2007. Том 48, № 5

Сентябрь – октябрь

C. 995 – 1005

УДК 541.49;541.572.7

СТРУКТУРА И СТАБИЛЬНОСТЬ КЛАТРАТА БИС(ДИБЕНЗОИЛМЕТАНАТО)-ДИПИРИДИН-НИКЕЛЯ(II) С АЦЕТОНОМ (1:2)

© 2007 Д.В. Солдатов*, Э.А. Украинцева, В.А. Логвиненко

Институт неорганической химии им А.В. Николаева СО РАН, Новосибирск

Статья поступила 20 ноября 2006 г.

Получено соединение включения постоянного состава [Ni(DBM)₂Py₂] · 2(CH₃COCH₃), где Ni = Ni(II), DBM — дибензоилметанат-анион (C_6H_5CO)₂CH⁻, Ру — пиридин. Соединение и процессы его диссоциации исследованы методами структурного и термического анализа, а также тензиметрическим методом. Кристаллическая структура клатрата определена в моноклинной пространственной группе $P 2_1/n$ (температура 173 K, a == 11,8617(9) Å, b = 10,0096(6) Å, c = 17,2895(9) Å, $\beta = 96,72(1)^{\circ}$, V = 2038,7(2) Å³, Z = 2, конечный $R_1 = 0.032$). Молекула хозяина [Ni(DBM)₂Py₂] является нейтральным октаэдрическим комплексом, в котором центральный атом Ni(II) окружен в экваториальной плоскости двумя хелатными DBM-анионами и аксиально двумя терминальными пиридинами. Молекулы гостя расположены попарно в полостях молекулярного кристалла. Рассчитанные коэффициенты упаковки клатрата и стабильной формы комплексахозяина при 173 К равны 0,685(2) и 0,668(1) соответственно. В замкнутом объеме клатрат плавится инконгруэнтно при 58-60 °C с образованием твердой фазы комплексахозяина, а на воздухе разлагается с выделением газообразного ацетона и образованием метастабильной формы хозяина (апохозяин). Коллапс метастабильной формы [Ni(DBM)₂Py₂] в стабильную происходит при 131 °C с выделением 11 кДж/моль. Равновесное давление пара ацетона над клатратом измерено статическим мембранным методом в интервале 292—310 К (при 298 К давление равно 0,48P₀, где P₀ — давление насыщенного пара жидкого ацетона при этой температуре). Из найденной экспериментально зависимости lgP – 1/T рассчитаны термодинамические параметры процесса дисклатрата 1/2[Ni(DBM)₂Py₂] · 2(CH₃COCH₃)(тв.) = 1/2[Ni(DBM)₂Py₂](тв.) + социации + CH₃COCH₃(газ): $\Delta H_{cp}^{0} = 53 \pm 3$ кДж/моль, $\Delta S_{cp}^{0} = 160 \pm 10$ Дж/(моль·К), $\Delta G_{298}^{0} = 4,74 \pm 10$ ± 0.07 кДж/моль.

Ключевые слова: молекулярный кристалл, соединение включения, полиморфизм, апохозяин, термический анализ, тензиметрический метод, давление пара, термодинамическая стабильность, энтальпия клатрации, β-дикетонат.

В одной из предыдущих работ [1] мы охарактеризовали новый комплекс [Ni(DBM)₂Py₂] (Ni = Ni(II), DBM — однозарядный дибензоилметанат-анион (C₆H₅CO)₂CH⁻, Py — пиридин) (рис. 1, *a*) и его склонность к образованию соединений включения (клатратов). Было установлено, что из его растворов в целом ряде растворителей (четыреххлористый углерод, пиридин, бензол, хлорбензол, хлороформ, тетрагидрофуран) кристаллизуются соединения включения, в которых [Ni(DBM)₂Py₂] выступает в качестве компонента-хозяина, а перечисленные растворители — в качестве компонентов-гостей. Выделить комплекс в виде индивидуальной фазы можно путем кристаллизации продукта синтеза из хлороформа или ацетона, однако эта методика не всегда воспроизводится, и в качестве продукта могут быть получены соединения вклю-

^{*} E-mail: soldatov@che.nsk.su

Рис. 1. Молекулярная структура комплекса [Ni(DBM)₂Py₂] (*a*) и представление его геометрии в виде пронизанной осью платформы (б)

чения комплекса с этими растворителями или смесь кристаллов комплекса и его соединения включения.

Геометрически комплекс [Ni(DBM)₂Py₂] принадлежит

к семейству "молекул-волчков" (humming-top geometry) [2], представляющих собой комбинацию платформы и перпендикулярно пронизывающей ее оси (см. рис. 1, δ). В качестве платформы выступает бис-хелатный фрагмент молекулы, а в качестве оси — аксиально координированные пиридиновые лиганды. Путем замены пиридиновых лигандов и модификации других фрагментов удалось получить целое семейство клатратообразующих молекулярных [3—10] и полимерных [11—15] комплексов, в том числе обладающих интересными и практически важными свойствами [4,9]. В этой связи структурное многообразие и устойчивость клатратов комплекса-родоначальника представляют особый интерес. Кроме того, термические и термодинамические свойства клатратов этого типа практически не известны, и изучение таких свойств могло бы способствовать лучшему пониманию условий образования и стабильности этих соединений. Целью данной работы являлось выделение клатрата [Ni(DBM)₂Py₂] с ацетоном, определение его кристаллической структуры, исследование его термической и термодинамической стабильности.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Получение соединений. Стабильную форму комплекса [Ni(DBM)₂Py₂], изученную в [1], удалось получить в виде коричнево-зеленых призматических кристаллов при медленном упаривании его раствора в хлороформе при комнатной температуре. Кристаллы отделяли и выдерживали на воздухе; отсутствие разложения их в течение суток подтвердило отсутствие в образце примеси нежелательного в данном случае соединения включения с хлороформом. Клатрат с ацетоном [Ni(DBM)₂Py₂]·2(CH₃COCH₃) получен в виде изометричных коричневых кристаллов (размер до 0,5 см) при медленном упаривании насыщенного раствора комплекса в ацетоне (комнатная температура). В случаях, когда вместе с кристаллами клатрата вырастали кристаллы комплекса [Ni(DBM)₂Py₂], два вида кристаллов можно было рассортировать вручную, если они были достаточно большого размера. Кристаллы клатрата хранили под слоем маточного раствора. Метастабильную форму комплекса [Ni(DBM)₂Py₂] получили при разложении клатрата с ацетоном на воздухе в течение часа.

