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АННОТАЦИЯ

Методом высокопроизводительного  секвенирования по  технологии Illumina исследовано  разнообразие 
прокариот в образцах почв,  отобранных с трех пространственно  удаленных площадок мониторинга на 
территории бывшего  хвостохранилища жидких отходов химического  производства вблизи г. Кирово-
Чепецка,  Кировская область. Проведена оценка таксономического  богатства и филогенетического  раз-
нообразия микробных сообществ техногенных почв в сравнении с аллювиальной почвой – ​природным 
аналогом той,  что  была нарушена в результате размещения отходов химического  предприятия. Анализ 
показателей таксономического  богатства и разнообразия продемонстрировал более низкие их значения 
в формирующихся на отходах почвах в сравнении с природной почвой фонового  участка. Были определены 
26 бактериальных и 2 архейных филума прокариот,  составившие более 95 %  от числа классифицированных 
последовательностей. Доминировали филумы Actinobacteria (22–41 %) и Proteobacteria (20–26 %). На уровне 
высших таксонов в техногенных почвах по  сравнению с сообществом природной аллювиальной почвы 
выявлены тренды изменения представленности филумов: уменьшение доли Verrucomicrobia и увеличение 
доли Cyanobacteria. Наибольшие различия между сообществами техносолей и фоновой почвы выявлены на 
уровне порядков,  семейств и родов. Для каждого  из четырех микробиомов определены общие и уникальные 
роды. Обнаруженные различия в составе и структуре прокариотного  компонента микробных сообществ 
нарушенных почв связаны с комплексом их физико-химических свойств (гранулометрический состав,  
рН почвенного  раствора,  содержание Сорг,  состав токсикантов промышленного  происхождения,  режим 
влажности и др.) и характером растительного  покрова. Полученные результаты представляют интерес 
для разработки новых подходов в будущих исследованиях связи почвенной микробиоты с изменениями 
экосистем,  вызванными деятельностью человека.

Ключевые слова: производственные отходы,  техногенные почвы,  прокариоты, высокопроизводительное 
секвенирование,  Illumina, 16S рРНК, биоразнообразие,  таксономическая структура.
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ВВЕДЕНИЕ

Загрязнение окружающей среды отхода-
ми промышленного  производства является на 
сегодняшний день самым мощным фактором,  
дестабилизирующим природные экосистемы. 
Количество  производственных отходов,  ко-
торые генерируют российские промышлен-
ные компании,  согласно  отчетам предприя-
тий за 2021 г. составило  8,45 млрд т,  из них 
178,1  млн т приходится на отходы химиче-
ских производств [Российские предприятия…,  
2022]. Хвостохранилища,  предназначенные 
для хранения не подлежащих утилизации 
промышленных отходов,  могут быть источ-
ником загрязнения атмосферы,  грунтовых 
и поверхностных вод,  экосистем токсиканта-
ми промышленного  происхождения. По  дан-
ным Росприроднадзора,  к настоящему време-
ни негативному индустриальному воздействию 
в России подверглось 1,8 млн га земель,  в том 
числе 10,7 тыс га – ​в Кировской области [Рос-
сийская промышленность …,  2022].

Для предотвращения загрязнения окружа-
ющей среды проводят рекультивацию терри-
тории,  технический этап которой заключает-
ся в перекрытии отходов грунтами,  которые 
играют роль почвообразующей породы для 
формирующихся почв. В то  время как в зо-
нальных почвах основные свойства опреде-
ляются природно-климатическими условия-
ми конкретной зоны,  в почвах техногенных 
ландшафтов особое значение среди факторов 
почвообразования имеют геогенные (прежде 
всего  свойства породы) [Соколов и др.,  2012]. 
Важную роль в восстановлении почв играют 
также биотические факторы,  такие как рас-
тительный покров и сопряженные с ним поч-
венные микробные сообщества,  роль которых 
в почвенном генезисе долгое время недооцени-
валась [Андронов и др.,  2015].

Посттехногенные экосистемы можно  рас-
сматривать как естественные модели восста-
новления микробных сообществ и  получать 
фактическую информацию о  скорости и на-
правленности почвообразования в разнообраз-
ных субстратно-фитоценотических комбина-
циях. В связи с этим процесс восстановления 
биоценоза на исходно  неоднородном по  соста-
ву и генезису субстрате,  не перекрытом пло-
дородным слоем,  может служить моделью для 
анализа эволюционного  потенциала микро-
биома в процессе почвообразования [Андро-

нов и др.,  2015;  Дмитракова и др.,  2018]. Ис-
следование микробных сообществ в контексте 
почвенной метагеномики открыло  новые пер-
спективы в понимании эволюции почвенного  
покрова и формирования почвенного  плодоро-
дия [Daniel, 2005; Fiere, Jackson, 2006; Zhang 
et al., 2011; Fierer et al., 2012]. В отечественной 
литературе данный подход уже довольно  ши-
роко  реализуется для индикации изменений,  
вызываемых сельскохозяйственной эксплуа-
тацией почв [Тхакахова и др.,  2015;  Перши-
на и др.,  2016;  Налиухин и др.,  2018;  Орлова 
и др.,  2019;  Шахназарова и др.,  2020]. Анали-
зу таксономической структуры микробиоты,  
участвующей в восстановительных процессах 
техногенно  нарушенных почв,  на основе из-
учения полиморфизма гена 16S рРНК посвя-
щены лишь отдельные работы российских ав-
торов [Дмитракова и др.,  2018;  Манучарова 
и др.,  2021].

Цель работы ‒ сравнительная характери-
стика таксономической структуры прокари-
отных сообществ,  формирующихся в процес-
се самовосстановления почвенного  покрова на 
засыпанной территории бывшего  хвостохра-
нилища жидких отходов химического  произ-
водства,  с  сообществом природной ненару-
шенной почвы.

