2016. Том 57, № 3

Март – апрель

C. 453 – 460

УДК 544.163.2

# ИЗУЧЕНИЕ ЭЛЕКТРОННОГО СТРОЕНИЯ И СВОЙСТВ ПРОПАРГИЛЬНОГО РАДИКАЛА

# В.В. Туровцев<sup>1</sup>, Е.М. Чернова<sup>1</sup>, В.Н. Ситников<sup>1</sup>, В.М. Емельяненко<sup>2</sup>, Ю.Д. Орлов<sup>1</sup>

<sup>1</sup>Тверской государственный университет, Россия E-mail: turtsma@tversu.ru <sup>2</sup>Казанский федеральный университет, Россия

Статья поступила 20 апреля 2015 г.

Методом B3LYP/6-311++G(3df,3pd) получено распределение электронной плотности пропаргильного радикала CH<sub>2</sub>CCH. В рамках "Квантовой теории атомов в молекуле" на количественном уровне изучено явление сопряжения и распределение спиновой плотности неспаренного электрона в CH<sub>2</sub>CCH. Проведено сравнение характеристик электронного строения CH<sub>2</sub>CCH и его "материнских" молекул CH<sub>3</sub>—C≡CH и CH<sub>2</sub>=C=CH<sub>2</sub>. С использованием модели жесткий ротатор-ангармонический осциллятор рассчитаны термодинамические свойства пропаргильного радикала и энтальпии разрыва связей в пропине и аллене в интервале температур 298—1500 К. Рассмотрена взаимосвязь между электронными и термодинамическим свойствами CH<sub>2</sub>CCH и вычислена его энергия сопряжения.

DOI: 10.15372/JSC20160301

**Ключевые слова:** квантовая теория атомов в молекуле, электронная плотность, сопряжение, пропаргил, энтальпия образования, энтальпия разрыва связи.

### введение

Электронная плотность ( $\rho(r)$ ) есть функция состояния системы, заключающая в себе всю информацию о ней, и любое изменение в распределении  $\rho(r)$  находит отражение в наблюдаемых. Современные квантово-механические методы позволяют с высокой точностью восстановить  $\rho(r)$  в приближении Борна—Оппенгеймера [1].

Изучение внутримолекулярных взаимодействий начинается с разбиения  $\rho(r)$  на фрагменты с учетом таких классических понятий, как *связность*, *валентность*, *молекулярный граф*, *химическая связь*. Дальнейший количественный анализ требует введения физико-математических соотношений\* между наблюдаемыми квантовой теории и классическими параметрами [2—4]. Здесь в качестве одного из основных инструментов используется "Квантовая теория атомов в молекуля" (QTAIM) Р. Бейдера [2], которая на квантовом уровне дает обоснование моделям и представлениям классической теории химического строения.

В QTAIM функция  $\rho(r)$  — физически определенное трехмерное скалярное поле — разбивается на отдельные "топологические" атомы ( $\Omega$ ), состоящие из электронного бассейна  $\rho_{\Omega}(r)$ и атомного ядра. Границы бассейнов совпадают с поверхностями нулевого потока вектора градиента электронной плотности. Подобное разбиение позволяет отнести к  $\Omega$  все физические свойства — заряд  $q(\Omega)$ , полную энергию  $E(\Omega)$ , объем  $V(\Omega)$  и др., и тем самым ввести количест-

<sup>©</sup> Туровцев В.В., Чернова Е.М., Ситников В.Н., Емельяненко В.М., Орлов Ю.Д., 2016

<sup>\*</sup> Например, принцип соответствия [5].

венные меры описания внутримолекулярных явлений. Так, химическая связь (один из основных типов межатомного взаимодействия) характеризуется в QTAIM параметрами критической точки (BCP) связывающего пути, соединяющего ядра двух соседних атомов. Таковыми являются:  $\rho_b$  — электронная плотность,  $\varepsilon$  — эллиптичность и  $\nabla^2 \rho_b$  — лапласиан. Положение BCP отвечает минимуму  $\rho(r)$  на связывающем пути между ядрами и максимуму  $\rho(r)$  в плоскости, перпендикулярной этому пути.

Описание радикалов требует введения дополнительной степени свободы в каждой точке поля — спиновой поляризации и/или спиновой плотности ( $\sigma$ ). Предполагается, что число  $\alpha$ -электронов (описываемых спин-орбиталями с  $\alpha$ -спиновой функцией) больше либо равно числу  $\beta$ -электронов с противоположным спином. Спиновая плотность  $\sigma(\Omega)$  равна интегралу разности  $\rho_{\alpha}(r)$  и  $\rho_{\beta}(r)$  по объему  $V(\Omega)$ , что позволяет ввести меру локализации  $\alpha$ - и  $\beta$ -электронов в бассейне  $\Omega$ . В молекулах с замкнутой оболочкой  $\sigma(\Omega) = 0$  для всех  $\Omega$ , однако радикалы — открытые системы, и в QTAIM появляется возможность уточнить понятия *радикальный центр* — фрагмент R с  $\sigma(R) \neq 0$ , несущий избыточную спиновую плотность, а также свободная валентность и неспаренный электрон [6, 7].