Рентгенофазовый анализ. Отнесение рефлексов проводили путем сравнения экспериментальных порошковых дифрактограмм с рассчитанными на основе данных РСА. Коррекцию нуля производили по линиям добавленного к образцам в качестве внутреннего стандарта NaCl: 111 (d = 3,2563 Å) и 200 (d = 2,8200 Å). Во избежание разложения образец клатрата истирали в ступке с особой осторожностью; при подготовке образца и во время записи дифрактограммы образец все время находился в парах ацетона.

Рентгеноструктурный анализ. Для монокристального рентгеноструктурного анализа клатрата из маточного раствора был отобран коричневого цвета кристалл в виде косого параллелепипеда с размерами 0,50×0,24×0,22 мм, немедленно охлажден до 173 К и исследован при этой температуре. Определение параметров элементарной ячейки и сбор данных по интенсивностям отражений проводили на автоматическом четырехкружном дифрактометре Bruker-Nonius X8 Арех, оснащенном двухкоординатным детектором (излучение Mo K_{α} , графитовый монохроматор). Интенсивности 19640 отражений были измерены в диапазоне углов θ от 1,98 до 31,45°; учет абсорбции проведен по интенсивности эквивалентных отражений (SADABS; $\mu(MoK_{\alpha}) = 5,26 \text{ см}^{-1}$; 5304 независимых рефлекса; $R_{\text{int}} = 0,024$; отношение min/max для коэффициентов пропускания 0,8155).

Таблица 1

Формула	$C_{40}H_{32}N_2NiO_4 \cdot 2(C_3H_6O)$
Μ	779,54
Сингония, пр. группа	Моноклинная, $P2_1/n$
<i>a</i> , <i>b</i> , <i>c</i> , Å	11,8617(9), 10,0096(6), 17,2895(9)
β, град.	96,72(1)
$V, Å^3; Z$	2038,7(2); 2
Выч. плотность, г/см ³	1,270
Температура, К	173
Всего рефлексов	19640
Независ. рефлексы, <i>R</i> _{int}	5304, 0,024
Наблюд. рефлексы ($I_{hkl} > 2\sigma(I)$)	4260
Уточняемые параметры	252
R_1, wR_2 (наблюд. рефлексы)	0,032, 0,079
GOOF	1,036
Остаточн. экстремумы, е/Å ³	+0,37 и -0,28
Номер депозита CCDC	626122

Кристаллоструктурные данные для [Ni(DBM)₂Py₂]·2(CH₃COCH₃) и параметры рентгеноструктурного эксперимента

Таблица 2

Некоторые межатомные расстояния d, Å и валентные углы ∞, град. в структуре [Ni(DBM)₂Py₂]·2(CH₃COCH₃) (схема нумерации атомов показана на рис. 3)

Связь	d	Связь	d	Связь	d
Ni—O(1)	2,0056(8)	C(2)—C(3)	1,408(2)	C(72)—C(73)	1,380(2)
Ni—O(3)	2,0260(9)	O(3)—C(3)	1,267(1)	C(73)—C(74)	1,381(2)
Ni—N(7)	2,143(1)	C(3)—C(31)	1,500(2)	C(74)—C(75)	1,381(2)
O(1)—C(1)	1,269(1)	N(7)—C(71)	1,344(2)	C(1G)—O(1G)	1,204(2)
C(1)—C(2)	1,401(2)	N(7)—C(75)	1,342(2)	C(1G)—C(2G)	1,499(2)
C(1)—C(11)	1,503(2)	C(71)—C(72)	1,384(2)	C(1G)—C(3G)	1,491(3)
Угол	ω	Угол	ω	Угол	ω
O(1)—Ni—O(3)	90,72(4)	O(1)—C(1)—C(2)	125,0(1)	C(2)—C(3)—C(31)	117,9(1)
O(1)—Ni—O(3A)	89,28(4)	O(3) - C(3) - C(2)	126,4(1)	Ni—N(7)—C(71)	120,22(9)
O(1)—Ni—N(7)	90,53(4)	C(1) - C(2) - C(3)	125,5(1)	Ni—N(7)—C(75)	122,51(9)
O(3)—Ni—N(7)	86,71(4)	O(1) - C(1) - C(11)	114,7(1)	O(1G) - C(1G) - C(2G)	121,7(2)
Ni—O(1)—C(1)	126,68(8)	C(2) - C(1) - C(11)	120,3(1)	O(1G) - C(1G) - C(3G)	121,8(2)
Ni—O(3)—C(3)	124,45(8)	O(3) - C(3) - C(31)	115,7(1)	C(2G) - C(1G) - C(3G)	116,4(2)

Решение структуры проведено прямыми методами в моноклинной пространственной группе $P2_1/n$, уточнение — полноматричным МНК по F^2 в анизотропном приближении для неводородных атомов; Н-атомы заданы геометрически и уточнялись изотропно. Конечное значение фактора расходимости $R_1 = \sum ||F_{\text{набл}}| - |F_{\text{выч}}|| / \sum |F_{\text{набл}}| = 0,032$ для 4260 рефлексов с $I_{hkl} > 2\sigma(I)$ и 252 уточняемых параметров.

Кристаллоструктурные параметры соединения и важнейшие параметры эксперимента приведены в табл. 1, основные межатомные расстояния и валентные углы — в табл. 2. СІГ файл, содержащий более полную информацию по исследованной структуре, был депонирован в CCDC под номером 626122, откуда может быть свободно получен по запросу на следующем интернет-сайте: www.ccdc.cam.ac.uk/data request/cif.

