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A three-dimensional (3D) matching operator is proposed for a fourth-order accurate solution of a Dirichlet
problem of Laplace’s equation in a rectangular parallelepiped. The operator is constructed based on homo-
geneous, orthogonal-harmonic polynomials in three variables, and employs a cubic grid difference solution of
the problem for the approximate solution inbetween the grid nodes. The difference solution on the nodes
used by the interpolation operator is calculated by a novel formula, developed on the basis of the discrete
Fourier transform. This formula can be applied on the required nodes directly, without requiring the solution
of the whole system of difference equations. The fourth-order accuracy of the constructed numerical tools is
demonstrated further through a numerical example.
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1. Введение

Интерполяционные многочлены имеют важные приложения в качестве операторов
согласования для решения краевых задач (КЗ) методами декомпозиции области [1].
Они включают методы декомпозиции перекрывающихся областей (такие как методы
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составных сеток [2–8], блочно-сеточные методы [9–14]) и различные типы комбиниро-
ванных методов [15,16], операторы согласования используют для соединения подсистем.
Следовательно, для используемого интерполяционного многочлена важно иметь соот-
ветствующий порядок точности применяемого метода, сохранять основные свойства рас-
сматриваемого дифференциального уравнения (такие как принцип максимума) и иметь
легко реализуемый алгоритм.

Для 2-х мерного (2D) решения КЗ для уравнения Лапласа в [5] был построен опе-
ратор согласования четвертого порядка на квадратной сетке и применен для метода
составных сеток четвертого порядка, а также для метода блочной сетки [12]. В [13, 14]
на шестиугольной сетке был построен оператор согласования четвертого порядка для
использования в методе блочно-шестиугольной сетки. Кроме того, в [11] был построен
оператор согласования шестого порядка для метода блочной сетки, и он также исполь-
зовался для метода составных сеток шестого порядка [6].

Следует отметить некоторые важные свойства упомянутых выше операторов поряд-
ка k. Эти операторы согласования (i) дают точное значение любого гармонического мно-
гочлена порядка (k− 1), (ii) удовлетворяют принципу максимума, и (iii) для успешного
применения в методах декомпозиции перекрывающихся областей они лишь должны быть
определены в некоторой закрытой подобласти области решения.

В 3-х мерном случае использовался оператор согласования второго порядка в прямо-
угольном параллелепипеде в [4], а в [7, 8] он использовался для построения и обоснова-
ния метода составных сеток второго порядка в многограннике и призме соответственно.
Несмотря на вычислительные преимущества использования численных методов более
высокого порядка точности чем второй, оператор согласования высокой точности, ко-
торый мог бы использоваться в методах декомпозиции перекрывающихся областей и
удовлетворяющий свойствам (i)–(iii), не был создан для 3D задач. В данной статье для
конечно-разностного решения задачи Дирихле для уравнения Лапласа построен опера-
тор согласования четвертого порядка в трех переменных со свойствами (i)–(iii). Исполь-
зуя решение 15-и точечной кубической сетки, мы строим интерполяционный оператор
на основе гармонических многочленов в трех переменных.

Численная реализация решения в узлах, необходимых для построения оператора, по-
лучается путем развития метода, введенного в [17] для 5-и точечной схемы в прямоуголь-
ной области (см. также [18]). Формула в [17] была обобщена до решения 3D уравнения
Лапласа в кубе с использованием 7-и точечной схемы (второго порядка аппроксима-
ции) в [19], где решение в узлах вдоль ребер и в вершинах предполагалось равным нулю.
В настоящем исследовании мы обобщаем дискретное представление Фурье, данное
в [17, 19], до формулы четвертого порядка в прямоугольном параллелепипеде, вычитая
соответствующие гармонические функции, чтобы сделать решение в вершинах и на реб-
рах равным нулю. Следовательно, благодаря разработанной методике вычитания метод
может применяться для решения широкого класса КЗ для уравнения Лапласа.

Статья построена следующим образом. В пункте 2 мы дадим формальную постанов-
ку задачи и определим систему конечно-разностных уравнений, которые будут использо-
ваться для получения приближенного решения на кубической сетке. Пункт 3 посвящен
построению трехмерного оператора согласования четвертого порядка для приближенно-
го решения уравнения Лапласа между узлами кубической сетки. В п. 4 будет подробно
описан метод реализации разностного решения четвертого порядка уравнения Лапласа
на построенной кубической сетке. Для демонстрации теоретических результатов, полу-
ченных в п. 5, представлен численный пример. Заключительные замечания даны в п. 6.

