2013. Том 54

Приложение

S147 - S151

UDC 544.228:543.429.23

SINGLE-CRYSTAL ¹H NMR DATA AND HYDROGEN ATOM DISORDER IN LAWSONITE, CaAl₂[Si₂O₇](OH)₂·H₂O

S.G. Kozlova, S.P. Gabuda

A.V. Nikolaev Institute of Inorganic Chemistry, SB RAS, Novosibirsk, Russia E-mail: sgk@niic.nsc.ru

Article submitted February 21, 2013

The dynamic structure of hydrogen sublattice in lawsonite, $CaAl_2[Si_2O_7](OH)_2 \cdot H_2O$ is studied by the solid-state proton magnetic resonance (¹H NMR) spectroscopy of single crystal at room temperature. It is shown that both encapsulated water molecules, and hydroxyl OH-groups undergoes the rocking librations of the amplitudes of ~20° for H₂O, and ~40° for hydroxyls.

K e y w o r d s : ¹H NMR, hydrogen atom, disorder, lawsonite.

INTRODUCTION

Lawsonite $CaAl_2[Si_2O_7](OH)_2 H_2O$, a hydrated mineral which usually occurs in high pressure metamorphism, is regarded as a candidate for carrying water down to mantle depth of more then 200 km. The structure of lawsonite (Fig. 1) was refined from X-ray single-crystal data [1]. Two reversible phase transitions were found to occur: (1) Below 273(5) K the space group changes from *Cmcm* to *Pmcn*, accompanied by the loss of the --m mirror plane because of rotation of both H₂O and OH groups; (2) Below 155(5) K, where the space group symmetry is further reduced to $P2_1cn$,

Fig. 1. The [100] projections of crystal structure of lawsonite at 295 K (*Cmcm, a*) and at 233 K (*Pmcn, b*). Small circles — hydrogen atoms of H₂O and OH-groups

[©] Kozlova S.G., Gabuda S.P., 2013

Fig. 2. ¹H NMR spectra of lawsonite recorded at orientations [001] (*a*) and [010] (*b*) of external magnetic field B_0 (~1 T). F(*B*—*B*₀) — absorption (in arbitrary units), F'(*B*—*B*₀) — first derivative

accompanied by the loss of the m-- mirror plane because of unidirectional shifts of the x coordinates of the H atoms of the H₂O and OH groups, thus resulting in a polar structure with interesting optical, elastic, and dielectric properties [2–5].

Structurally, the 273 K transformation may be displacive or of order-disorder type. In the latter case the *Cmcm* phase, stable above 273 K, must be orientationally disordered, either dynamically or statically. Here, the solid-state proton magnetic resonance (¹H NMR) spectroscopy was applied for refinement of the state of hydrogen sublattice in lawsonite *Cmcm* structure, first reported in [6].

EXPERIMENTAL

A colourless, gem-quality, cube-shaped crystal of lawsonite from Reed Ranch, Tiburon peninsula, California, $2 \times 2 \times 4$ mm in size, was kindly provided by Professor Armbruster [1]. The sample was oriented with respect to its morphology as well as by optical and X-ray methods, and then was mounted on a NMR sample-holder.

The ¹H NMR study was conducted using the specialized wide-band spectrometer (of working magnetic field $B_0 \approx 10^4$ G) adopted for crystallographic measurements and precise recording of the form F(*B*—*B*₀) of magnetic resonance absorption lines. The room temperature ¹H NMR spectra revealed a multicomponent structure (Fig. 2), showing the complicated combination of intramolecular ¹H_w—¹H_w and of intermolecular ¹H_w— ¹H_h and ¹H_h—¹H_h interactions of the proton spins in the infinite one-dimensional chains of hydroxyl and H₂O molecules: ...OH...H₂O...OH...OH...H₂O... (Fig. 1).