Коэффициенты упаковки. Расчет производился на основе данных РСА, опубликованных ранее [1] и полученных в данной работе. Использовали следующую систему ван-дер-ваальсовых радиусов [16]: С 1,71, Н 1,16, N 1,50, О 1,29, Ni 1,63 Å.

Термический анализ. Температуры и характер фазовых превращений определяли методом ДТА и визуально. Для ДТА образцы массой 15—20 мг в запаянных тонкостенных ампулах нагревали со скоростью 5 град./мин. Для визуальных наблюдений использовались микроскоп и образцы, запаянные в капилляры, которые нагревали со скоростью 0,5 град./мин. Термогравиметрический анализ проводили в двух вариантах: в линейном режиме нагрева (5 град./мин, в токе воздуха) и в квазиравновесном [17, 18]. В последнем случае образец массой 161,5 мг в виде свежеизвлеченных, со следами маточного раствора кристаллов помещали в стандартный открытый тигель, обеспечивающий давление освобождающегося летучего компонента над образцом ~38 Торр (0,05 атм). Образец нагревали в режиме, обеспечивающем постоянную потерю массы образца (q = 0,4 мг/мин) в атмосфере воздуха.

Измерение давления пара. Давление пара ацетона над образцом клатрата определяли статическим мембранным методом, как описано в [19]. Образец массой ~0,5 г, содержащий кристаллы клатрата [Ni(DBM)₂Py₂]·2(CH₃COCH₃), помещали в реакционный объем, который вакуумировали и затем герметично запаивали. Реакционный объем термостатировался с помощью водяного термостата с точностью 0,05 К, чувствительность мембраны составляла 0,1 Торр. Температурная зависимость давления определена в интервале 292—310 К. При более высоких температурах давление пара практически перестает расти, что интерпретируется нами как переход при этих условиях всего ацетона исходного образца в газовую фазу, т.е. отсутствие в твердой фазе клатрата.

Постоянное давление паров при заданной температуре устанавливалось медленно. При 298 К время достижения постоянного давления (106 Торр) составило 300 ч, а при 310 К (252 Торр) — 24 ч. Тем не менее, процесс является обратимым. Так, при охлаждении системы от 310 К до комнатной температуры давление за 21 ч понизилось с 252 до 172 Торр, в то время как простое термическое сжатие привело бы к давлению в 241 Торр. Однако последующее длительное (несколько суток) выдерживание системы при комнатной температуре не привело к заметному понижению давления. В связи с этим значения равновесного давления пара ацетона были получены при подходе к равновесию "снизу", т.е. при нагревании системы от комнатной температуры до заданной.

РЕЗУЛЬТАТЫ

Изученные соединения, их образование и идентификация. В настоящей работе нами выделены и изучены три соединения:

1) [Ni(DBM)₂Py₂]·2(CH₃COCH₃), клатрат с ацетоном, быстро разлагающиеся на воздухе кристаллы. Соединение получено впервые.

2) [Ni(DBM)₂Py₂], метастабильная форма, порошок. Соединение получено впервые путем разложения клатрата с ацетоном.

3) [Ni(DBM)₂Py₂], стабильная форма, кристаллы. Ранее это соединение было охарактеризовано рентгеноструктурно [1].

Порошковые дифрактограммы всех трех соединений показаны на рис. 2, а параметры наиболее сильных рефлексов приведены в табл. 3.

Клатрат [Ni(DBM)₂Py₂]·2(CH₃COCH₃) образуется часто в смеси с комплексом-хозяином при испарении ацетонового раствора комплекса. Кристаллы клатрата чрезвычайно неустойчивы вне маточного раствора. На воздухе они, за несколько минут теряют весь гостевой ацетон, образуя метастабильную форму комплекса-хозяина.

Описание структуры клатрата с ацетоном. По результатам рентгеноструктурного исследования монокристалла клатрата соединение имеет состав [Ni(DBM)₂Py₂]·2(CH₃COCH₃).

Рис. 2. Порошковые дифрактограммы исследованных соединений: *1* — [Ni(DBM)₂Py₂]. ·2(CH₃COCH₃) (образец снимался в атмосфере ацетона); *2* — метастабильная форма [Ni(DBM)₂Py₂], полученная после диссоциации клатрата на воздухе; *3* — стабильная форма [Ni(DBM)₂Py₂], полученная кристаллизацией комплекса из хлороформа. Излучение CuK_α

Рис. 3. ОRTEP проекция молекул хозяина и гостя в клатрате [Ni(DBM)₂Py₂]·2(CH₃COCH₃) со схемой нумерации атомов. Термические эллипсоиды соответствуют вероятности 50 %; атомы водорода не показаны

Молекулы комплекса-хозяина и гостевого ацетона образуют упаковку ван-дер-ваальсового типа. Уточненное отношение гость:хозяин 2,010(6) согласуется со структурной стехиометрией, т.е. гость полностью заполняет имеющиеся в кристалле полости.