МАТЕРИАЛ И МЕТОДЫ

Объектом исследования явился верхний 
слой (0–10 см) почвы,  относящейся к техно-
генным поверхностным образованиям,  груп-
пе натурфабрикаты,  подгруппе литостраты 
[Шишов и др., 2004],  или Technosols по WRB 
[IUSS Working Group WRB,  2014]. Для ана-
лиза было  отобрано  методом конверта по  
пять образцов с  каждой площадки монито-
ринга на территории засыпанного  в  2012  г. 
хранилища жидких отходов производства хи-
мических предприятий г. Кирово-Чепецка Ки-
ровской области,  расположенного  на северо-
западной окраине Вятско-Камской провинции 
подзоны дерново-подзолистых почв юж-
ной тайги. Хвостохранилище находится в до-
лине р. Вятки в  зоне подтопления (GPS  ко-
ординаты: 58°33′17″ с. ш.,  49°56′24″ в. д.). Оно   
представляло  собой водоем,  площадь зеркала 
воды в котором составляла около  51 тыс. м2,   
максимальные глубины достигали 10 м,  объем  
жидких отходов оценивался в  275  тыс. м3.  
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После заполнения котлована твердым мате-
риалом – ​песком,  глиной,  гипсом с примесью 
извести,  образовалась площадка с выражен-
ным микрорельефом (чередование бугорков 
и западин),  которая уже через год начала за-
растать сорной растительностью,  характер-
ной для окружающего  ландшафта. Исследова-
ли три смешанных образца (СГ,  СУ1 и СУ2),  
отражающих разнообразие формирующих-
ся растительных ассоциаций на территории 
засыпанного  хвостохранилища. Эталоном для 
сравнения служил образец (ФП),  отобранный 
из верхнего  горизонта (0–10 см) слабокислой 
аллювиальной гумусовой почвы (Fluvisols) осо-
бо  охраняемой природной территории – ​ГПЗ 
“Нургуш” (фоновый участок),  также располо-
женного  в долине р. Вятки,  но  ниже по  тече-
нию. На всех участках отбора образцов про-
водили геоботаническое описание,  определяли 
общее проективное покрытие (ПП),  грануломе-
трический состав почвы полевым методом [Ро-
занов,  2004],  основные агрохимические пока-
затели почв (табл. 1).

Выделение тотальной почвенной ДНК и ам-
пликонное секвенирование участка V4 гена 16S 
рРНК выполнены в Центре коллективного  поль-
зования “Геномные технологии и клеточная био-
логия” ФГБНУ ВНИИСХМ (Санкт-Петербург,  
г. Пушкин). Выделение и очистку ДНК осущест-
вляли в соответствии с методикой,  разработан-
ной во  ВНИИСХМ [Pinaev et al., 2022].

Очищенный препарат ДНК служил в каче-
стве матрицы в реакции ПЦР с универсальны-
ми праймерами к вариабельному участку V4 
гена 16SрРНК F515 GTGCCAGCMGCCGCG-
GTAA и R806 GGACTACVSGGGTATCTAAT 
[Bates et al., 2011]. Все праймеры имели слу-
жебные последовательности,  содержащие 
линкеры и баркоды,  необходимые для секве-
нирования по  технологии Illumina.

Подготовку проб и секвенирование на при-
боре Illumina MiSeq (Illumina,  США) прово-
дили согласно  рекомендациям производителя 
c использованием набора реактивов MiSeq® 
ReagentKit v3, методом парно-концевого  чте-
ния генерацией не менее 20000 парных про-
чтений на образец.

Обработку данных секвенирования прово-
дили с использованием автоматизированного  
алгоритма QIIME 2 [Bolyen et al.,  2019]. Для 
удаления технических последовательностей 
в  полученных сиквенсах использовали пла-

гин q2‑cutadapt. При помощи инструментов 
программы проверяли качество  секвениро-
вания и создавали библиотеку сиквенсов. Ис-
правление ошибок с  использованием плаги-
на DADA2 [Callahan et al., 2016] достигалось 
за счет удаления химерных последовательно-
стей,  фильтрации последовательностей с низ-
кими показателями достоверности прочтения,  
объединения прямых и обратных прочтений 
и процесса шумоподавления. В ходе последую-
щего  биоинформационного  анализа проводили 
классификацию репрезентативных последова-
тельностей по  таксонам с восстановлением ис-
ходных филотипов (ASV, Amplicon sequence 
variant) и дальнейшей таксономической клас-
сификацией полученных ASV. Использова-
ли базу нуклеотидных последовательностей 
GreenGenes, версия 13_8,  адаптированную 
к праймерам F515/R806. Порог классификации 
составлял 99 %. Для визуализации результа-
тов изучения состава сообществ на разных 
таксономических уровнях использовали сайт 
view.qiime2.org.

Для оценки таксономического  богатства/
биоразнообразия и сравнительной оценки про-
кариотных сообществ при помощи того  же ал-
горитма QIIME 2 рассчитаны индексы альфа- 
и  бета-разнообразия,  при расчете которых 
проводили нормализацию выборок по  образцу 
с наименьшей глубиной секвенирования (13000 
последовательностей). Альфа-разнообразие 
характеризовали с помощью нескольких по-
казателей: индексов Шеннона,  Чао1,  Фише-
ра,  Пиелу и Симпсона [Мэгарран,  1992],  и по  
количеству обнаруженных таксонов – ​анало-
га видового  богатства. Для оценки бета-раз-
нообразия использовали метрику “weighted 
UniFrac”,  позволяющую определить процент 
сходства/различия между парами сравни-
ваемых сообществ [Lozupone et al., 2007]. Ре-
зультат представлен с использованием мето-
да многомерной статистики – ​анализа главных 
компонент PCoA. Диаграмма построена по  ме-
тоду неметрического  многомерного  шкалиро-
вания (non metric multidimensional scaling – ​
NMDS) на основе метрики сходства “weighted 
UniFrac”.