Разбиение полной молекулярной электронной плотности на фрагменты  $\rho_{\Omega}(r)$  и  $\rho_{R}(r)$  (где  $R = \sum_{\Omega \in R} \Omega$ ) отвечает аддитивности полной  $\rho(r)$ , следствием чего является аддитивность молеку-

лярных свойств. Дополнительным понятием к аддитивности является переносимость: если распределение электронной плотности атома или группы атомов в двух различных молекулах одинаково, то их вклады в экстенсивное свойство обеих систем одинаковы [2, 8, 9]. Полная и точная переносимость свойств  $\Omega$  и R невозможна из-за внутримолекулярных взаимодействий, однако область применимости модели определяется суммарной ошибкой, и во многих случаях аддитивные методы дают приемлемую погрешность [10]. Применительно к органическим свободным радикалам указанный подход развит в [10, 11] для алкилов и их кислородсодержащих производных. Настоящая работа посвящена изучению сопряженных радикалов, отличительной чертой которых является  $\alpha$ -положение свободной валентности относительно кратной связи.

Моделирование сопряженных радикалов встречает значительные трудности. В подобных соединениях часто происходит *размазывание* электронной плотности неспаренного электрона по значительному объему, что не позволяет однозначно отнести радикальный центр к стандартной функциональной группе и приписать в нем свободную валентность какому-то определенному атому [12]. Изучение проведено на примере пропаргил-радикала CH<sub>2</sub>CCH, который может быть представлен двумя структурами: C<sup>\*</sup>H<sub>2</sub>—C=CH и CH<sub>2</sub>=C=C<sup>\*</sup>H. Идентичность структур сомнений не вызывает, однако вопрос о распределении в них спиновой плотности ранее не рассматривался.

#### ИЗУЧЕНИЕ ЭЛЕКТРОННОГО СТРОЕНИЯ

Оптимизация строения и расчеты колебательных частот пропаргила были проведены с помощью программы Gaussian 09 [13] методами B3LYP, mPWPLYP, B2PLYP и MP2 в базисе 6-311++G(3df,3pd) декартовых функций (6d,10f) как с учетом симметрии, так и без. На первом этапе была найдена геометрия исходных молекул CH<sub>3</sub>—C=CH и CH<sub>2</sub>=C=CH<sub>2</sub>. Далее у каждой из них удалили один из атомов водорода, место которого в радикальных структурах (см. выше) помечено символом свободной валентности (\*). Полученные радикалы вновь оптимизировались с наложением симметрии и без ее учета. Во всех случаях, в отличие от [14], было получено линейное строение пропаргила\* с близкими параметрами.

Функции  $\rho(r)$  и интегральные электронные характеристики *топологических* атомов  $\Omega$ , разнесенные по группам *R* (табл. 1), были рассчитаны в программе AimAll [15]. Одновременно были определены параметры ВСР (табл. 2). На рисунке изображено поле градиента электрон-

<sup>\*</sup> Следует отметить, что реализация функционала B3LYP в программах GAMESS и GAUSSIAN несколько различается.

Таблица 1

| Параматр                       | CH <sub>3</sub> —C≡CH |                   |                  | $CH_2 = C = CH_2$ |                   |                  | $CH_2 \cong C \simeq CH$ |                   |                   |
|--------------------------------|-----------------------|-------------------|------------------|-------------------|-------------------|------------------|--------------------------|-------------------|-------------------|
| Параметр                       | CH <sub>3</sub>       | Ct                | C <sub>t</sub> H | $C_dH_2$          | C <sub>dd</sub>   | $C_dH_2$         | $C_sH_2$                 | C <sub>ds</sub>   | C <sub>ds</sub> H |
| q(R), ат. ед.<br>E(R), ат. ед. | 0,219<br>-39,806      | -0,281<br>-38,274 | 0,062<br>-38,624 | 0,209<br>-39,157  | -0,419<br>-38,392 | 0,209<br>-39,157 | 0,177<br>-39,168         | -0,243<br>-38,266 | 0,066<br>-38,617  |
| $V(R), Å^3$                    | 32,0                  | 16,9              | 25,9             | 28,9              | 17,1              | 28,9             | 29,2                     | 16,6              | 25,9              |
| $\sigma(R)$                    | —                     | —                 | —                | —                 | —                 | —                | 0,65                     | -0,11             | 0,46              |

Электронные характеристики атомных групп R в CH<sub>3</sub>—C=CH, CH<sub>2</sub>=C=CH<sub>2</sub> и радикале C<sub>3</sub>H<sub>3</sub>

ной плотности (*a*) и распределение спиновой плотности CH<sub>2</sub>CCH ( $\delta$ ); в (*a*) показаны границы между атомными группами (жирные линии), точками выделены BCP углеродных связей; в ( $\delta$ ) сплошными и пунктирными изолиниями изображены области локализации  $\alpha$ - и  $\beta$ -электронов соответственно. Все настройки описаны в [16].

