 мм,
расположенных на значительном расстоянии

(40 см) от образца ПММА. В работе [21] для ис-
следования горения горизонтальной пластины

из ПММА в чашечной горелке попеременно ис-
пользовали датчик лучистого теплового пото-
ка и датчик полного потока диаметром 25 мм.
Аналогичный подход был использован в [22]
при сжигании образца в конфигурации, ана-
логичной конусному калориметру с диаметром

датчиков от 6 до 25 мм. Таким образом, в этих
исследованиях лучистый и полный тепловые

потоки измерялись попеременно в отдельных

экспериментах. При таком подходе возможны
ошибки в определении кондуктивного тепло-
вого потока, вычисляемого по разнице между
полным и лучистым тепловыми потоками, так
как добиться полностью идентичных условий в

нескольких однотипных экспериментах доволь-
но сложно.

Мы не нашли в литературе работ, в кото-
рых датчики тепловых потоков использовались

бы для измерения лучистых и полных тепло-
вых потоков при горизонтальном распростра-
нении пламени по поверхности полимера.

В случае размещения датчиков теплово-
го потока непосредственно в образце полимера

важным параметром является размер этих дат-
чиков, так как от него зависят возмущения зо-
ны горения за счет теплоотвода (большинство
датчиков используются с водяным охлаждени-
ем).

Как видно из приведенных выше работ,
размер наиболее часто используемых датчиков

теплового потока составляет 25 мм, что в слу-
чае пламени с узкой зоной горения или боль-
шим градиентом температуры может привести

к существенной погрешности измерений.
Использование датчиков теплового потока
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минимальных размеров представляет практи-
ческий интерес, так как миниатюризация поз-
воляет с более высокой точностью характери-
зовать процесс теплообмена при распростране-
нии пламени по топливным материалам. Та-
ким образом, целью настоящей работы было:
1) разработать конструкцию малогабаритно-
го водоохлаждаемого датчика теплового пото-
ка для введения в зону горения, 2) измерить
суммарный и радиационный тепловые потоки

в зоне горения полимера при горизонтальном

распространении пламени по поверхности по-
лимера.

1. ЭКСПЕРИМЕНТАЛЬНАЯ МЕТОДИКА

1.1. Конструкция датчика
и методика измерения тепловых потоков

Для измерения кондуктивного и радиаци-
онного тепловых потоков из пламени на по-
верхность полимера при его распространении

по полимерной пластине была спроектирована

и изготовлена установка, схема которой пред-
ставлена на рис. 1.

Интенсивность лучистого теплового пото-
ка измерялась непосредственно датчиком теп-
лового потока. Величина падающего кондук-
тивного теплового потока измерялась следую-

Рис. 1. Конфигурация установки для измере-
ния тепловых потоков пламени на поверхность

полимера:

1 — полимерная пластина, 2 — пламя, 3 — него-
рючая подложка, 4 — датчик теплового потока,
5 — винты для регулировки высоты теплоизоля-
ционной плиты над рамой установки, 6 — водо-
охлаждаемый радиатор для теплодатчика, 7 —
система водяного охлаждения, 8 — электриче-
ские выводы теплодатчика, 9 — корпус установ-
ки, 10 — направление распространения пламени,
11 — термопара, 12 — 3D-сканер

щим образом: 1) по градиенту температуры в
пламени вблизи поверхности горения, измерен-
ной термопарой (11); 2) по результатам измере-
ния полного теплового потока (суммы лучисто-
го и кондуктивного тепловых потоков) и ради-
ационного теплового потока датчиком, рабочая
поверхность которого располагалась на одном

уровне с поверхностью полимера.
Для проведения измерений полимерную

пластину (1) помещали на теплоизоляционную
плиту из гипсокартона (3). В теплоизоляци-
онной плите и полимере было сделано отвер-
стие, через которое вставлен датчик теплового
потока, представляющий собой термоэлемент
(4), закрепленный на водоохлаждаемом радиа-
торе (6). Датчик теплового потока был жест-
ко закреплен в корпусе установки (9). Дат-
чик имел отверстия для подключения шлан-
гов подачи охлаждающей воды (7) и электриче-
ские клеммы (8) для присоединения к аналого-
цифровому преобразователю (ADC Е-14-140-М
фирмы L-CARD). Теплоизоляционная плита и
полимерная пластина могли перемещаться вер-
тикально относительно корпуса установки с

помощью четырех винтов (5), что позволяло
закрепить верхние поверхности датчика тепло-
вого потока и полимерной пластины. Во время
экспериментов температура окружающего воз-
духа составляла 22 ◦C, атмосферное давление
745 мм рт. ст., внешний воздушный поток от-
сутствовал.