Количество  общих родов в списках,  полу-
ченных на платформе QIIME 2,  визуализиро-
вали также с помощью диаграмм Венна. Срав-
нение списков для четырех образцов проводили 
с построением диаграмм с помощью интерак-
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тивного  инструмента InteractiVenn (http://
www.interactivenn.net/) [Heberle et al., 2015].

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В  результате секвенирования последова-
тельностей фрагмента гена 16S рРНК получе- 
ны четыре ампликонные библиотеки,  содер-
жащие в общей сложности 177613 нуклеотид-
ных последовательностей,  из которых после 
удаления стандартных последовательностей 
и праймеров,  проверки качества,  фильтра-
ции и шумоподавления в дальнейшем анали-
зе использовали 83045 (табл. 2).

По  результатам классификации репрезен-
тативных последовательностей по  таксонам 
с восстановлением исходных филотипов полу-
чено  60452 АSV,  с варьированием их количе-
ства,  в зависимости от образца,  от 13433 до  
17937 (в среднем 15113). Для всех образцов до-
стигнута достаточно  большая глубина секве-
нирования (более 13000 последовательностей 
в  образце). Анализ кривых разрежения (за-
висимость количества таксонов от количества 
сиквенсов) показал практически полное опреде-
ление таксономического  состава уже для выбо-
рок в 5000 сиквенсов (рис. 1). Для всех четырех 
субстратов кривые выходят на плато,  что  сви-
детельствует о  том,  что  полученных данных 
вполне достаточно  для оценки разнообразия 
микроорганизмов в образцах. В целом кривые 
разрежения имеют сходную форму и демон-
стрируют более высокое в сравнении с другими 
образцами таксономическое богатство  в образ-
це природной аллювиальной почвы,  представ-
ляющей собой аналог той,  что  была нарушена 
вследствие размещения хранилища с жидкими 
отходами химического  производства.

Анализ показателей таксономического  бо-
гатства продемонстрировал меньшее количе-

ство  выявленных таксонов в молодых почвах 
техногенного  ландшафта (385–411) по  срав-
нению с  природной почвой (465) фонового  
участка (табл. 3). Как и ожидалось,  величи-
на индекса Чao1,  оценивающего  максималь-
но  возможное видовое богатство,  в природной 
почве была выше,  чем в микробиомах форми-
рующихся почв. Судя по  соотношению этих 
показателей,  в  результате секвенирования 
удалось выявить более чем 99 %  таксономи-
ческого  богатства исследуемых субстратов.

Индексы Шеннона,  Фишера и  Симпсона 
демонстрировали сходные результаты в раз-
делении прокариотных сообществ по  уровню 
разнообразия и  выравненности. Максималь-
ные значения соответствовали фоновой поч-
ве,  минимальные – ​СУ2. Согласно  оценке сте-
пени выравненности прокариотных сообществ 
с помощью индекса Пиелу,  ФП отличалась от 
молодых почв также большей выравненностью 
таксономической структуры. Индексы Шенно-
на и Фишера,  отражающие не только  количе-
ство  таксонов,  но  и их относительное обилие 
в сообществе,  показали лучшие результаты 
в сравнении с индексом Симпсона,  который 
служит также мерой доминирования,  посколь-
ку его  величина полностью определяется до-
лей 1–2 наиболее многочисленных видов [Ши-
тиков,  Розенберг,  2005]. Индекс Симпсона 
в качестве меры разграничения сообществ по  
разнообразию уступал другим,  по-видимому,  
в силу того,  что  в почвенном метагеноме на 
низких таксономических уровнях обычно  от-
сутствуют четко  выраженные доминанты.

Индекс Фишера используют также для 
определения соотношения между числом осо-
бей и числом видов в биоценозе [Экологиче-
ский энциклопедический словарь,  1989]. Более 
высокое значение индекса Фишера (F = 93,6),  
обнаруженное в ФП,  может означать боль-

Т а б л и ц а  2
Количественные результаты биоинформатического анализа ДНК-библиотек

Площадка мониторинга 
почв и растительности /  

Код библиотеки

Общее ко-
личество  

видов

Количество  последовательностей Ампликон-
сиквенс вари-
антов (ASV)

после  
фильтрации

после шумопо-
давления

после слияния пар-
ноконцевых ридов

ФП 53313 42293 37323 28365 17937

СГ 41240 33285 27164 18196 14173

СУ1 44902 36174 29920 19511 14909

СУ2 38158 30930 23449 16973 13433
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Рис. 1. Зависимость числа обнаруженных таксонов (Richness) от количества сиквенсов (N). 
Обозначения см. в табл. 1

шее число  редких видов (с небольшой плотно-
стью) по  сравнению с часто  встречающимися 
видами с большой плотностью. В то  же время 
меньшие значения индекса Фишера (F = 74,1–
80,3) в нарушенных почвах,  напротив,  указы-
вают на то,  что  число  часто  встречающихся 
видов превышает в данных сообществах чис-
ло  видов редких.