В табл. 1 индексами у С отмечена кратность связи: С<sub>t</sub> связан тройной связью с соседним углеродом, С<sub>d</sub> — двойной связью, С<sub>dd</sub> — двумя двойными связями, С<sub>s</sub> — одинарной связью с другим С. В исходных молекулах наиболее электроотрицательной группой, стягивающей на себя электронную плотность и несущей наименьший по величине заряд, выступают центральные атомы C<sub>t</sub> и C<sub>dd</sub>, электронные параметры которых несколько различаются — объем  $V(C_{dd})$  на 0,2 Å<sup>3</sup> больше  $V(C_t)$ , что приводит к уменьшению как заряда  $q(C_{dd})$  на 0,138 ат. ед., так и энергии  $E(C_{dd})$  на 309,8 кДж/моль по сравнению с C<sub>t</sub>. Сдвиг электронной плотности к центру молекул отвечает уменьшению объемов и появлению положительных зарядов у концевых групп. Для сравнения объем стандартных (невозмущенных) групп равен  $V(CH_3) = 33,1$  Å<sup>3</sup>,  $V(-CH_2-) = 23,5$  Å<sup>3</sup>,  $V(=CH_2) = 29,8$  Å<sup>3</sup> и  $V(\equiv CH) = 25,9$  Å<sup>3</sup>. Отрыв водорода (H) в молекулах (H)CH<sub>2</sub>— С=CH и CH<sub>2</sub>=C=CH(H) приводит к одной и той же структуре (см. табл. 1), что подтверждается геометрическим строением, электронными и спиновыми параметрами радикалов. Учитывая это, оба радикала можно записать в виде одной формулы CH<sub>2</sub> $\cong C \cong CH$ .

Порядки связей С—С в исходных молекулах в классическом представлении вводятся однозначно и составляют 1, 2 и 3; в табл. 2 приведены их электронные характеристики. В CH<sub>3</sub>— С=СН распределение  $\rho(r)$  в плоскостях, перпендикулярных связывающим путям и проходящих через критические точки, симметрично,  $\varepsilon = 0$  и сечения изолиний  $\rho(r)$  данными плоскостями есть концентрические окружности. В аллене  $\varepsilon \neq 0$ , и двойные связи поляризованы во взаимно перпендикулярных направлениях. Привязка  $\rho_b$  в изомерах к кратности связей позволяет оценить эту величину в сопряженном радикале: величина  $\rho_b$  тройной связи примерно в 1,5, у двойной в 1,2 раза больше, чем  $\rho_b$  одинарной. Таким образом, формально кратности связей в CH<sub>2</sub>=С~CH равны 2,7 и 1,2, т.е. происходит накопление  $\rho_b(r)$  в ВСР со смещением  $\rho(r)$  от центрального атома к концевым группам. Сечения  $\rho(r)$  в ВСР для обеих связей близки по форме (эллипсоидальные), но они менее поляризованы, чем двойные связи в аллене.

В квантовой химии явление перераспределения  $\rho(r)$  по бассейнам атомов в соединениях с кратными связями описывается термином *сопряжение*. Уход концевого атома Н приводит

| Таблица | 2 |
|---------|---|
|---------|---|

| <i>в</i> СH <sub>3</sub> —С≡СН, СH <sub>2</sub> =С=СH <sub>2</sub> <i>и радикале</i> С <sub>3</sub> H <sub>3</sub> , <i>в</i> ат. ед. |                                 |                                  |                     |                         |                         |                                   |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------------|---------------------|-------------------------|-------------------------|-----------------------------------|--|--|
| Параметр                                                                                                                              | CH <sub>3</sub> —               | C≡CH                             | CH <sub>2</sub> =0  | C=CH <sub>2</sub>       | H <sub>2</sub> C≅C≃CH   |                                   |  |  |
|                                                                                                                                       | CH <sub>3</sub> —C <sub>t</sub> | C <sub>t</sub> —C <sub>t</sub> H | $C_dH_2$ — $C_{dd}$ | $C_{dd}$ — $C_{d}H_{2}$ | $C_{ds}$ — $C_{s}H_{2}$ | C <sub>ds</sub> H—C <sub>ds</sub> |  |  |
| ρ <sub>b</sub>                                                                                                                        | 0,273                           | 0,423                            | 0,364               | 0,364                   | 0,410                   | 0,324                             |  |  |
| $\nabla^2\rho_b$                                                                                                                      | -0,753                          | -1,328                           | -1,191              | -1,191                  | -1,319                  | -1,009                            |  |  |
| 3                                                                                                                                     | 0,000                           | 0,000                            | 0,348               | 0,348                   | 0,108                   | 0,164                             |  |  |