Молекула комплекса-хозяина (см. рис. 3) представляет собой нейтральный комплекс никеля(II). Координационный полиэдр — слегка искаженный октаэдр (см. табл. 2). Молекула цен-

Таблица З

[Ni(DBM) ₂ Py ₂]·2(CH ₃ COCH ₃)			[Ni(DBM) ₂ Py ₂], метастабильная форма		[Ni(DBM) ₂ Py ₂], стабильная форма					
20, град.	d, Å	I**, %	hkl	20, град.	d, Å	I**, %	20, град.	<i>d</i> , Å	I**, %	hkl
8,56	10,32	49	10-1	8,89	9,94	37	8,39	10,53	58	001
9,49	9,31	41	101	9,58	9,22	100	9,52	9,28	28	010
10,14	8,71	70	011, 002	10,03	8,81	100	10,43	8,48	82	01-1
11,50	7,69	64	110	11,34	7,80	33	12,48	7,26	39	10-1, 100, 1-10
17,58	5,04	100	020	12,04	7,34	46	15,40	5,75	28	1-11
17,86	4,96	53	103	15,37	5,76	33	17,05	5,20	100	002, 10-2, 101
18,52	4,79	53	11-3, 211	16,49	5,37	29	18,12	4,89	61	110, 02-1, 1-20
19,54	4,54	51	12-1	17,37	5,10	54	19,23	4,61	66	020, 11-2, 1-21
21,29	4,17	30	12-2	19,31	4,59	67	21,94	4,05	36	012, 2-1-1
22,06	4,03	28	21-3, 122	23,79	3,74	42	23,44	3,79	43	1-22

Параметры десяти наиболее сильных рефлексов на порошковых дифрактограммах* исследованных соединений (см. рис. 2)

* $\lambda = 1,54056$ Å;

** Интенсивность рефлекса в процентах от интенсивности наиболее сильного рефлекса.

Рис. 4. Проекция кристаллической структуры клатрата [Ni(DBM)₂Py₂]·2(CH₃COCH₃) вдоль оси *с*. Молекулы хозяина изображены в стержневой модели, а молекулы гостя — в виде стержней и шаров

Рис. 5. Схемы упаковки молекул в кристаллах неклатратной (стабильной) формы [Ni(DBM)₂Py₂] (вид приблизительно вдоль оси *a*) — *a* и клатрата [Ni(DBM)₂Py₂]·2(CH₃COCH₃) (вид приблизительно вдоль оси *c*) — б. Молекулы гостя изображены в виде светло-серых шаров. В обоих случаях показано содержание двух элементарных ячеек

тросимметрична и имеет *транс*-конфигурацию. Центральный атом окружен в экваториальной плоскости четырьмя атомами кислорода двух хелатных дибензоилметанат-анионов и аксиально координирован двумя атомами азота пиридиновых лигандов. Координационные связи и углы того же порядка, что и в других соединениях этого комплекса [1], но атомы азота отклоняются заметно сильнее от аксиального положения: связь Ni—N7 образует с нормалью к экваториальной плоскости комплекса (Ni,O1,O3,O1A,O3A) угол 3,3°, а плоскость пиридина (N7,C71—C75) образует с экваториальной плоскостью угол 84,8°. С плоскостью (Ni,C2,N7,C2A,N7A) плоскость пиридина образует угол 67,9°. Фенильные кольца, содержащие C11, C31, C11A и C31A, отклоняются от экваториальной плоскости на 5,4, –31,4, –5,4 и 31,4° соответственно.

Упаковка молекул в кристалле показана на рис. 4 и 5, δ . Гости расположены парами в продолговатой полости, вытянутой вдоль оси c. При некоторых искажениях структуры возможна диффузия гостя вдоль оси c (при вращении пиридинов) и даже вдоль оси a (при вращении фенильных колец). Однако каркас хозяина лишен жесткости и не мог бы существовать после удаления гостя (как видно из рис. 5, δ , удаление гостя привело бы, как минимум, к сильному сжатию структуры вдоль оси b, проходящей вертикально в плоскости рисунка). Коэффициент упаковки клатрата 0,685(2) выше, чем у стабильной формы комплекса-хозяина 0,668(1) (оба значения соответствуют температуре 173 К).

Термическая стабильность соединений. В закрытом объеме клатрат плавится инконгруэнтно с образованием стабильной формы комплекса-хозяина; температуры начала процесса 58 °C по методу ДТА и 60,5 °C по визуальным наблюдениям.

Разложение клатрата на воздухе при линейном нагреве происходит в интервале 40—80 °C и приводит к появлению на дериватограмме плато комплекса-хозяина, который устойчив до 140—150 °C. Продуктом разложения, извлеченным при температуре >200 °C, оказалась тримерная (зеленая) форма дибензоилметаната никеля [20].

На рис. 6 показана термограмма образца клатрата, записанная в квазиравновесном режиме. Для этого эксперимента крупные кристаллы клатрата были отобраны со следами маточного раствора во избежание преждевременного разложения и помещены в тигель. Как видно из термограммы, при проведении эксперимента в стандартном открытом тигле (поддерживающем давление летучего компонента над образцом 38 Торр) диссоциация клатрата протекает при 50 °C в одну стадию до комплекса-хозяина, который затем существует вплоть до 140 °C. Протекание диссоциации клатрата практически при постоянной температуре указывает на нулевую

Рис. 6. Кривая потери массы клатрата $[Ni(DBM)_2Py_2] \cdot 2(CH_3COCH_3)$, записанная в квазиравновесных условиях. Масса образца 161,5 мг, держатель образца открытый, скорость потери массы q = 0,4 мг/мин, атмосфера над образцом — воздух

Рис. 7. Термограммы ДТА образцов [Ni(DBM)₂Py₂] комплекса: 1 — стабильная форма; 2 — метастабильная форма. Держатели образцов герметичные ампулы, режим нагрева линейный, 5 град./мин, эндотермические эффекты направлены вниз

вариантность процесса в данных условиях ($P_{\text{гостя}} = \text{const}$), поэтому, согласно правилу фаз, в равновесии участвуют три фазы, а состав клатрата постоянен:

$$\frac{1}{2}[Ni(DBM)_2Py_2] \cdot 2(CH_3COCH_3)(TB.) = \frac{1}{2}[Ni(DBM)_2Py_2](TB.) + CH_3COCH_3(Ta3).$$
(1)