For the further structural analysis were calculated the mean square widths of the recorded spectra, or the second moments M_2 :

$$M_2 = \int F(B - B_0)(B - B_0)^2 dB.$$
(1)

In Figure 3 are represented the data of M_2 determinations for 35 different orientations of lawsonite single crystal relatively to the external magnetic field obtained at

Fig. 3. Points: M_2 angular dependences at rotation the lawsonite single crystal around the axis [100], [010] and [001]; standard error: 5 %. Continuous line: calculated according to Van Vleck formula (2)

rotation the sample around the axis [100], [010] and [001]. For B_0 orientations parallel to the crystallographic axes, the M_2 values are as follows:

$$M_2[100] = (19.6\pm1.0) \text{ G}^2,$$

$$M_2[010] = (11.7\pm0.6) \text{ G}^2,$$

$$M_2[001] = (50.3\pm2.5) \text{ G}^2.$$

DATA ANALYSIS AND DISCUSSION

i) Second moments of ¹H NMR spectra. The M_2 values allow the hydrogen atom structure of the studied system to be determined according to the classical Van Vleck's formula [7]:

$$M_2 = 3/4\gamma^4 \hbar^2 I(I+1) \Sigma_k \left(1 - 3\cos^2\theta_{ik}\right)^2 r_{ik}^{-6},$$
(2)

where γ and *I* are the proton gyromagnetic ratio and spin; \hbar is the Planck's constant; r_{ik} is distance between given atom *i* and other hydrogen atoms *k*; and θ_{ik} is the angle between vector r_{ik} and the orientation of the external magnetic field B_0 .

In general, for the resolution of the orthorhombic structure M_2 values are necessary for at least 6 different orientations [8—10]. However, due to r_{ik}^{-6} dependence, in the lawsonite structure only following three parameters are important: (1) the intramolecular H—H distance *r* in H₂O; (2) the intermolecular H—H distance *R* between an OH proton and the nearest H₂O proton; (3) the angle θ between the vectors *R* and *r*. These parameters can be calculated according to the following equation derived from (2):

$$M_2[100] = k \left(r^{-6} + 2R^{-6} \right) + M_2', \tag{3}$$

$$M_2[010] = k \left[r^{-6} + 2R^{-6} (3\sin^2\theta - 1)^2 \right] + M'_2,$$
(4)

$$M_2[001] = k \left[4r^{-6} + 2R^{-6} (3\cos^2\theta - 1)^2 \right] + M'_2, \tag{5}$$

where $k = 221.33 \cdot 10^{-48} \text{ cm}^6\text{G}^2$ and M'_2 is a relatively small contribution to M_2 from more distant hydrogen atoms surrounding the calculated group of (OH-H₂O-OH) spins. Using the X-ray structure data [1] we evaluated the value of $M'_2 = 1.4 \text{ G}^2$.

Having solved this system of equations, we have calculated the experimental values for intramolecular and intermolecular H—H distances r and R, and the angle θ between the vectors R and r:

$$r = (1.68 \pm 0.02)$$
 Å,
 $R = (1.96 \pm 0.06)$ Å,
 $\theta = (31 \pm 1)^{\circ}$.

ii) H_2O thermal libration data. The calculated experimental parameters should be corrected in order to account for the influence of thermal librations of both H_2O molecules and of OH-groups derived from the vibration spectroscopy data [11, 12]. The libration mobility of H_2O molecules distorts slightly the NMR spectra, and as a result the derived interatomic distances r and R, calculated according to the Equations (2)—(5) will differ from the real equilibrium interatomic distances r_0 and R_0 . For the H_2O molecules the correct intramolecular H—H distance r_0 is related to the "measured", or uncorrected distance $r = \langle r \rangle$ according to the Formula [11]:

$$< r >^{-3} = r_0^{-3} (1 - 2.52 < \phi^2 >).$$
 (6)

Here $\langle \phi^2 \rangle$ is the mean-square amplitude of the H—H vector oscillations, which is supposed to be derived from vibration spectroscopy data [11, 12]. On the other hand, the Formula [6] can be used for independent determination of $\langle \phi^2 \rangle$ if the correct intramolecular H—H distance r_0 is known *a priori*. In particular, the measured intramolecular H—H distances in H₂O molecules in different hydrates are close to the values of $r_0 \approx (1.52 \dots 1.54)$ Å [13]. It should be mentioned that the stability of intramolecular H₂O parameter $r_0 \approx (1.52 \dots 1.54)$ Å can be related to the high frequencies of stretching and valence vibrations (~1400 and ~3100...3600 cm⁻¹) of the water molecules in different systems [14].