Электронные характеристики критических точек связей (ВСР) в CH<sub>3</sub>—C=CH, CH<sub>2</sub>=C=CH<sub>2</sub> и радикале C<sub>3</sub>H<sub>3</sub>, в ат. ед.



Изображение  $\rho(r)$  в радикале C<sub>3</sub>H<sub>3</sub>: векторное поле градиента электронной плотности  $\nabla \rho(r)$ , границы групп и критические точки связей C—C, AimAll [15] (*a*), распределение спиновой плотности  $\sigma(r)$ , вид сбоку по отношению к (*a*), MolDen [17] (*б*)

к уменьшению объема центрального атома V(C) и небольшому увеличению  $V(CH_2)$ . На концевых группах (см. табл. 2 и рисунок) появляется избыточная спиновая плотность  $\rho_{\alpha}(r)$  (а также  $\rho_{\beta}(r)$  на центральном атоме), и фрагмент, содержащий большую долю  $\rho_{\alpha}(r)$ , обладает большим зарядом. Заряд и энергия CH повышаются, а CH<sub>2</sub> понижаются относительно родительских молекул. Делокализация электронов (см.  $\sigma(R)$  в табл. 2 и  $\sigma(r)$  на рисунке) не позволяет однозначно указать положение свободной валентности в C<sub>3</sub>H<sub>3</sub>, как может быть сделано при классическом рассмотрении реакции отрыва водорода. Полученная картина соответствует наличию двух ( $\alpha$ -избыточных) радикальных центров с неравным распределение спиновой плотности между одинаковыми атомами C. Ранее неравномерное распределение электронной плотности было установлено в [12] для различных атомов O и N. В терминах теории резонанса здесь мы наблюдаем резонанс двух структур (иными словами — квантовую суперпозицию двух радикальных состояний)

$$C^{\bullet}H_2 \longrightarrow C \equiv CH \leftrightarrow CH_2 \cong C \simeq CH \leftrightarrow CH_2 = C = C^{\bullet}H.$$

#### ЭНЕРГИЯ СОПРЯЖЕНИЯ

Однозначность разбиения молекул на топологические атомы и состоящие из них группы и связь  $\rho_R(r)$  с парциальными свойствами R [2, 6, 8, 9] является теоретическим обоснованием аддитивно-групповой модели и взаимосвязей строение—свойство [6, 10, 18]. Эта феноменологическая модель получила широкое распространение при расчетах термодинамических функций органических соединений, в том числе радикалов [10]. При этом не ослабевает интерес исследователей к поискам новых количественных корреляций в рамках данной модели [6]. Для сопряженных радикалов аддитивно-групповая модель развита в работах [19—24] применительно к расчетам их энтальпий образования. Авторы [10, 19] одновременно предложили две модификации данной модели. Первая (схема А) — являющаяся развитием общего подхода предусматривает учет энергии сопряжения  $E_S$  свободной валентности с  $\pi$ -системой радикала. В этой схеме [10, 19]  $E_S$  считается параметром, одинаковым для однотипных радикалов с различными алкильными заместителями; так, для производных пропаргила по значениям  $\Delta_f H^0$  самого пропаргила и пяти его метилзамещенных получено  $E_S = -52,0$  кДж/моль [10, 19].

По определению  $E_s$  равна разности энтальпий образования реального радикала и его гипотетического несопряженного аналога. Энергию сопряжения пропаргила также можно оценить, например, из расчета теплового эффекта изодесмической реакции (1), который дает  $E_s$ (HC=CC'H<sub>2</sub>) = -46,5 кДж/моль:

$$HC \equiv CC^{\bullet}H_{2} + CH_{3}CH_{3} = CH_{3}C^{\bullet}H_{2} + HC \equiv CCH_{3}.$$

$$341,0 \pm 4,2 \ [10] -83,8 \pm 0,3 \ [25] 118,8 \pm 1,3 \ [11] 184,9 \pm 0,7 \ [25]$$
(1)

В (1) цифры под символами — энтальпии  $\Delta_f H^0$  соответствующих соединений в стандартных условиях. Значение  $E_s$ , оцененное по (1), совпадает в пределах погрешностей  $\Delta_f H^0$  с указанной выше величиной (-52,0 кДж/моль), обоснованной в [10, 19].