Метастабильность формы комплекса-хозяина, полученной при диссоциации клатрата с ацетоном при комнатной температуре, очевидна из следующего эксперимента. На рис. 7 показаны термограммы ДТА двух форм [Ni(DBM)₂Py₂]. Обе термограммы показывают сильный эндотермический эффект плавления с началом при 214 °C, что указывает на идентичность образцов при этой температуре. Однако начальные образцы структурно различны (см. рис. 2), следовательно, в процессе нагревания по крайней мере один из образцов претерпевает фазовое превращение. Действительно, на термограмме образца, полученного при диссоциации клатрата с ацетоном, наблюдается экзотермический эффект при 131 °C с тепловым эффектом порядка 17 Дж/г (11 кДж/моль). Наблюдаемый процесс является монотропным полиморфным переходом метастабильной формы комплекса в стабильную:

$$[Ni(DBM)_2Py_2](TB.,Metact.) \rightarrow [Ni(DBM)_2Py_2](TB.,ctab.).$$
(2)

Давление пара ацетона над клатратом. Температурная зависимость равновесного давления пара ацетона над клатратом показана на рис. 8 (черные точки). В изученном температурном интервале 292—310 К она описывается уравнением

$$\lg P = (11,25 \pm 0,54) - (2743 \pm 164)/T$$
 (4 экспериментальные точки). (3)

Вычисленные из этой зависимости изменения термодинамических функций процесса (1) следующие: $\Delta H_{cp}^0 = 53 \pm 3 \text{ кДж/моль}$ (среднее значение для $\lg P$ изученного температурного интервада): $\Delta S^0 = 160 \pm 254$

$$\pm 10$$
 Дж/(моль-К); $\Delta G_{298}^0 = 4,74 \pm 0,07$ кДж/моль. Излом зави-

Рис. 8. Равновесное давление ацетона над образцом клатрата $[Ni(DBM)_2Py_2] \cdot 2(CH_3COCH_3)$ в зависимости от температуры (*T*, K, *P*, Topp): черные кружки — экспериментальные данные; прямая (нижняя) — линейная зависимость, рассчитанная методом наименьших квадратов; белые кружки отвечают остаточному давлению ацетона после полной диссоциации клатрата на комплекс $[Ni(DBM)_2Py_2]$ и ацетон. Черными квадратами обозначены данные по давлению пара ацетона над чистым жидким ацетоном [21]

симости при дальнейшем повышении температуры (белые точки) связан с исчезновением фазы клатрата в первоначально взятом образце.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Природа клатрата. Как следует из проведенных экспериментов, $[Ni(DBM)_2Py_2] \cdot 2(CH_3COCH_3)$ является соединением включения постоянного состава, кристаллическая структура которого немедленно разрушается при удалении гостя. Постоянство состава клатрата подтверждают уточнение отношения гость:хозяин в РСА и нонвариантный характер разложения клатрата в квазиравновесных условиях. Постоянный состав соединения включения указывает на возможную неустойчивость каркаса хозяина, который существует только при полном заполнении полостей молекулами гостя [22, 23]. Действительно, в исследованном клатрате каркас хозяина лишен как достаточно сильных межмолекулярных взаимодействий, так и механической жесткости (см. рис. 5, δ).

Структура клатрата и клатратообразующая способность хозяина. В структурном плане клатрат $[Ni(DBM)_2Py_2] \cdot 2(CH_3COCH_3)$ представляет собой новый тип по сравнению с четырьмя типами, на которые распадаются ранее изученные шесть клатратов этого же хозяина [1]. В отличие от уже известных структур, в изученном клатрате "карманы", расположенные между хелатными фрагментами и пиридинами, не участвуют в образовании полостей; все четыре кармана заполнены фенильными фрагментами соседних молекул комплекса. Структуру хозяйского каркаса (см. рис. 5, δ) можно представить как получающуюся из стабильной формы хозяина (см. рис. 5, a) за счет внедрения в центр ячейки дополнительной молекулы хозяина и заполнения образовавшихся пустот молекулами гостевого ацетона.

Таким образом, комплекс [Ni(DBM)₂Py₂] демонстрирует не только способность к включению широкого спектра гостей, но и замечательное структурное многообразие образующихся клатратов. Необходимо отметить, что аналогичные комплексы с 4-винил- [3,4], 2-метил- [5] и 4-фенилпиридинами [6] проявляют сходные свойства. По-видимому, жесткая геометрия пиридина является важным фактором, так как описанная другими авторами структура [Co(DBM)₂L₂], где L = тиоморфолин, не содержит молекул гостя [24]. Размер дибензоилметанатного лиганда также, по-видимому, имеет решающее значение, поскольку недавно изученные комплексы с бензоилацетонатом кристаллизуются в виде неклатратных фаз [25—27].

Термодинамическая стабильность клатрата. Ввиду высокой летучести ацетона термодинамическая стабильность клатрата [Ni(DBM)₂Py₂]·2(CH₃COCH₃) при стандартных условиях довольно низкая. Равновесное давление ацетона над клатратом (которое напрямую связано с ΔG_{298}^0 реакции диссоциации) при 298 K равно 112(3) Торр, или 0,48*P*₀, где *P*₀ = 231,5 Торр давление насыщенного пара над жидким ацетоном при 298 K [21]. Другими словами, давление гостя над клатратом всего в 2 раза ниже, чем над чистым жидким гостем. Интересно сравнить эту величину с данными для других соединений включения с ацетоном.