Fig. 4. The convergence of X-ray and NMR data for $r_{(H-H)}$ distance in lawsonite under the account of H₂O librations [according to Eq. (6) and (7)]

Using the above values $r = (1.68\pm0.02)$ Å and $r_0 = 1.54$ Å, $\langle \phi^2 \rangle$ amounts to 0.10 rad² (or $\sim 18^\circ$). It is interesting to note that the calculated $\langle \phi^2 \rangle$ value is close to the rotational angle 22° of the H₂O molecules in the low-temperature *Pmcn* (233 K) phase of lawsonite structure (Figure 1).

The found H₂O librations will distort the visible by X-ray distances r_X [1] in accordance to formula [15]:

$$\langle r \rangle_{\rm X} = r_{\rm o} \langle \cos \phi \rangle \approx r_0 (1 - \langle \phi \rangle^2 > /2).$$
 (7)

Using the above mentioned r_0 and $\langle \phi^2 \rangle$ values, the expected value of the distorted intramolecular distance is

 $r_X \approx 1.44$ Å which is relatively close to the refined X-ray value [1.34(4) Å]. Obviously, the same considerations can be applied to the X-ray determined O—H bond lengths in both H₂O molecules and OH groups in lawsonite and in other hydrated crystals [16].

The above consideration may be regarded as a justification for determination of correct H—Hdistances r_0 in H₂O molecules by solving the pair of Equations (6) and (7) using the visible (i.e. uncorrected) X-ray and ¹H NMR H—H-distances as experimental parameters. Figure 4 shows the expected $r_{\rm H-H}$ dependences for visible X-ray and NMR data plotted as function of $\langle \phi^2 \rangle$. The point of the best fit of two dependences is $r_0 = (1.44\pm0.04)$ Å, and $\langle \phi_0^2 \rangle = (0.38\pm0.10)$ rad².

iii) Influence of lattice oscillations on H_2O *dynamics.* The structural interpretation of H_2O dynamics and hydrogen atom ordering in the lawsonite *Cmcm* structure may be related to the interaction between the fast vibrations of the crystal lattice of frequency $v \sim 1000 \text{ cm}^{-1}$, the typical stretching vibrations of the SiO₄ units [16], and localized libration motion of H_2O molecules of frequency $v_{loc} \approx 200$ —300 cm⁻¹. In this case, the H_2O molecular dynamics can be regarded within the theory of oscillatory movements under the influence of a fast-alternating field [17]. In particular, if the direction of high-frequency oscillations coincides with the orientation of electric dipole of H_2O , the dipoles are influenced by the effective potential:

$$U_{\rm eff} = U_0 [-\cos\theta + (d^2 v^2 / (8D^2 v_{\rm loc}^2))\sin^2\theta],$$
(8)

where U_0 is the maximum value of the initial unperturbed potential, v is the frequency of the perturbing high-frequency mode, d is the amplitude of the perturbing oscillation, and D is the distance between the centers of negative and positive charges in H₂O molecules.

The first term in square brackets corresponds to the dependency of non-perturbed potential on the dipole orientation with respect to the direction of the molecular field. The second term shows the perturbing impact of high-frequency translational vibrations on the effective potential. If the amplitude *d* of such oscillations are high enough to make $d^2v^2 > 4D^2v_{loc}^2$, the potential (8) has two equilibrium states: $\theta = 0$, and $\theta = \pi$.