В образцах молодых почв на насыпных ма-
териалах и природной аллювиальной почвы 
выявлены на основе таксономической базы 
данных GreenGenes представители 26 бак-
териальных и двух архейных филумов про-
кариот. Доминировали в  исследованных ми-
кробных сообществах филумы Actinobacteria, 
Proteobacteria, Chloroflexi, Bacteroidetes, Ac-
idobacteria, Cyanobacteria, Firmicutes, Verru-
comicrobia, Planctomycetes и архейный филум 
Сrenarcheota,  которые составили в совокупно-
сти около  95 %  от всего  числа классифици-

рованных последовательностей (рис. 2). Абсо-
лютными доминантами по  представленности 
таксонов от общего  количества выявленных 
прокариот были филумы Actinobacteria (22–
41 %) и Proteobacteria (20–26 %). Представите-
ли филума Actinobacteria являются основными 
деструкторами растительного  опада,  завер-
шая сложный процесс его  конвейерной пере-
работки [Barka et al., 2016],  в то  время как 
протеобактерии,  наряду с различными пато-
генными и свободноживущими организмами,  
включают представителей,  ответственных за 
деградацию ряда органических загрязнителей 
и разложение органических отходов в поверх-
ностных слоях свалок [Sharma et al.,  2021]. 
От 8 до  21 %  всех выявленных прокариот 
занимали Chloroflexi – ​нитчатые аноксиген-
ные фотосинтезирующие бактерии,  которые,  
согласно  данным литературы,  часто  встре-
чаются в  составе активного  ила очистных  

Т а б л и ц а  3
Индексы таксономического богатства и разнообразия прокариот в образцах техносолей и фоновой почвы

Площадка мониторинга 
почв и растительности

Индекс разнообразия Выявленные 
таксоны  

(богатство)

Индекс 
Фишера

Индекс 
ПиелуЧao1 Шеннона Симпсона

ФП 466 8,48 0,9966 465 93,6 0,959

СГ 403 8,25 0,9960 403 78,3 0,953

СУ1 411 8,24 0,9956 411 80,3 0,949

СУ2 385 8,08 0,9954 385 74,1 0,940
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сооружений,  предназначенных для удале-
ния азота и фосфора. Отдельные представи-
тели Chloroflexi могут использовать галогени-
рованные органические вещества,  например  
токсичные хлорированные этены и полихло-
рированные бифенилы,  в  качестве акцепто-
ров электронов [Speirs et al., 2019].

Представители филумов Bacteroidetes, Ac-
idobacteria, Cyanobacteria, Firmicutes, Ver-
rucomicrobia, Planctomycetes обнаружены 
в исследуемых микробиомах в меньших ко-
личествах (от  1 до  14 %). Остальные филу-
мы представлены не во  всех образцах и имели 
низкое относительное обилие (доли процента 
от общего  числа последовательностей фраг-
ментов гена 16S рРНК).

Оценка таксономического  состава про-
кариот на уровнях высокого  ранга выявила 
в техногенных почвах ряд отличий от сообще-
ства ФП. Прокариотные сообщества техносо-
лей отличала более высокая доля Cyanobacte-
ria (2–14 %) и более низкая – ​Verrucomicrobia 
(1–2 %) – ​группы со  слабо  изученной экологи-
ей,  среди которых много  некультивируемых 
видов [Bergman et al., 2011]. Предполагается,  
что  Verrucomicrobia являются олиготрофами,  

адаптированными к недостатку органического  
вещества [Zhang et al., 2017].

От 0,5 до  4 %  в техносолях и 3 %  в ФП 
приходилось на долю представителей архейно-
го  филума Сrenarcheota,  большинство  членов 
которого  являются экстремофилами. Увеличе-
ние в прокариотном сообществе доли экстре-
мофильной группы предложено  считать инди-
катором экологической нестабильности почвы 
[Першина и др.,  2016]. Представители друго-
го  филума археот – ​Euryarchaeota – отмечены 
только  в сообществе участка СУ2,  предствля-
ющего  собой западину с избыточным увлаж-
нением и слегка подкисленной почвой (рН 6,0),  
и  не встречались в  других исследованных  
микробиомах. В  литературе отмечалось,  что  
относительное обилие эвриархеот на всех так-
сономических уровнях существенно  зависит 
от реакции почвенного  раствора и  содержа-
ния в почве влаги [Hang-Wei et al., 2013].

Анализ разнообразия доминирующих фи-
лумов на более низких таксономических 
уровнях показал,  что  в  классе актинобак-
терий во  всех микробиомах доминировали 
представители порядка Actinomycetales (97–
100 %). Самыми многочисленными в природ-

Рис. 2. Сравнительное обилие доминирующих филумов: Асt – ​Actinobacteria;  Р – ​Proteobacteria,  Сh – ​
Chloroflexi,  V –  Verrucomicrobia,  F – ​Firmicutes,  B – ​Bacteroidetes,  A – ​Acidobacteria,  Pl – ​Planctomy-

cetes,  Cr – ​Crenarchaeota,  C – Cyanobacteria,  О – ​другие
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ной почве ФП были представители семейств 
Micromonosporaceae (17 %),  Microbacteriace-
ae (15 %) и Nocardioidaceae (13 %). По  11 %  
от всех актинобактерий ФП приходилось на 
долю Thermomonosporaceae и  Pseudonocar-
diaceae. На уровне рода наиболее многочис-
ленные актиномицетные последовательности 
отнесены к  Agromyces, Nocardioides, Salini-
bacterium, Pseudonocardia. В техногенных поч- 
вах удельный вес представителей семейств 
Microbacteriaceae (20–26 %) и Nocardioidace-
ae (15–26 %) был значительно  выше,  а доля 
Micromonosporaceae (2–8 %),  напротив,  ниже, 
чем в ФП. Только  в техносолях отмечены не- 
идентифицированные представители семей-
ства Intrasporangiaceae, наиболее многочислен-
ного  в суглинистой почве участка СГ. Согласно  
литературным источникам,  некоторые пред-
ставители Intrasporangiaceae участвуют в про-
цессах биоремедиации и биологическом удале-
нии фосфатов из сточных вод [Stackebrandt et 
al., 2014]. Возможно,  их обнаружение в почве 
СГ,  с более высоким содержанием химическо-
го  аналога фосфора – мышьяка (см. табл. 1),  
не является случайным.