Вторая модификация (схема В) наилучшим образом соответствует рассмотренной выше картине, построенной на представлениях QTAIM. Она основана на собственной фрагментации (дополнительный набор групп) для сопряженных фрагментов радикалов. Рассматриваемый радикал C<sub>3</sub>H<sub>3</sub> в аддитивно-групповом формализме в рамках схемы А может быть смоделирован двумя путями:

$$HC \equiv C - C^{\bullet}H \implies \{C_{t} - (H)\} + \{C_{t} - (C_{t})(C)\} + \{C^{\bullet} - (H)_{2}(C_{t})\} + E_{S}(C^{\bullet} - C \equiv C),$$
(2)

$$H_2C = C = C^{\bullet}H \implies \{C_d - (H)_2\} + \{C_{dd}\} + \{C_d^{\bullet} - (H)(C_d)\} + E_S(C_d^{\bullet} = C = C),$$
(3)

и согласно схеме В как

$$CH \cong C \simeq CH_2 \Longrightarrow \{C_S - (H)_2(C_{ds})\} + \{C_{ds} - (C_S)(C_{ds})\} + \{C_{ds} - (C_{ds})(H)\}.$$
(4)

Здесь использовали общепринятую систему обозначения групп [18], когда сначала обозначается центральный атом, а затем в скобках соседние многовалентные и одновалентные атомы, составляющие данную группу. Знак s указывает на сопряжение свободной валентности с π-системой радикала. Проведенное выше рассмотрение показало, что реальной ситуации наилучшим образом соответствует вторая модификация (схема В) [10, 19], развитие которой, к сожалению, до сих пор сдерживается недостаточностью реперных данных для определения параметров.

## ИЗУЧЕНИЕ ТЕРМОДИНАМИЧЕСКИХ СВОЙСТВ

Термодинамические и энергетические свойства в конечном итоге тоже определяются электронным строением соединений. Так, электронная плотность в радикалах более диффузна в сравнении с молекулами с замкнутой оболочкой [6]. Как следствие — понижение барьеров внутреннего вращения и возрастание ангармоничности движений [26, 27], что требует удержания большего числа слагаемых при разложении в ряд потенциальной энергии [28, 29]. В пропаргиле диффузность  $\rho(r)$  приводит к явлению сопряжения. Все это нужно учитывать при построении феноменологических моделей.

Энтальпия образования  $\Delta_f H^0$ , энтропия  $S^0$ , свободная энергия  $\Delta_f G^0$  и теплоемкость  $C_P$  изученных веществ были вычислены в рамках модели жесткий ротатор-ангармонический осциллятор (ЖРАО) [6, 30] в интервале температур 298—1500 К. Гармонические  $\omega_{\text{гарм}}$  и ангармонические  $\omega_{\text{ангарм}}$  частоты найдены с помощью колебательной теории возмущений второго порядка в квартичном силовом поле (VPT2 QFF) указанными выше методами дважды — с наложением симметрии и без учета симметрии. Наибольшее согласие между  $\omega_{\text{ангарм}}$ , вычисленными в VPT2 QFF, и экспериментальными спектрами  $\omega_{\text{эксп}}$  получено при использовании метода B3LYP. Сопоставление  $\omega_{\text{гарм}}$  и  $\omega_{\text{ангарм}}$  с  $\omega_{\text{эксп}}$  позволило выбрать из  $\omega_{\text{ангарм}}$  и составить совокупность рекомендованных частот, опираясь на которую были получены параметры ЖРАО: диагональных ямах. Теплоемкость газообразного пропина, найденная с использованием метода ЖРАО, хорошо согласуется с экспериментом при T = 272, 300, 333, 369 K [31]. Модель ЖРАО, учитывающая неэквидистантность и конечность числа уровней (ангармоничность), позволяет рассчитать термодинамические свойства в интервале 298—1500 K с большей точностью [6], чем модель жесткий ротатор—гармонический осциллятор (ЖРГО).

Экспериментальные энтальпии образования пропина и аллена, рекомендованные (с учетом всех соответствующих данных) в справочном издании [25], представлены в табл. 3. Сравнение полученных нами и экспериментальных  $\Delta_f H^0$  аллена и пропина при T = 298 K (см. табл. 3) показало, что лучшее согласие с экспериментом дает комбинация колебательного вклада ЖРАО с полной электронной энергией метода mPW2PLYP (см. табл. 3). Расхождение для молекул находится в пределах химической точности. Для радикала рассчитанная этим методом величина также хорошо согласуется со справочными данными [10, 32] (см. табл. 3). Это (а также нали-