Профили температуры измерялись микро-
термопарой диаметром 0.05 мм (11), установ-
ленной на 3D-сканере (12). Для управления
траекторией движения термопары и измерения

температуры использовалась специально раз-
работанная программа, представляющая собой
последовательность управляющих команд в ви-
де G-Code. Эта программа транслировалась с
компьютера в управляющую плату 3D-сканера
с помощью программного обеспечения с откры-
тым исходным кодом Printrun [26]. Скорость
движения термопары к поверхности полимера

составляла 2 мм/с, что соответствовало шагу
измерения температуры 0.22 мм в направле-
нии, перпендикулярном поверхности полимера.

Профили интенсивности теплового потока

определялись путем измерения интенсивности

сигналов соответствующих датчиков в зависи-
мости от времени с помощью АЦП и компью-
тера с учетом измеряемой в эксперименте ско-
рости распространения фронта пламени.

Для предотвращения распространения
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пламени боковые стороны полимерной пла-
стины были покрыты кварцевой тканью и

вставлены в П-образный профиль из стальной
фольги шириной 5 мм и толщиной 0.1 мм. При
проведении измерений полимерная пластина

поджигалась с одного края и пламя (2) распро-
странялось по ее поверхности в направлении

справа налево (10). По мере движения пламени
по поверхности полимера и уменьшения тол-
щины пластины верхняя поверхность датчика

теплового потока стыковалась с поверхностью

полимера с помощью винтов (5).

1.2. Конструкция датчика теплового потока

На рис. 2 показана схема датчика тепло-
вого потока. В качестве термочувствительно-
го элемента использовались датчики теплово-
го потока фирмы «greenTEG» (Цюрих, Швей-
цария, www.greenteg.com) двух модификаций:
1) gSKIN R©-XP 27 9C, размер рабочей поверх-
ности 10 × 10 и 5 × 5 мм; 2) gRAY R© B0.5-SC,
размер рабочей поверхности 2 × 2 мм (сен-
сор), площадь разработанного датчика 2.3 ×
2.3 мм. Чувствительность указанных датчиков
составляет ≈ 17 мкВ/(Вт/м2). Термочувстви-
тельные элементы (1) указанных выше мо-
дификаций приклеивались тонким слоем теп-
лопроводящего клея АлСил-5 (2) на верхнюю
поверхность водоохлаждаемого радиатора (3).
Радиатор представляет собой миниатюрный

сосуд из меди, через который с помощью тер-
мостата (4) прокачивалась вода с температу-
рой 22 ± 2 ◦C. Конструкция радиатора преду-
сматривает интенсивное охлаждение его верх-

Рис. 2. Конструкция датчика теплового пото-
ка для измерения полного (а) и лучистого (б)
тепловых потоков:

1 — термочувствительный элемент, 2 — теп-
лопроводный клей АлСил-5, 3 — водоохлаждае-
мый радиатор, 4 — питающая охлаждающая во-
да, 5 — электрические выводы термочувствитель-
ного элемента, 6 — слюдяные пластины, 7 — окно

из ZnSe, 8 — воздушная прослойка

Рис. 3. Фотография датчика с размерами ра-
бочей поверхности 2.3 × 2.3 мм для измерения
кондуктивных и лучистых тепловых потоков

ней поверхности за счет перегородки внутри

него, обеспечивающей высокую скорость пото-
ка воды у стенки верхней поверхности радиато-
ра. Боковые поверхности термоэлемента и во-
доохлаждаемого радиатора защищены тонки-
ми пластинами слюды, склеенными термостой-
ким силиконовым клеем, для повышения точ-
ности измерений. Конструкция датчика обес-
печивает угол обзора 180◦.

При измерении радиационного теплового

потока над датчиком устанавливалось окно из

ZnSe толщиной 2.0 мм для датчиков gSKIN R©-
XP 27 9C или 0.5 мм для датчиков gRAY R©
B0.5-SC, закрепленное на слюдяных пластинах
термостойким силиконовым клеем. Между ок-
ном из ZnSe и поверхностью термоэлемента

был оставлен воздушный зазор шириной 1.5 мм
для уменьшения вклада кондуктивного тепло-
вого потока от пламени. Конструкция датчика
с окошком из ZnSe обеспечивает угол обзора
около 150◦.