Давление паров гостя над клатратом H1·2(CH₃COCH₃), где H1 — 2,2'-бис(9-гидроксифлуорен-9-ил)бифенил, при 298 К равно примерно 90 Торр, или 0,39 P_0 [28]. Половина гостевых молекул в этом соединении связана с молекулами хозяина водородными связями, а вторая половина включена только за счет ван-дер-ваальсовых взаимодействий [29]. Аналогичный баланс водородных связей имеется в клатрате H2·4(CH₃COCH₃), где H2 — *mpaнc*-9,10-дигидрокси-9,10-бис(*n-mpem*-бутилфенил)-9,10-дигидроантрацен [30]. Измеренное авторами "пороговое" давление ацетона, при котором клатрат начинает образовываться, 115 Торр (298 K), или 0,50 P_0 , однако это давление, по-видимому, существенно выше равновесного. Над клатратом H3·(CH₃COCH₃), где H3 — *mpem*-бутилкаликс[4]арен, давление пара гостя при 298 K равно примерно 102 Торр, или 0,44 P_0 [28]. Этот хозяин представляет собой молекулу с уже имеющейся полостью, в которую молекулы гостя включаются обычно за счет ван-дерваальсовых взаимодействий. Наконец, давление пара гостя над соединениями включения двух координационных полимеров равно 111 Торр (вычислено из приведенного в работе значения 14,8 кПа при 298 K [31]), или 0,48 P_0 , для [Co(NCS)₂(3-pia)₂]·4(CH₃COCH₃) (3-pia = *N*-(3пиридил)изоникотинамид) и 174 Торр (23,2 кПа при 298 К), или 0,75 P_0 , для [Co(NCS)₂(4peia)₂]·4(CH₃COCH₃) (4-peia = N-(3-пиридин-4-ил-этил)изоникотинамид) [32]. По описанию авторов, в первом случае молекулы гостевого ацетона образуют с молекулами хозяина водородные связи [33], а во втором включаются лишь за счет ван-дер-ваальсовых взаимодействий [32]. Таким образом, как и можно было ожидать, влияние характера связей в каркасе хозяина на термодинамическую стабильность клатратов не прослеживается, в то время как возникновение водородной связи между молекулой гостя и каркасом хозяина вносит, по-видимому, определенный вклад.

Интересно проанализировать вклад энтальпийной и энтропийной составляющих в термодинамическую стабильность клатрата. Как известно, процесс клатратообразования происходит благодаря выигрышу в энтальпии [34, 35], тогда как энтропийный фактор неблагоприятен. В нашем случае энтальпия клатрации $\Delta H_{\rm kn} = -53$ кДж/моль (энтальпия процесса (1) с обратным знаком) довольно высокая, однако и энтропийный фактор $\Delta S_{\kappa\pi}^0 = -160 \ \text{Дж/(моль·K)}$ большой. Физический смысл этих величин в том, что молекулы гостя образуют с молекулами хозяина очень эффективную упаковку (выигрыш в энтальпии), но теряют много степеней свободы (проигрыш в энтропии). Найденные термодинамические характеристики хорошо согласуются со структурами соединений. Коэффициенты упаковки неклатратной (стабильной) формы комплекса-хозяина [Ni(DBM)₂Py₂] и клатрата [Ni(DBM)₂Py₂]·2(CH₃COCH₃), равные 0,668(1) и 0,685(2) кДж соответственно, показывают, что упаковка молекул в клатрате эффективнее. В то же время отсутствие разупорядочения гостевых молекул и низкие тепловые параметры атомов гостя (см. рис. 3) подтверждают потерю гостями не только трансляционных, но и вращательных, позиционных и других степеней свободы. Для сравнения, для упомянутого выше [Co(NCS)₂(3-pia)₂]·4(CH₃COCH₃) значения энтальпии и энтропии клатрации равны -30,8 кДж/моль и -127 Дж/(моль-К) соответственно [31], т.е. упаковка молекул гостя в этом соединении включения менее эффективна, но этот проигрыш компенсируется за счет большей свободы молекул гостя в полостях, и в итоге термодинамическая стабильность соединения практически такая же, как и изученного нами клатрата. Следует отметить, что компенсационный энтальпийно-энтропийной эффект часто наблюдается при образовании соединений включения, например при образовании клатратов циклодекстринов [36, 37] и каликсаренов [38, 39].

Полученное значение $\Delta H_{\kappa\pi} = -53 \text{ кДж/моль для} [Ni(DBM)_2Py_2] \cdot 2(CH_3COCH_3)$ можно сравнить с энтальпиями клатрации других соединений включения: -47,3 кДж/моль для H1 · (CH_3COCH_3) [29], -47,8 кДж/моль для H1 · 2(CH_3COCH_3) [40], -76 и -61,1 кДж/моль (разные температурные интервалы) для [Ni(NCO)_2Py_4] · 2Py [41], -57,9 кДж/моль для [Ni(DBM)_2(bipy)] · 2(C_6H_5Cl) (bipy — 4,4'-дипиридил) [15] (во всех случаях энтальпия дана на моль гостя), а также с энтальпией испарения ацетона 30,84 кДж/моль (при 300,4 K) [42].

Следует отметить удачный выбор метода тензиметрии при исследовании клатрата $[Ni(DBM)_2Py_2]\cdot 2(CH_3COCH_3)$, так как определение его термодинамических параметров другими методами было бы весьма затруднительно. Ввиду крайне низкой устойчивости клатрата вне маточного раствора выделить его образец, свободный как от маточного раствора, так и от образующейся в результате его диссоциации фазы комплекса-хозяна, очень трудно, что, например, ограничивает применение калориметрических методов. В то же время присутствие в образце примеси продукта диссоциации не мешает измерению давления пара над клатратом, и тензиметрический метод позволяет получить количественное термодинамическое описание диссоциации соединения. Более того, ранее мы использовали тензиметрический метод для изучения клатратов, в которых комплекс хозяина вообще не образует индивидуальной фазы, разлагаясь по мере диссоциации клатрата [14, 19, 43—46].

Структурные аспекты диссоциации и образования клатрата. Продуктом диссоциации клатрата на воздухе является новая, метастабильная форма комплекса [Ni(DBM)₂Py₂]. В литературе полимофную модификацию комплекса-хозяина, полученную путем удаления гостя из клатрата, часто называют "апохозяином" (apohost). В одних случаях апохозяин имеет прак-

тически ту же структуру, что и клатрат, искаженную или сжатую в той или иной степени [47— 51]. В других случаях апохозяин имеет иную структуру, но, тем не менее, гораздо легче взаимодействует с гостем, чем стабильная модификации хозяина [33, 52, 53]. Анализ порошковых дифрактограмм (см. рис. 2, табл. 3) указывает на то, что структура метастабильной формы [Ni(DBM)₂Py₂] сильно отличается от структуры клатрата. Интересно, что в данном случае наблюдается некоторое сходство между структурами клатрата и стабильной формы хозяина (см. рис. 2, дифрактограммы l и 3 соответственно), в то время как структура метастабильной формы хозяина (см. рис. 2, дифрактограмма 2), по-видимому, более сложная (наличие большего числа пиков может указывать на большие размеры и низкую симметрию элементарной ячейки). Из приведенных на рис. 5 схем упаковки видно, что структуры клатрата и стабильной формы хозяина действительно похожи, но переход из одной в другую невозможен без серьезных трансляционных сдвигов и поворотов молекул относительно друг друга.