If the direction of high-frequency oscillations is orthogonal to the orientation of electric dipole of H_2O , the dipoles are influenced by the effective potential [17]:

$$U_{\rm eff} = U_0 [-\cos\theta + (d^2 v^2 / (8D^2 v_{\rm loc}^2)) \cos^2\theta]$$
(9)

similar to Equation (8). If the amplitude d and frequency v of perturbing oscillations satisfy $d^2v^2 > 4D^2v_{loc}^2$, the potential (9) also represents to two stable states: normal, or initial state, if $\cos\theta = 1$, and the perturbed state, if

$$\cos^2\theta > 4D^2 v_{loc}^2 / (d^2 v^2) \tag{10}$$

The latter state corresponds to the dipole orientation close to the direction of high-frequency oscillations normal to Ca— OH_2 bond. It means that the transversal vibrations of crystal lattice can be regarded as the main source for activation of the high-amplitude librations of H_2O dipolar moments and for the distortion of observed O—Hw, O—Hh, and Hw—Hw' distances in lawsonite.

CONCLUSION

The PMR data provide strong evidence that the hydrogen sublattice of the 295 K *Cmcm* lawsonite structure is substantially disordered. In a structural sense this disorder can be interpreted as a time averaged dynamic disorder, H_2O and OH groups oscillating between two equivalent sites similar to the ordered H positions of the *Pmcn* lawsonite structure.

The authors thank Prof. Tomas Armbruster and Prof. Eugen Libowitzky for discussion of data, suggestions and comments on the text. The work was supported by the Russian Foundation for Basic Research, grant № 11-03-00637.

REFERENCES

- 1. Libowitzky E., Armbruster T. // American Mineralogist. 1995. 80. P.1277 1285.
- 2. Sondergeld P., Schranz W., Troester A., Carpenter M.A., Libowitzky E., Kityk A.V.// Phys.Rev. B. 2000. 62(10). P. 6143 6147.
- 3. Likhacheva A.Yu., Goryainov S.V., Madyukov I.A., Manakov A.Yu., Ancharov A.I. // Bull. Russ. Acad. Sci.: Physics. 2008. **73**(8). P. 1143 1146.
- Salje E.K.H., Gofryk K., Safarik D.J., Lashley J.C. // Journal of Physics: Condensed Matter. 2012 24 (25). – P. 255901 – 255908.
- 5. Carpenter M.A., Meyer H.-W., Sondergeld P., Marion S., Knight K.S. // American Mineralogist. 2003. 88. P. 534 546.
- 6. Kozlova S.G., Gabuda S.P., Armbruster T., Libowitzky E. 1996. Hydrogen atom localization in lawsonite using single-crystal PMR data. Proc. IUCR 1996, Abstract.
- 7. Abragam A., The Principles of Nuclear Magnetism. Clarendon, Oxford, 1961.
- 8. Mc Call D.W., Hamming R.W. // Acta Cryst. 1963. 16. P. 1071.
- 9. Falaleev O.V., Sergeev N.A., Lundin A.G. // Crystallographiya. 1974. 19. P. 560.
- 10. *Lundin A.G., Sergeev N.A., Falaleev O.V.* The Method of Moments in structural Studies of solids by NMR. Szczecin 2009. http://sergeev.fiz.univ.szczecin.pl/Dydaktyka/Skrypty/Metoda%20momentow/spis.html
- 11. Slotfeldt-Ellingsen D., Pedersen B. // Journ. Phys. Chem. Sol. 1977. 38(1). P. 65 72.
- 12. Pedersen. B. // Journ. Chem. Phys. 1967. 41. P. 122 131.
- 13. Busing W.R., Levy H.A. // Acta Cryst. 1964. 17. P. 142 146.
- 14. Farmer V.C., The Infrared Spectra of Minerals. Min.Soc. 1974.
- 15. Peterson S.W., Levy H.A. // Acta Cryst. 1957. 10. P. 70 77.
- Gabuda S.P., Kozlova S.G, Moroz N.K. Localization and disordering of H₂O in heulandite: Comparison of NMR and Neutron Diffraction Data. In: Natural Zeolites. Occurrence, Properties, Use (D.W. Ming & F.A. Mumpton.Eds). Brockport, New York, USA, 1995.
- 17. Landau, L.D.; Lifshitz, E.M. Theoretical Physics, Vol. 1 (Mechanics), Chap. 5, #30. Pergamon, Oxford, 1981.