## Таблица З

| Метод       | CH <sub>3</sub> —C≡CH |                         | CH <sub>2</sub> =C=CH <sub>2</sub> |                         | C <sub>3</sub> H <sub>3</sub> |                                    |  |
|-------------|-----------------------|-------------------------|------------------------------------|-------------------------|-------------------------------|------------------------------------|--|
|             | $\Delta_{f}H_{0}^{0}$ | $\Delta_{f}H_{298}^{0}$ | $\Delta_{f} H_{0}^{0}$             | $\Delta_{f}H_{298}^{0}$ | $\Delta_{f}H_{0}^{0}$         | $\Delta_{f}H_{298}^{0}$            |  |
| B3LYP       | 203,0                 | 195,7                   | 193,4                              | 185,8                   | 345,1                         | 342,4                              |  |
| mPW2PLYP    | 197,0                 | 189,7                   | 198,2                              | 190,6                   | 349,6                         | 346,8                              |  |
| B2PLYP      | 208,1                 | 200,8                   | 209,5                              | 201,9                   | 360,3                         | 357,5                              |  |
| MP2         | 204,8                 | 197,5                   | 222,0                              | 214,4                   | 394,0                         | 391,3                              |  |
| Эксперимент | _                     | 184,9±0,7 [ 25 ]        | _                                  | 190,5±1,1 [ 25 ]        | 356,5 [ 38 ]                  | 341,0±4,2 [ 10 ], 339,0±4,2 [ 32 ] |  |

Энтальпия  $\Delta_f H^0$  изученных веществ, полученная в различных квантово-химических моделях в базисе 6-311++G(3df,3pd) 6d,10f, кДж/моль

чие стабилизирующего сопряжения) дает основание считать преждевременным предложение о повышении рекомендуемой величины  $\Delta_f H^0$  пропаргила до 351 кДж/моль, сделанное в работе [33] на основании совместного анализа результатов расчетов и экспериментов, как не соответствующее данным новых расчетов. Также не соответствуют реальной ситуации ряд значений  $E_S(\text{HC}=\text{CC}^{\bullet}\text{H}_2) = 17\pm5$  [34], 63,6 [35], 40 [36] и 25 кДж/моль [37]. Эти величины оказались положительными, что противоречит физическому смыслу  $E_S$  (стабилизирующий эффект). Поэтому с учетом результата оценки (1) и [10, 19] следует полагать  $E_S(\text{HC}=\text{CC}^{\bullet}\text{H}_2) = -52,0\pm$  $\pm 6,0$  кДж/моль. Таким образом, рекомендуемое значение  $\Delta_f H^0$  пропаргила следует полагать соответствующим [10, 32], увеличив на 2 кДж/моль границы его доверительного интервала, т.е. 341,0 $\pm 6,0$  кДж/моль.

Таблица 4

| <i>Т</i> , К | CH <sub>3</sub> CCH |                  | CH <sub>2</sub> CCH <sub>2</sub> |                  | CH <sub>2</sub> CCH |                  |                       |                                     |
|--------------|---------------------|------------------|----------------------------------|------------------|---------------------|------------------|-----------------------|-------------------------------------|
|              | $\Delta_f H_T^0$    | $\Delta_f G_T^0$ | $\Delta_f H_T^0$                 | $\Delta_f G_T^0$ | $\Delta_f H_T^0$    | $\Delta_f G_T^0$ | $D(H - CH_2CCH)^{**}$ | <i>D</i> (CH <sub>2</sub> CCH—H)*** |
| 0            | 192,2               |                  | 198,1                            |                  | 343,8               |                  | 367,6                 | 361,7                               |
| 298,15       | 184,9               | 194,4            | 190,5                            | 199,6            | 341,0               | 330,7            | 374,1                 | 368,5                               |
| 300          | 184,8               | 194,4            | 190,4                            | 199,6            | 341,0               | 330,6            | 374,2                 | 368,6                               |
| 400          | 182,6               | 198,0            | 188,0                            | 203,0            | 340,3               | 327,3            | 376,3                 | 370,9                               |
| 500          | 180,5               | 202,1            | 185,9                            | 207,0            | 339,5               | 324,1            | 378,3                 | 372,9                               |
| 600          | 178,6               | 206,6            | 184,1                            | 211,4            | 338,8               | 321,2            | 380,1                 | 374,6                               |
| 700          | 177,0               | 211,4            | 182,6                            | 216,1            | 338,1               | 318,3            | 381,6                 | 376,0                               |
| 800          | 175,7               | 216,4            | 181,4                            | 221,0            | 337,5               | 315,5            | 382,9                 | 377,2                               |
| 900          | 174,6               | 221,6            | 180,4                            | 225,9            | 336,9               | 312,8            | 384,0                 | 378,2                               |
| 1000         | 173,7               | 226,8            | 179,6                            | 231,0            | 336,3               | 310,1            | 384,8                 | 378,9                               |
| 1100         | 173,0               | 232,2            | 179,0                            | 236,1            | 335,9               | 307,5            | 385,7                 | 379,7                               |
| 1200         | 172,4               | 237,6            | 178,6                            | 241,4            | 335,6               | 304,9            | 386,5                 | 380,3                               |
| 1300         | 172,0               | 243,0            | 178,3                            | 246,6            | 335,3               | 302,3            | 387,2                 | 380,9                               |
| 1400         | 171,8               | 248,6            | 178,2                            | 251,9            | 335,2               | 299,9            | 387,8                 | 381,4                               |
| 1500         | 171,7               | 254,1            | 178,2                            | 257,2            | 335,3               | 297,3            | 388,4                 | 381,9                               |