На рис. 3 представлена фотография дат-
чиков с размерами рабочей поверхности 2.3 ×
2.3 мм для измерения кондуктивных и лучи-
стых тепловых потоков.

1.3. Методика калибровки
датчиков теплового потока

Для калибровки датчиков теплового пото-
ка использовали эталонный измеритель сред-
ней мощности лазера ИМО-2Н и полупровод-
никовый лазер с длиной волны 450 нм. Снача-
ла с помощью измерителя ИМО-2Н измерялась
средняя мощность излучения полупроводнико-
вого лазера, которая составила 1.50 ± 0.8 Вт.
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Затем лазерное излучение фокусировалось на

поверхность термоэлемента датчика теплово-
го потока с помощью линзы и аттенюатора

(вращающийся диск с прорезями, коэффициент
ослабления 1 : 10), а цифровым вольтметром

регистрировали сигнал от термоэлемента дат-
чика. Полученный калибровочный коэффици-
ент использовался для расчета интенсивности

теплового потока. Относительная погрешность
измерения величины теплового потока соста-
вила ± 0.5 %, что было оценено путем сравне-
ния полученного калибровочного коэффициен-
та для термоэлемента gSKIN R©-XP 27 9C и за-
явленного производителем в характеристиках

датчика (16.77 мкВ/(Вт/м2)).
При измерении лучистого теплового пото-

ка учитывался коэффициент пропускания излу-
чения через окно из ZnSe. Этот материал име-
ет высокий и практически постоянный коэф-
фициент пропускания в диапазоне длин волн

0.5 ÷ 22 мкм. Для его определения на датчик
направлялся тепловой поток от панели элек-
трообогрева и измерялась величина сигнала от

датчика с установленным на нем окном из ZnSe
и без него. Значение коэффициента пропуска-
ния излучения окном из ZnSe толщиной 2.0 мм
составило 0.70 ± 0.03.

2. РЕЗУЛЬТАТЫ ИЗМЕРЕНИЯ
ТЕПЛОВОГО ПОТОКА ТЕРМОПАРОЙ

В [19] обсуждались профили температуры
пламени, измеренные микротермопарой при го-
рении горизонтально расположенной пластины

ПММА толщиной 4.6 мм, длиной 200 мм и ши-
риной 100 мм. На основании этих данных были
рассчитаны градиенты температуры вблизи

поверхности горения (рис. 4, кривая
dT

dy
) вдоль

центральной линии образца, а затем оценено

распределение величины кондуктивного тепло-
вого потока (рис. 4, кривая qcon) по поверхно-
сти ПММА, при этом среднее значение тепло-
проводности газовой среды вблизи поверхности

полимера составляло 0.056 Вт/(м ·К). В дан-
ном исследовании относительная погрешность

оценки кондуктивного теплового потока таким

методом находится в диапазоне 25 ÷ 30 %, так
как температура вблизи поверхности горения

ПММА в [19] практически не меняется вдоль
зоны горения и равна ≈ 400 ÷ 450 ◦C, а в
состав газа у поверхности в основном входят

только метилметакрилат (продукт разложения
ПММА) и азот.

Рис. 4. Зависимости градиентов температуры
и кондуктивного теплового потока в пламени

от расстояния до фронта пламени при горении

пластины ПММА толщиной 4.6 мм [17]

Рис. 5. Зависимости плотности полного, ради-
ационного и кондуктивного тепловых потоков

от расстояния до фронта пламени при горении

литой пластины ПММА толщиной 4.6 мм, из-
меренные датчиком размеров 2.3 × 2.3 мм:

для полного и радиационного тепловых потоков

приведены сглаженные экспериментальные дан-
ные

На рис. 5 представлены результаты из-
мерения плотности радиационного и полного

тепловых потоков разработанными в настоя-
щей работе датчиками (2.3 × 2.3 мм). Коор-
дината X = 0 выбрана авторами как перед-
ний фронт пламени. При горизонтальном рас-
пространении пламени по твердому топливу

выделяют две зоны реакции (передний и зад-
ний фронт пламени). Пиролизующееся горю-
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чее топливо поступает из твердого материа-
ла, а окислитель — из окружающего воздуха.
В области полного расходования кислорода и

полного расходования топлива температура до-
стигает максимума. По этой причине на перед-
нем и заднем фронте пламени максимум тем-
пературы наблюдается вблизи поверхности го-
рения. Это является причиной двугорбого рас-
пределения полного теплового потока. Из рис. 5
видно, что лучистый тепловой поток начина-
ет расти вдали от фронта пламени, в зоне го-
рения его величина практически постоянна и