Протеобактерии разных классов присут-
ствовали в микробиомах в  различных соот-
ношениях. Относительное обилие класса Alp-
haproteobacteria (от 53 до  71 %) составляло  
более 50 %  среди протеобактерий в каждом 
из сообществ. В фоновой почве наиболее мно-
гочисленными среди альфапротеобактерий 
были порядки Rhizobiales (34 %),  Rhodospiril-
lales (38 %) и Sphingomonadales (17 %). В тех-
ногенных почвах к ним присоединились бакте-
рии порядка Rhodobacterales (от 4 до  18 %  от 
всех сиквенсов Alphaproteobacteria). В литера-
туре имеются сведения об обнаружении Rho-
dobacterales (в основном относящихся к родам 
Dinoroseobacter и Loktanella) на малых высо-
тах Тибетского  плато,  где они доминировали 
в микрофототрофных сообществах напочвен-
ных корок,  особенно  – ​при невысоком обилии 
цианобактерий. Авторы отмечают устойчивую 
положительную связь Rhodobacterales с содер-
жанием в почве Сl– [Yang, Hu, 2022].

В  техносолях,  где уровень рН выше по  
сравнению с ФП,  относительное обилие Al-
phaproteobacteria сокращалось, а  предста-
вителей классов Betaproteobacteria и  Gam-
maproteobacteria,  напротив,  возрастало. Это  
согласуется с результатами широкомасштаб-

ных исследований,  проведенных в Новой Зе-
ландии и показавших,  что  численность Alp-
haproteobacteria, в отличие от других классов 
протеобактерий,  уменьшалась по  мере того,  
как почвы становились менее кислыми [Her-
mans et al., 2017]. Betaproteobacteria в основном 
представлены семейством Comamonadaceae 
(от 23 до  40 %),  которое включает аэробных 
органотрофов,  анаэробных денитрификаторов 
и микроорганизмы,  участвующие в анаэроб-
ном окислении водорода c Fe(III)-редукцией. 
Большинство  из них – ​ типичные обитатели 
водной и почвенной среды [Moon et al., 2018]. 
В отличие от техногенных почв,  в ФП наи-
более представительными среди Betaprote-
obacteria были семейства Oxalobacteraceae 
и Burkholderiaceae (34 и 15 % соответственно). 
Количество  последовательностей,  соотнесен-
ных с семейством Comamonadaceae,  в ФП со-
ставило  лишь 13 %  от всех сиквенсов Betap-
roteobacteria.

Среди Gammaproteobacteria классифици-
рованные последовательности соотносились 
в  основном с  порядками Pseudomonadales 
и Xanthomonadales, причем в сообществе огле-
енной почвы пониженного  участка СУ2 пред-
ставители Pseudomonadales выявлены не были. 
В ФП лидировали по  численности предста-
вители семейства Sinobacteraceae,  за ними 
следовали род Pseudomonas и  неидентифи-
цированные представители семейства Xantho-
monadaceae (51,  21 и 12 %  от всех сиквенсов 
гаммапротеобактерий соответственно).

По  относительному обилию Deltaproteobac-
teria техногенные почвы (от 14 до  21 %) прак-
тически не отличались от природной (18 %  от 
всех протеобактерий). Основная доля во  всех 
микробиомах принадлежала представителям 
порядка Myxococcales (43–53 %),  отнесенным 
к семействам Polyangiaceae, Syntrophobacte-
raceae, Entotheonellaceae. Представители по-
следнего  семейства в нарушенных микробио-
мах СУ1 и СУ2 не обнаруживались,  а в почве 
СГ их доля по  сравнению с ФП была меньше 
в 10 раз. Это  согласуется с результатами изу
чения состава прокариот в почвах разновоз-
растных парков Пекина. Обилие Entotheonel-
laceae в почвах естественных лесопарков было  
гораздо  выше,  чем в молодых почвах город-
ских скверов [Yan et al., 2021].

Представители филума Bacteroidetes встре- 
чались во  всех образцах,  составляя от 5 %  
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в ФП до  6–11 %  в техносолях. Среди них пре-
обладали сиквенсы,  отнесенные к семействам 
Chitinophagaceae, Sphingobacteriaceae, Cytopha-
gaceae,  а также к порядку Flavobacteriales.

От 1,3 до  2,2 %  всех сиквенсов в  нару-
шенных почвах и до  5,4 %  в ФП составля-
ли последовательности,  отнесенные к филуму 
Firmicutes,  большинство  из которых пред-
ставляли порядки Bacillales и Clostridiales. От-
носительное обилие рода Clostridium, напро-
тив,  увеличивалось с 7 %  от всех Firmicutes 
в ФП до  15–27 %  в техносолях. Присутствие 
клостридий рассматривают как косвенный 
индикатор  наличия в почве дополнительных 
анаэробных экологических ниш (в частности,  
анаэробных зон внутри почвенных комочков),  
что  может свидетельствовать о  развитости ее 
агрегатной структуры [Першина и др., 2016].

На долю филума Acidobacteria в исследо-
ванных микробиомах приходилось от 3 до  6 %  
всего  выявляемого  бактериального  комплек-
са. Согласно  данным литературы,  ацидобакте-
рии распространены повсеместно,  но  известна 
их приуроченность к местообитаниям с повы-
шенной кислотностью,  в  том числе загряз-
ненных тяжелыми металлами [Hermans et al., 
2017]. В ФП,  отличавшейся среди рассматри-
ваемых субстратов наиболее низким уровнем 
рН,  этот филум был представлен таксономи-
ческими группами Acidobacteria‑6,  Chlorac-
idobacteria и порядком Solibacterales – ​ аци-
дофильными и олиготрофными бактериями,  
способными к гидролитическому расщеплению 
широкого  спектра биополимеров [Dedysh, Sin-
ninghe Damste, 2018],  обладающими большим 
набором генов,  отвечающих за мобилизацию 
минерального  фосфора [Bergkemper et al., 
2016]. В техногенных почвах СГ,  СУ1 и СУ2 
соответственно  17,  19 и 64 %  приходилось на 
долю подгрупп ацидобактерий,  не имеющих 
культивируемых представителей.