Кинетическая заторможенность полиморфного перехода комплекса-хозяина является, повидимому, причиной того, что в ходе тензиметрического эксперимента равновесие устанавливалось медленно. Процесс диссоциации (1) протекает в две стадии, из которых первая быстрая, а вторая — медленная:

$$\frac{1/2[Ni(DBM)_2Py_2] \cdot 2(CH_3COCH_3)(TB.) = 1/2[Ni(DBM)_2Py_2](TB.,METACT.) + CH_3COCH_3(ra3) \rightarrow 1/2[Ni(DBM)_2Py_2](TB.,cTa6.) + CH_3COCH_3(ra3).$$
(4)

Как видно из ДТА-термограммы (см. рис. 7), полиморфный переход заторможен вплоть до температуры 404 К (131 °C), тогда как тензиметрические измерения проводились в интервале 292—310 К.

Найденную нами энтальпию перехода метастабильной формы комплекса [Ni(DBM)₂Py₂] в стабильную (11 кДж/моль, или 17 Дж/г) сравним с энтальпиями перехода "апохозяйских" форм других хозяев в их стабильные формы. Приведенные ниже данные получены разными авторами путем прямого измерения экзотермического теплового эффекта такого рода превращений. Коллапс гексагональной формы одного из β-дикетонатов меди(II) с порами в виде изолированных каналов в стабильную ромбическую форму сопровождается тепловым эффектом в 1,31 кДж/моль (2,7 Дж/г) [54]. Тетрагональная β-фаза одного из вернеровских комплексов никеля(II), имеющая трехмерную систему взаимопересекающихся каналов, превращается в моноклинную плотную фазу с выделением 5,0 кДж/моль (9,1 Дж/г) [50]. Переход β-формы одного из модифицированных дибензоилметанатов никеля(II), структура которой неизвестна, в моноклинную α-форму сопровождается выделением 11.3 кДж/моль (15.8 Дж/г) [52]. Гексагональная форма спироциклотрифосфазена с порами в виде изолированных каналов превращается в плотную моноклинную форму с выделением 12,7 кДж/моль (27,7 Дж/г) [55]. Коллапс трех каликсареновых структур, наблюдаемый на термограммах после удаления гостя, сопровождается тепловыми эффектами 16—24 кДж/моль (23—35 Дж/г) [56]. Структурную перестройку стабильной формы хозяина в гипотетический или реальный клатратный каркас можно считать одним из слагаемых процесса клатратообразования, требующих затрат энергии. Приведенные здесь значения энтальпии превращения "апохозяина" позволяют оценить величину этих затрат, которая вместе с энтальпией испарения гостя должна быть перекрыта энтальпией сорбции, чтобы клатратообразование имело место [34, 35].

Авторы благодарят Е.В. Пересыпкину и А.В. Вировца (ИНХ СО РАН) за помощь в получении дифракционных данных и Е.В. Грачева (ИНХ СО РАН) за участие в расчете коэффициентов упаковки.

СПИСОК ЛИТЕРАТУРЫ

- 1. Soldatov D.V., Enright G.D., Ripmeester J.A. // Supramol. Chem. 1999. 11. P. 35 47.
- 2. Soldatov D.V. // J. Chem. Crystallogr. 2006. 36. P. 747 768.
- 3. Soldatov D.V., Ripmeester J.A. // Supramol. Chem. 2001. 12. P. 357 368.
- 4. Soldatov D.V., Ripmeester J.A. // Chem. Eur. J. 2001. 7. P. 2979 2994.
- 5. Soldatov D.V., Enright G.D., Ratcliffe C.I. et al. // Chem. Mater. 2001. 13. P. 4322 4334.