примерно равна 20 кВт/м2. Погрешность изме-
рения теплового потока по осреднению данных

составляет 5 %. Полученные данные по радиа-
ционному и полному тепловым потокам позво-
ляют рассчитать кондуктивный тепловой по-
ток (как разность между плотностями полного
и лучистого тепловых потоков), максимальное
значение которого во фронте пламени состав-
ляет ≈ 48 кВт/м2, а в середине зоны горения
оно снижается до 4 ÷ 5 кВт/м2. Таким обра-
зом, основной вклад в теплопередачу от пла-
мени к несгоревшему топливу в зоне предвари-
тельного подогрева (на расстоянии 60 ÷ 10 мм
от фронта пламени) вносит лучистый тепловой
поток, а во фронте пламени — кондуктивный

теплообмен, в то время как в середине зоны го-
рения преобладает лучистый тепловой поток.

Полученные экспериментальные данные

согласуются с результатами экспериментов и

расчетов из [27], где с помощью микротермо-
пар R-типа были оценены вклады лучистого,
конвективного и суммарного тепловых потоков

в центре зоны пиролиза (зоны горения) при
горизонтальном распространении пламени над

экструдированным ПММА. Нужно отметить,
что из-за приповерхностной вязкости конвек-
тивный тепловой поток, оцененный в [27], от-
сутствует, тогда как кондуктивный тепловой
поток, т. е. молекулярный перенос тепловой

энергии за счет столкновения молекул и диф-
фузии в [27] не оценен. С помощью разрабо-
танной модели авторы [27] подтвердили ре-
зультаты измерений. При размере пластины
4.4 × 100 мм результаты их измерений со-
ставили: лучистый тепловой поток — 10 ÷
11 кВт/м2 (по нашим данным с использовани-
ем датчика 2.3 × 2.3 мм примерно 15 кВт/м2,
рис. 5), конвективный тепловой поток — ме-
нее 1 кВт/м2 (по нашим данным кондуктивный
тепловой поток ≈5 кВт/м2), а полный тепло-
вой поток — 11 ÷ 13 кВт/м2 (по нашим дан-

ным ≈20 кВт/м2) в середине зоны пиролиза.
С учетом того, что скорость распространения
и объем пламени литого ПММА, который мы
использовали в данной работе, больше, чем у
экструдированного ПММА в [19], эксперимен-
тально измеренные значения теплового потока

в данной работе близки, но выше, чем в [27].
Данные по распределению интенсивности

кондуктивного теплового потока, полученные
с помощью датчика теплового потока (см.
рис. 5), в пределах точности измерения согла-
суются с результатами его оценки по данным

микротермопарных измерений (см. рис. 4). Од-
нако следует отметить, что приведенные на
рис. 4 оценки теплового потока в конце зоны
горения (40 ÷ 60 мм) занижены, так как по ме-
ре горения пластины ПММА поверхность горе-
ния смещалась вниз, тогда как диапазон дви-
жения термопары в вертикальном направле-
нии оставался постоянным, в результате че-
го расстояние между пламенем и областью из-
мерения термопарой увеличивалось. При из-
мерении тепловых потоков эффект движения

поверхности горения компенсировался посте-
пенным поднятием уровня теплоизоляционной

плиты (3) с помощью винтов (5), показанных
на рис. 1, относительно неподвижного датчика
по мере движения фронта пламени вдоль го-
ризонтально расположенной пластины ПММА.
При этом профиль интенсивности теплового

потока имеет два экстремума (на переднем и
заднем фронте пламени), достаточно близких
по величине (см. рис. 5), тогда как на профи-
ле теплового потока, полученного по результа-
там измерений с помощью микротермопар (см.
рис. 4), второе максимальное значение (на зад-
нем фронте пламени) в четыре раза меньше
(близко к нулю), чем на переднем фронте пла-
мени. Этот факт свидетельствует о том, что
методика измерения тепловых потоков из пла-
мени на поверхность полимеров с помощью раз-
работанного датчика является более удобной и

точной, чем методика, основанная на измерени-
ях микротермопарами.