Величины  $\Delta_f H_T^{0*} u \Delta_f G_T^{0*}$  изученных веществ и энтальпии разрыва связей  $D(\text{RC}-H)_T$ в пропине и аллене при T = 0 K и в интервале  $T = 298 \div 1500$  K, кДж/моль

\* Скорректированные значения  $\Delta_f H_T^0$  (CH<sub>3</sub>CCH),  $\Delta_f H_T^0$  (CH<sub>2</sub>CCH<sub>2</sub>) и  $\Delta_f H_T^0$  (CH<sub>2</sub>CCH) (см. текст).

<sup>\*\*</sup> Экспериментальное значение 393,1±5 [ 34 ], 665,3 [ 39 ], 477,0 [ 39 ], 343,9 [ 35 ], 379±12 [ 40 ].

<sup>\*\*\*</sup> Экспериментальное значение 386,4±5 [ 34 ], 339,7 [ 35 ].

Отклонение расчетных и экспериментальных значений  $\Delta_f H_{298}^0$  (см. табл. 3) связано с погрешностью в полной электронной энергии  $E_{tot}$ . Данная величина не зависит от температуры, т.е. погрешность  $E_{tot}$  одинакова во всем ряду температур. Это позволяет скорректировать (на величину разности  $E_{tot}$  экспериментального и теоретического значения)  $\Delta_f H_T^0$  на всем температурном интервале (табл. 4) и найти энтальпии разрыва связей С—Н не только при 298 К  $(D(C-H)_{298})$ , но и их температурные зависимости  $D(C-H)_T$  (см. табл. 4). Анализ табл. 4 показывает, что с увеличением температуры энтальпии образования всех веществ уменьшаются, а энтальпия разрыва связей растет. Это связано с ростом энтальпии образования атомарного водорода и меньшим понижением  $\Delta_f H_T^0$  пропаргила по сравнению с  $\Delta_f H_T^0$  в исходных молекулах. При этом рост энтальпии разрыва связей с температурой примерно равен уменьшению энтальпии образования молекул. Также следует отметить, что зависимости  $D(RC-H)_T$  в обоих случаях приближенно описываются соотношением

$$D(RC - H)_T \approx D(RC - H)_{T_0} + \frac{1}{2}R(T - T_0).$$
 (5)

Таким образом, на основании проведенного исследования получены количественные характеристики электронного строения радикала  $CH_2CCH$ , проведено их сравнение с аналогичными для молекул  $CH_3$ — $C\equiv CH$  и  $CH_2=C=CH_2$ ; на основании теории QTAIM изучено сопряжение и установлено неравномерное распределение спиновой плотности между двумя радикальными центрами в  $CH_2CCH$ . Рассчитаны энтальпии образования веществ, энергия сопряжения в радикале и энтальпии разрыва связей в родительских молекулах.

Работа выполнена за счет средств субсидии, выделенной в рамках государственной поддержки Казанского (Приволжского) федерального университета в целях повышения его конкурентоспособности среди ведущих мировых научно-образовательных центров.

Работа поддержана грантом Российского фонда фундаментальных исследований (проект 14-03-97502).