- 6. Soldatov D.V., Enright G.D., Ripmeester J.A. // Ibid. 2002. 14. P. 348 356.
- 7. Soldatov D.V., Enright G.D., Zanina A.S., Sokolov I.E. // J. Supramol. Chem. 2002. 2. P. 441 448.
- 8. Aromí G., Gamez P., Roubeau O. et al. // Eur. J. Inorg. Chem. 2002. P. 1046 1048.
- 9. Aromí G., Boldron C., Gamez P. et al. // Dalton Trans. 2004. P. 3586 3592.
- 10. Aakeröy C.B., Desper J., Valdés-Martínez J. // CrystEngComm. 2004. 6. P. 413 418.
- 11. Soldatov D.V., Tinnemans P., Enright G.D. et al. // Chem. Mater. 2003. 15. P. 3826 3840.
- 12. Soldatov D.V., Moudrakovski I.L., Ratcliffe C.I. et al. // Ibid. 2003. 15. P. 4810 4818.
- 13. Soldatov D.V., Ripmeester J.A. // Mendeleev Commun. 2004. P. 101 103.
- 14. Солдатов Д.В., Соколов И.Е., Сувиньска К. // Журн. структур. химин. 2005. **46**. С. S155 S160. (J. Struct. Chem. 2005. **46**. Р. S158 S164).
- 15. Украинцева Э.А., Солдатов Д.В., Зеленина Л.Н. и др. // Журн. физ. химии. 2006. **80**. С. 2158 2162. (Russ. J. Phys. Chem. 2006. **80**. Р. 1920 1924).
- 16. Зефиров Ю.В., Зоркий П.М. // Журн. структур. химии. 1974. **15**, № 1. С. 118 122 (J. Struct. Chem. 1974. **15**, N 1. P. 102 105).
- 17. Paulik F., Paulik J. // J. Therm. Anal. Cal. 1973. 5. P. 253 270.
- 18. Логвиненко В.А., Паулик И., Паулик Ф. Квазиравновесная термогравиметрия в современной неорганической химии. – Новосибирск: Наука, 1989.
- 19. Ukraintseva E.A., Dyadin Y.A., Kislykh N.V. et al. // J. Inclus. Phenom. 1995. 23. P. 23 33.
- 20. Soldatov D.V., Henegouwen A.T., Enright G.D. et al. // Inorg. Chem. 2001. 40. P. 1626 1636.
- 21. Ambrose D., Sprake C.H.S., Townsend R. // J. Chem. Thermodyn. 1974. 6. P. 693 700.
- 22. Дядин Ю.А., Бондарюк И.В., Аладко Л.С. // Журн. структур. химии. 1995. **36**. С. 1088 1141. (J. Struct. Chem. 1995. **36**. Р. 995 1045).
- 23. *Dyadin Y.A.* // Supramol. Chem. 1995. **6**. P. 59 70.
- 24. Judaš N., Halasz I., Bučar D.K. // Acta Crystallogr. 2006. E62. P. m283 m285.
- 25. Bučar D.K., Meštrović E. // Ibid. 2003. E59. P. m985 m987.
- 26. Meštrović E., Halasz I., Bučar D.K., Żgela M. // Ibid. 2004. E60. P. m367 m369.
- 27. Meštrović E., Bučar D.K. // Ibid. 2005. E61. P. m522 m524.
- 28. Gorbatchuk V.V., Tsifarkin A.G., Antipin I.S. et al. // J. Chem. Soc., Perkin Trans. 2. 2000. P. 2287 2294.
- 29. Ibragimov B.T., Beketov K.M., Weber E. et al. // J. Phys. Org. Chem. 2001. 14. P. 697 703.
- Barbour L.J., Caira M.R., le Roex T., Nassimbeni L.R. // J. Chem. Soc., Perkin Trans. 2. 2002. P. 1973 1979.
- 31. Uemura K., Kitagawa S., Saito K. et al. // J. Therm. Anal. Cal. 2005. **81**. P. 529 532.
- 32. Uemura K., Kitagawa S., Fukui K., Saito K. // J. Amer. Chem. Soc. 2004. 126. P. 3817 3828.
- 33. Uemura K., Kitagawa S., Kondo M. et al. // Chem. Eur. J. 2002. 8. P. 3586 3600.
- 34. Hart M.I., Smith N.O. // J. Amer. Chem. Soc. 1962. 84. P. 1816 1819.
- 35. *Chajn J., Lipkowski J., Zielenkiewicz W. //* Rocz. Chem. 1977. **51**. P. 1431 1442.
- 36. *Liu L.*, *Guo Q.-X.* // J. Inclus. Phenom. 2002. **42**. P. 1 14.
- 37. Charumanee S., Titwan A., Sirithunyalug J. et al. // J. Chem. Technol. Biotechnol. 2006. 81. P. 523 529.
- 38. Kunsági-Máté S., Szabó K., Lemli B. et al. // Thermochim. Acta. 2005. 425. P. 121 126.
- 39. Zielenkiewicz W., Marcinowicz A., Cherenok S. et al. // Supramol. Chem. 2006. 18. P. 167 176.
- 40. Siedel J., Wolf G., Weber E. // Thermochim. Acta. 1996. 271. P. 141 148.
- 41. Украинцева Э.А., Солдатов Д.В., Дядин Ю.А. и др. // Журн. физ. химии. 2003. 77. С. 1957 1960. (Russ. J. Phys. Chem. – 2003. – 77. – Р. 1759 – 1762).
- 42. Pennington R.E., Kobe K.A. // J. Amer. Chem. Soc. 1957. 79. P. 300 305.
- 43. Soldatov D.V., Ukraintseva E.A., Logvinenko V.A. et al. // Supramol. Chem. 2000. 12. P. 237 246.
- 44. Ukraintseva E.A., Soldatov D.V., Dyadin Y.A. // J. Inclus. Phenom. 2004. 48. P. 19 23.
- 45. Komarov V.Y., Ukraintseva E.A., Soldatov D.V. et al. // Ibid. 50. P. 227 233.
- 46. *Ogienko A.G., Ukraintseva E.A., Chingina T.A. et al.* // Ibid. 2005. **53**. P. 231 236.
- 47. Soldatov D.V., Ripmeester J.A., Shergina S.I. et al. // J. Amer. Chem. Soc. 1999. 121. P. 4179 4188.
- 48. Comotti A., Simonutti R., Stramare S., Sozzani P. // Nanotechnology. 1999. 10. P. 70 76.
- 49. Soldatov D.V., Grachev E.V., Ripmeester J.A. // Cryst. Growth Des. 2002. 2. P. 401 408.
- 50. Soldatov D.V., Enright G.D., Ripmeester J.A. // Ibid. 2004. 4. P. 1185 1194.
- 51. Li K.H., Xu Z.T., Xu H.H. et al. // Inorg. Chem. 2006. 45. P. 1032 1037.
- 52. Soldatov D.V., Ripmeester J.A. // Chem. Eur. J. 2001. 7. P. 2979 2994.
- 53. Saha B.K., Nangia A. // CrystEngComm. 2006. 8. P. 440 443.
- 54. *Manakov A.Y., Soldatov D.V., Ripmeester J.A., Lipkowski J. //* J. Phys. Chem. B. 2000. **104**. P. 12111 12118.
- 55. Sozzani P., Comotti A., Simonutti R. et al. // Angew. Chem. Int. Ed. 2000. 39. P. 2695 2698.
- 56. Tomita K., Suzuki K., Ohishi H., Nakanishi I. // J. Inclus. Phenom. 2000. 37. P. 341 357.