Значительную долю от общего  количества 
сиквенсов в микробиомах техногенных почв 
занимал филум Cyanobacteria,  представлен-
ный преимущественно  семействами Nosto-
caceae и Oscillatoriophycideae,  тогда как в ФП 
цианобактерии обнаружены в  незначитель-
ном количестве (0,09 %). Цианобактерии и во-
доросли обеспечивают начальные этапы фор-
мирования почв при зарастании отвалов,  при 
этом ведущая роль в этом процессе принад-
лежит цианобактериям [Микроорганизмы…,  

2018;  Кондакова,  Дабах,  2020]. При сравнении 
участков СГ и СУ1 с пониженным участком 
СУ2 доля цианобактерий увеличивалась от 2 
до  14 %,  очевидно,  в связи с большей увлаж-
ненностью последнего. В  техносолях после-
довательности цианей соотнесены на уровне 
рода с Dolichospermum, Nostoc, Anabena, Phor-
midium. По  результатам предыдущих иссле-
дований видового  состава почвенных мик- 
рофототрофов методом прямого  микроско-
пирования,  в почвах данных участков доми-
нировали виды Phormidium autumnale (СГ,  
СУ1 и СУ2) и Leptolyngbya angustissima (СГ и 
СУ2). Почва участка СУ2 отличалась наибо-
лее широким спектром доминантов,  включа-
ющим,  помимо  упомянутых,  влаголюбивые 
виды Leptolyngbya foveolarum,  Phormidium 
uncinatum, P. inundatum, Anabaena sphaeri-
ca f. sphaerica, Calothrix elenkinii, Stigonema 
ocellatum [Кондакова,  Дабах,  2022].

Таким образом,  при сравнении микробных 
сообществ природной фоновой и техногенно  
нарушенных почв на уровне высших таксо-
нов – ​филумов и классов – ​значительных раз-
личий в их составе и количественной пред-
ставленности,  за несколькими исключениями 
(более низкая доля Verrucomicrobia,  более вы-
сокая доля Cyanobacteria,  смещение соотно-
шения классов протеобактерий),  не наблю-
далось. Гетерогенность по  таксономическому 
составу прокариот просматривалась в  срав-
ниваемых микробиомах на уровне порядков,  
семейств и  родов. Это  может быть связано  
с вариативностью физико-химических пара-
метров насыпных почвогрунтов,  создающей 
многообразие экологических ниш. По-видимо-
му,  формирование определенной структуры 
микробных сообществ является результатом 
совокупного  действия комплекса эдафиче-
ских факторов и  типа растительности. Так,  
высоким относительным обилием порядка 
Acidimicrobiales (филум Actinobacteria, класс 
Acidimicrobia),  многие представители которого  
вовлечены в окислительно-восстановительные 
реакции круговорота железа,  отличалось со-
общество  красно-бурого  среднего  суглинка 
с низким содержанием органического  веще-
ства и наличием в почве мышьяка на уровне 
ОДК 10 мг/кг (СГ). Сообщество  подстилаемой 
карбонатным суглинком супеси с повышенным 
содержанием нитратного  азота и  стронция 
(СУ1) отличалось наибольшей среди исследо-
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ванных образцов представленностью аммиак- 
окисляющих архей (АОА). Особой специфич-
ностью характеризовался микробиом оглеен-
ной супеси СУ2,  отличающейся от других тех-
носолей более низким положением в рельефе,  
наиболее низким уровнем рН,  повышенным 
содержанием органического  вещества и из-
быточным увлажнением,  обусловившим фор-
мирование на данной площадке гидрофильной 
растительной ассоциации (см. табл. 1). В соста-
ве прокариотного  сообщества СУ2 обнаружены 
представители архейного  филума Euryarchaeo- 
ta, которые не встречались в других микро-
биомах,  и самая высокая среди сравниваемых 
сообществ доля филума Cyanobacteria (14 %). 
В  СУ2, в  отличие от других техногенных 
почв, в бактериальных комплексах которых 
не выявлялись представители семейства Ento-
theonellaceae, обычно  ассоциированные с при-
родными ненарушенными почвами,  данные 
представители присутствовали,  хотя и на по-
рядок в меньшем обилии,  чем в ФП.

Сравнение таксономической структуры ми-
кробных сообществ техносолей и природной 
фоновой почвы проведено  также с использо-

ванием диаграмм Венна (рис. 3),  на которых 
показано  количество  родов,  общих и  уни-
кальных для сравниваемых образцов. К числу 
общих для всех исследованных микробиомов 
был отнесен 61 род прокариот. В долевом со-
отношении они составили 16,1 %  от всей со-
вокупности полученных ASV. В число  общих 
вошли АОА – ​некультивируемые микроорга-
низмы,  осуществляющие первую стадию хе-
молитоавтотрофной нитрификации,  которые 
представляют собой функционально  важную 
группу микроорганизмов во  многих экосисте-
мах [Ayub et al.,  2022]. На уровне рода АОА 
классифицированы как “Candidatus Nitrosos-
phaera”,  “Candidatus Nitrosopolaris” и “Can-
didatus Nitrocosmicus” [Spang et al.,  2012]. 
Наиболее высоким содержанием АОА (4 %) от-
личалась почва СУ1,  выделяющаяся высоким 
содержанием нитратного  азота (260  мг/кг).  
Положительная связь между обилием архей 
и количеством в почве доступного  азота ра-
нее уже была отмечена рядом авторов [Bates 
et al.,  2011;  Тхакахова и др.,  2015].