Для случая распространения пламени по

поверхности полимера ПММА был проведен

аналитический расчет теплового потока от

пламени к поверхности полимера, который

сравнивался с тепловым потоком, измеренным
с помощью датчика (см. рис. 5). Связь между
удельной массовой скоростью горения (specific
mass burning rate — SMBR) и полным удель-
ным тепловым потоком qtot [Вт/м2], падающим
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на поверхность или выходящим с поверхности,
определяется следующим образом [27]:

SMBR[Hp + cp(Tp − T0)] = qtot, (1)

где Hp — теплота пиролиза (1 020 Дж/кг [19]);
cp — удельная теплоемкость (1 465 Дж/(кг·К)
[28]); Tp — температура поверхности (680 K
[19]); T0 — температура окружающей среды

(293 K).
Связь между удельной массовой скоростью

сгорания топлива и скоростью распростране-
ния пламени вблизи фронта пламени определя-
ется формулой [29]

SMBR = ρsvf , (2)

где vf — скорость пламени (0.09 мм/с [19]),

ρs — плотность твердого тела (1 160 кг/м3

[19]).
Подставив (2) в (1), находим значение

плотности теплового потока во фронте пламе-
ни: ≈59.5 кВт/м2. Пренебрегая тепловым пото-
ком, направленным от поверхности, эту вели-
чину можно считать равной падающему тепло-
вому потоку.На рис. 5 во фронте пламени плот-
ность полного теплового потока от пламени к

поверхности ПММА составляет ≈67 кВт/м2,
что с учетом погрешности эксперимента, а так-
же приближенности оценки (1) удовлетвори-
тельно согласуется с расчетом по аналитиче-
ской формуле (1). Это свидетельствует в поль-
зу правильности измерений датчиком теплово-
го потока. Таким образом, разработанная ме-
тодика измерения интенсивности теплового по-
тока, находящегося в зоне горения, с помощью
разработанного датчика теплового потока мо-
жет помочь в анализе и разработке механизма

термического разложения и горения полимеров.
На рис. 6 показаны профили плотности

полного теплового потока, измеренные датчи-
ками разных размеров. На профиле, измерен-
ном датчиком 10 × 10 мм, имеется только
один максимум с плохим разрешением, а на
профиле, измеренном датчиком 5 × 5 мм, —
два максимума (на переднем и заднем фрон-
те пламени), максимальная плотность суммар-
ного теплового потока составила ≈42 кВт/м2.
При измерении датчиком 2.3 × 2.3 мм получен
профиль с двумя пиками; максимальная плот-
ность суммарного теплового потока составила

qtot ≈ 69 кВт/м2. Измерения миниатюрными
(2.3 × 2.3 мм) датчиками лучше согласуются с
оценкой (1) и результатами измерений [19], чем

Рис. 6. Зависимости плотности полного теп-
лового потока от расстояния до фронта пламе-
ни при горении литой пластины ПММА тол-
щиной 4.6 мм, измеренные с помощью датчи-
ков различных размеров

измерения бо́льшими датчиками. Таким обра-
зом, нами впервые показано, что при изучении
тепловой структуры пламени полимеров при

горизонтальном распространении пламени по

ним наиболее точные и согласованные резуль-
таты по профилям тепловых потоков получа-
ются при использовании разработанных нами

миниатюрных датчиков теплового потока раз-
мером 2.3 × 2.3 мм.

ЗАКЛЮЧЕНИЕ

1. Разработаны датчики для измерения

суммарного и радиационного тепловых потоков

на базе датчиков теплового потока greenTEG
AG типоразмеров 2.3 × 2.3, 5 × 5 и 10 × 10 мм,
с модернизированной системой теплоотвода,
размещенной на водоохлаждаемом радиаторе.
Показано, что с уменьшением размеров дат-
чиков повышается точность измерения сум-
марных тепловых потоков при горизонтальном

распространении пламени по полимеру.
2. Миниатюризация датчиков теплового

потока, размещенных на водоохлаждаемом ра-
диаторе и встроенных в полимерную пластину,
позволила впервые провести измерения полно-
го и радиационного тепловых потоков в зоне

горения полимера при горизонтальном распро-
странении пламени по поверхности полимера.

3. Встраивание в полимерную пласти-
ну максимально близко друг к другу миниа-
тюрных датчиков тепловых потоков размером



54 Физика горения и взрыва, 2024, т. 60, N-◦ 2

2.3 × 2.3 мм позволяет определить величину

кондуктивного теплового потока в зоне горе-
ния полимера как разность между значения-
ми плотности полного и радиационного пото-
ков тепла.

4. Получение более точных значений ин-
тенсивности радиационного и кондуктивного

тепловых потоков поможет уточнить механизм

термического разложения и горения полиме-
ров, а также будет способствовать разработке
и обоснованию более точных моделей горения

полимеров.
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