## СПИСОК ЛИТЕРАТУРЫ

- 1. *Tsirelson V.G., Ozerov R.P.* Electron Density and Bonding in Crystals. Bristol—Philadelphia: Inst. Phys. Publ., 1996.
- 2. Бейдер Р. Атомы в молекулах. Квантовая теория. М.: Мир, 2001.
- 3. Грибов Л.А., Баранов В.И. Теория и методы расчета молекулярных процессов: спектры, химические превращения и молекулярная логика. М.: КомКнига, 2006.
- 4. Татевский В.М. Классическая теория строения молекул и квантовая механика. М.: Химия, 1973.
- 5. Мессиа А. Квантовая механика. Т.1. М.: Наука, 1979.
- 6. Туровцев В.В. Создание и применение квантовомеханической модели расчета термодинамических свойств веществ в широком интервале температур. Дис. ... докт. физ.-мат. наук. Тверь: ТвГУ, 2014.
- 7. Туровцев В.В., Орлов Ю.Д. // Хим. физика. 2014. **33**, № 7. С. 29.
- 8. *Mezey P.G.* // Mol. Phys. 1999. **96**. P. 169.
- 9. Mezey P.G. // Topics in Current Chemistry. 1999. 203. P. 168.
- 10. *Орлов Ю.Д., Лебедев Ю.А., Сайфуллин И.Ш.* Термохимия органических свободных радикалов. М.: Наука, 2001.
- 11. Орлов М.Ю., Чернова Е.М., Туровцев В.В., Орлов Ю.Д. // Изв. АН. Сер. хим. 2014. № 12. С. 2620.
- 12. Туровцев В.В., Орлов Ю.Д., Петров И.А., Кизин А.Н., Лебедев Ю.А. // Журн. физ. хим. 2008. **82**, № 5. С. 891.
- 13. Frisch M.J. et al. Gaussian 09, Revision C.01. Gaussian, Inc., Wallingford CT, 2010.
- 14. Oyeyemi V.B., Keith J.A., Pavone M., Carter E.A. // J. Phys. Chem. Lett. 2012. 3. P. 289.
- 15. Keith Todd A. AimAll (version 11.12.19, Professional). URL: http://aim.tkgristmill.com
- 16. Туровцев В.В., Чернова Е.М., Орлов Ю.Д. // Журн. структур. химии. 2015. 56, № 2. С. 225.
- 17. Schaftenaar G., Noordik J.H. // J. Comput.-Aided Mol. Design. 2000. 14. P. 123.
- 18. Benson S.W. Thermochemical Kinetics, 2-nd ed. N. Y.: Wiley, 1976.
- 19. Орлов Ю.Д., Лебедев Ю.А. // Журн. физ. химии. 1991. 65, № 2. С. 289.
- 20. Орлов Ю.Д., Зарипов Р.Х., Лебедев Ю.А. // Изв. АН. Сер. хим. 1998. № 4. С. 637.

- 21. Орлов Ю.Д., Зарипов Р.Х., Лебедев Ю.А. // Изв. АН. Сер. хим. 1998. № 4. С. 643.
- 22. Орлов Ю.Д., Лебедев Ю.А. // Изв. АН. Сер. хим. 1999. № 2. С. 286.
- 23. Орлов Ю.Д., Томилин А.А., Лебедев Ю.А. // Журн. физ. химии. 2000. 74, № 7. С. 1184.
- 24. Орлов Ю.Д., Туровцев В.В., Степников И.В., Кизин А.Н., Лебедев Ю.А. // Изв. АН. Сер. хим. 2004. – № 8. – С. 1574.
- 25. *Pedley J.B.* Thermochemical Data and Structures of Organic Compounds. Thermodynamic Research Center. Texas A & M Univ., College Station, TX, 1994.
- 26. *Туровцев В.В., Орлов Ю.Д.* // Журн. общ. химии. 2011. **81**, № 9. С. 1458. http://webbook.nist.gov/chemistry/
- 27. Туровцев В.В., Орлов Ю.Д. // Журн. общ. химии. 2010. 80, № 4. С. 588.
- 28. Baird M.S., Spencer K., Krasnoshchiokov S.V., Panchenko Yu.N., Stepanov N.F., de Mare G.R. // J. Phys. Chem. A. 1998. 102. P. 2363.
- 29. Krasnoshchekov S.V., Isayeva E.V., Stepanov N.F. // J. Phys. Chem. A. 2012. 116. P. 3691.
- 30. Емельяненко В.Н., Туровцев В.В., Орлов Ю.Д. // Журн. физ. химии. 2014. 88, № 9. С. 1307.
- 31. Kistiakowsky G.B., Rice W.W. // J. Chem. Phys. 1940. 8. P. 618.
- 32. Luo J.-R. Comprehensive handbook of chemical bond energies. L., N. Y.: CRC Press, Boca Raton, 2007.
- 33. Wheeler S.E., Robertson K.A., Allen W.D. et al. // J. Phys. Chem. A. 2007. 111. P. 3819.
- 34. Walsh R. // Trans. Faraday Soc. 1971. 67. P. 2085.
- 35. Collin J., Losing F.P. // J. Am. Chem. Soc. 1957. 79. P. 5848.
- 36. Tsang W. // Int. J. Chem. Kinet. 1970. 2. P. 23.
- 37. Martin M.M., Sanders E.B. // J. Am. Chem. Soc. 1967. 89. P. 3777.
- 38. Roth W.R., Hopf H., Horn C. // Chem. Ber. 1994. 127. P. 1781.
- 39. *Davies B.* // J. Chem. Soc. B: Physical Organic. 1966. P. 910.
- 40. Robinson M.S., Polak M.L., Bierbaum V.M. et al. // J. Am. Chem. Soc. 1995. 117. P. 6766.