Из числа актинобактерий общими для всех 
микробиомов являлись представители родов 

Рис.  3. Диаграмма Венна,  отображающая число  общих и  уникальных родов в  образцах техносолей  
(СГ,  СУ1 и СУ2) и природной фоновой почвы (ФП). В скобках приведено  общее количество  ASV
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Microbacterium, Salinibacterium, Agromyces, 
Pseudonocardiа, Nocardioides, Streptomyces, 
Mycobacterium, неидентифицированные пред-
ставители семейств Conexibacteraceae, Soliru-
brobacteraceae, Micromonosporaceae, Gaiellace-
ae и порядка Acidimicrobiales.

Среди представителей других таксономиче-
ских групп к общим отнесены роды Kaistobac-
ter, Chloracidobacterium, Rhodoplanes, Devosia, 
Nitrospira,  Pedobacter,  Pirellula, Planctomy-
ces и минорные виды Sphingopyxis alaskensis,  
Flavobacterium succinicans, Reyranella massil-
iensis,  Clostridium bowmani.

При анализе таксономической структуры 
почвенного  микробиома некоторые авторы вы-
деляют коровый (консервативный) и  акцес-
сорный (лабильный) компоненты [Тхакахо-
ва и др.,  2015]. Микроорганизмы-индикаторы 
почв,  процессов или условий при анализе дан-
ных ампликонного  секвенирования предло-
жено  искать среди акцессорного  компонен-
та,  связанного,  вероятно,  в большей степени 
с условиями среды обитания микроорганиз-
мов,  чем коровый компонент,  характеризу-
ющийся общностью состава в  большинстве,  
если не во  всех почвенных субстратах.

По  количеству уникальных родов,  не  
встречающихся в других микробиомах,  поч-
венные сообщества прокариот различались 
следующим образом: в образце СУ2 –  14,5 %,  
в ФП – ​13,2 %,  в СГ и СУ1 –  7,9 и 9,5 %  от 
всех классифицированных последовательно-
стей соответственно.

Образец фоновой почвы содержал 50 уни-
кальных родов,  принадлежащих широкому 

таксономическому спектру (в порядке сниже-
ния количества последовательностей): Ther-
momonosporaceae, Ktedonobacteria JG30-
KF-AS9, Rhizobiales, Chloroflexi FFCH4570, 
Acidimicrobiales AKIW874,  Cellulomonas xy-
lanilytica,  Koribacteraceae, и ряду некульти-
вируемых бактерий,  преимущественно  отне-
сенных к Acidobacteria и Chloroflexi.

Из 30 родов,  уникальных для СГ,  наи-
более многочисленными являлись некульти-
вируемые бактерии Pedosphaerales Ellin517,  
Chloroflexi TK17 и mle1-48,  Acidobacteria‑6,  
CCU21,  RB25,  актинобактерии Microthrixa- 
ceae, планктомицеты,  галофильный и психро-
толерантный вид Marinomonas primoryensis 
и факультативный метилотроф Methylobacte-
rium organophilum.

В подстилаемой карбонатами СУ1,  отлича-
ющейся высоким содержанием стронция и ни-
тратного  азота,  уникальными были 36 родов,  
среди которых высоким обилием характери-
зовались Nitrosovibrio, Myxococcus, “Candida-
tus Protochlamydia”, Ardenscatena.

По  количеству уникальных родов все дру-
гие микробиомы превосходило  прокариотное 
сообщество  СУ2 (55 родов). Наиболее много-
численными в нем были Anaerolinea thermoli-
mosa и другие культивируемые и некульти-
вируемые представители Anaerolineaceae,  
цианобактерии порядка Chroococcales и рода 
Phormidium,  нитчатые зеленые несерные бак-
терии Chloroflexaceae и  представительная 
группа бактерий,  вовлеченных в круговорот 
серы (Desulfobulbaceae, Chromatiaceae, Thioba-
cillus),  некультивируемые представители Cre-
narchaeota, Alphaproteobacteria BD7-3,  Deltap-
roteobacteria NB1‑j и JTB38.

Выявленные особенности сравниваемых ми-
кробиомов хорошо  подтверждаются результа-
тами ординации микробных сообществ,  вы-
полненной методом главных компонент (рис. 4). 
Полученный 3D график характеризует более 
95 %  общей изменчивости родового  состава 
прокариот в исследуемых образцах. Наиболее 
близко  в ординационном пространстве распо-
ложены друг к другу сообщества образцов СГ 
и СУ1,  которые объединяет сходный характер  
растительного  покрова (в основе ассоциаций 
в том и другом случае пырей ползучий (Agro-
pyron repens)), а также наличие в почве поллю-
тантов в концентрациях,  превышающих ОДК 
и ПДК – ​ мышьяка в СГ и  стронция в СУ1.  

Рис. 4. Ординация почвенных прокариотных сооб-
ществ техносолей (СГ,  СУ1 и СУ2) и  природной 
фоновой почвы (ФП),  выполненная методом глав-

ных компонент
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Оба почвенных микробиома характеризуются 
реакцией среды,  близкой к нейтральной,  но  
почвы различаются по  гранулометрическому 
составу,  содержанию Сорг и нитратного  азота 
(см. табл. 1). На более значительном расстоянии 
от первых двух и друг от друга располагаются 
точки,  соответствующие образцам ФП и СУ2,  
различающимся между собой по  составу рас-
тительного  покрова (липняк и заросли трост-
ника). Вместе с тем для обоих участков харак-
терны слабокислая реакции среды (рНсол 5,6 
и 6,2),  повышенное в сравнении с другими ми-
кробиомами содержание Сорг (3,2 и 2,8 %),  от-
сутствие высоких концентраций поллютантов 
и периодическое воздействие на почву избы-
точного  увлажнения.

В целом,  данная диаграмма демонстриру-
ет выраженные различия в составе прокари-
от между образцами,  различающимися по  це-
лому ряду параметров. Расположенные близко  
друг к другу почвы на площадках мониторинга 
СГ,  СУ1 и СУ2 и природная почва ФП значи-
тельно  различались по  характеру раститель-
ного  покрова,  гранулометрическому составу,  
содержанию органического  вещества и кислот-
ности,  наличию поллютантов,  соответственно,  
сравнительный анализ таксономического  со-
става сообществ прокариот продемонстрировал 
имеющиеся между ними различия на уровне 
таксонов как высокого,  так и низкого  ранга.

ЗАКЛЮЧЕНИЕ

На основе данных высокопроизводитель-
ного  секвенирования изучено  разнообра-
зие и  определена таксономическая струк-
тура прокариотных сообществ техногенных 
почв на территории засыпанного  хранили-
ща жидких отходов химического  производ-
ства. Спустя двенадцать лет после заполне-
ния котлована твердым материалом – ​песком,  
глиной с примесью извести и гипсом,  в про-
цессе самозарастания территории сорной рас-
тительностью,  характерной для окружаю-
щего  ландшафта,  в  молодых почвах с  еще 
не оформленным профилем сформировались 
микробные сообщества,  отличные от природ-
ной аллювиальной почвы особо  охраняемой 
природной территории – ​ГПЗ “Нургуш” (фо-
новый участок).

В сравнении с условным фоном,  микробио-
мы молодых почв характеризовались меньши-

ми разнообразием и выравненностью прокари-
отных сообществ,  преобладанием в структуре 
часто  встречающихся видов над редкими. Не-
смотря на сходство  с природной аллювиаль-
ной почвой по  составу доминантов,  техносоли 
на уровне таксонов высокого  ранга характе-
ризовались меньшей долей в составе прока-
риотного  комплекса представителей филума 
Verrucomicrobia и большей – ​филума Cyano-
bacteria. В  техносолях выявлено  смещение 
состава протеобактерий в  сторону большей 
представительности классов Betaproteobac-
teria и  Gammaproteobacteria при сокраще-
нии доли Alphaproteobacteria. Между про-
странственно  разобщенными прокариотными 
сообществами формирующихся почв также 
выявлены различия на уровне порядков,  се-
мейств и родов,  связанные,  по  всей видимо-
сти,  с  исходной гетерогенностью насыпных 
грунтов по  гранулометрическому составу,  
кислотности,  наличию поллютантов. Выяв-
ленные особенности техногенных почв вно-
сят вклад в понимание разнообразия,  соста-
ва и структуры прокариотного  компонента на 
начальном этапе почвообразовательного  про-
цесса. Вместе с  тем в  работе показано,  что  
техническая рекультивация хвостохранили-
ща с использованием рыхлых природных ма-
териалов (песка и глины),  а также нетоксич-
ных отходов производства (извести и гипса) 
при самозарастании достаточно  быстро  воз-
вращает микробное сообщество  к состоянию,  
близкому к исходному микробиому природной  
почвы в условиях особо  охраняемой природ-
ной территории.

Полученные результаты могут быть 
в дальнейшем использованы при биоиндика-
ции,  в оценке процесса восстановления поч-
венных экосистем,  нарушенных в результа-
те деятельности промышленных предприятий,  
для разработки новых подходов в  будущих 
исследованиях связи почвенной микробиоты 
с изменениями экосистем,  вызванными дея-
тельностью человека.

Работа выполнена в  рамках государственно-
го  задания Института биологии ФИЦ Коми НЦ 
УрО РАН по  теме “Структура и  состояние ком-
понентов техногенных экосистем подзоны южной 
тайги” (государственная регистрация в  ЕГИСУ 
№ 122040100032-5) и частично  в рамках государ-
ственного  задания “Федерального  аграрного  науч-
ного  центра Северо-Востока имени Н. В. Рудницко-
го”,  № FNWE‑2022-0005.
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The method of high-performance sequencing using the Illumina technology investigated the diversity of 
prokaryotes in three soil samples (Technosols) selected on the territory of the former tailings of liquid waste of 
chemical production near the city of Kirovo-Chepetsk, Kirov region. The assessment of the taxonomic richness 
and phylogenetic diversity of microbial communities formed in the process of regenerative succession of the 
technogenic landscape, in comparison with the alluvial soil (Fluvisols) – ​a natural analogue of the one that 
was disturbed as a result of the disposal of waste from a chemical enterprise. The analysis of the indicators of 
taxonomic richness and diversity demonstrated their lower values in the soils formed on waste in comparison 
with the natural soil of the background site. 26 bacterial and 2 archaeal phyla of prokaryotes were identified, 
accounting for more than 95 % of the number of classified sequences. The phylum Actinobacteria (22–41 %) 
and Proteobacteria –20–26 %) dominated. At the level of higher taxa in disturbed soils, compared with the 
community of natural alluvial soil, trends in the representation of phylum were revealed: a decrease in the 
proportion of Verrucomicrobia and an increase in the proportion of Cyanobacteria. The greatest differences 
between the communities of technosols and background soil were revealed at the levels of orders, families 
and genera. Common and unique genera have been identified for each of the four microbiomes. The detect-
ed differences in the composition and structure of the prokaryotic component of microbial communities of 
disturbed soils are related to the complex of their physical-chemical properties (granulometric composition, 
pH of soil solution, Corg content, composition of toxicants of industrial origin, humidity regime, etc.) and the 
nature of vegetation cover. The results obtained are of interest for the development of new approaches in 
future studies of the relationship of soil microbiota with ecosystem changes caused by human activity.

Key words: industrial waste, technogenic soils, prokaryotes, high-throughput sequencing, Illumina, 16S 
rRNA, biodiversity, taxonomic structure.