Краткое введение к построению оператора согласования было дано в [20].
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2. Краевая задача в прямоугольном параллелепипеде

Пусть Π = {(x1, x2, x3) : 0 < xi < ai, i = 1, 2, 3} — прямоугольный параллелепипед с
гранями Γj (Γ′j), j = 1, 2, . . . , 6, включая (исключая) ребра, так что Γ = ∪6

j=1Γj — грани-
ца Π, и Π = Γ ∪ Π. Для j = 1, 2, 3 грань Γj лежит в плоскости xj = 0, для j = 4, 5, 6 —
в плоскости xj−3 = aj−3. Кроме того, γµν = Γµ ∩ Γν — ребро, соединяющее грани Γµ и
Γν параллелепипеда, а γ — объединение ребер Π.

Мы говорим, что f ∈ Ck,λ (D) , если f имеет k-е производные на D, удовлетворяющее
условию Гельдера с экспонентой λ ∈ (0, 1) .

Рассмотрим краевую задачу

∆u = 0 на Π, (1)

u = ϕj на Γj , j = 1, 2, . . . , 6, (2)

где ∆ ≡ ∂2

∂x21
+

∂2

∂x22
+

∂2

∂x23
, ϕj — заданные функции. Предположим, что

ϕj ∈ C4,λ (Γj) , j = 1, 2, . . . , 6, (3)

ϕµ = ϕν на γµν , (4)

∂2ϕµ
∂t2µ

+
∂2ϕν
∂t2ν

+
∂2ϕµ
∂t2µν

= 0 на γµν , (5)

∂4ϕµ
∂t4µ

+
∂4ϕµ
∂t2µ∂t

2
µν

=
∂4ϕν
∂t4ν

+
∂4ϕν
∂t2ν∂t

2
νµ

на γµν , (6)

где 1 ≤ µ < ν ≤ 6, ν − µ 6= 3, tµν — элемент γµν , а tµ и tν — нормали к γµν на Γµ и Γν
соответственно.

Доказательство следующей теоремы следует из [21, теорема 2.1].

Теорема 1. Решение задачи (1), (2) u ∈ C4,λ
(
Π
)
, если и только если удовлетворяются

условия (3)–(6).

Возьмем h > 0 с целыми числами ai/h ≥ 4 (i = 1, 2, 3) и образуем кубическую сетку
путем пересечения плоскостей xi = 0, h, 2h, . . . , i = 1, 2, 3. Пусть Dh — множество узлов
построенной сетки, и пусть Πh = Π ∩Dh — узлы, лежащие в Π. Кроме того, множество
узлов, лежащих на j-й грани Π, обозначим Γhj = Γj ∩ Dh, Γ

′h
j = Γ′j ∩ Dh, Γh = ∪6

j=1Γhj .

Наконец, обозначим кубическую сетку, построенную в Π, как Π
h

= Πh ∪ Γh.
Определим 14-и точечный оператор усреднения R на кубической сетке следующим

образом (см. [22]):

Ru(x1, x2, x3) =
1

56

 6

8
∑

(1)
p=1

up +
14∑

(3)
q=7

uq

 , (x1, x2, x3) ∈ Πh, (7)

где сумма
∑

(k) взята по узлам сетки, находящимся на расстоянии
√
kh от точки (x1, x2,

x3), и up, uq — значения u в соответствующих точках сетки.
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Рассмотрим следующую систему сеточных уравнений, аппроксимирующих задачу
Дирихле (1), (2):

uh = Ruh на Πh, (8)

uh = ϕj на Γhj , j = 1, 2, . . . , 6, (9)

где R — оператор, заданный путем (7).
Поскольку коэффициенты оператора R являются неотрицательными и их сумма не

превышает единицы, согласно принципу максимума решение системы (8), (9) существует
и является единственным (см. [23, глава 4]).

Доказательство следующей теоремы имеется в [22].

Теорема 2. Пусть u — след решения задачи (1), (2) с условиями (3)–(6) на Πh, а uh —
решение системы (8), (9). Тогда

max
Π
h
|u− uh| ≤ ch4,

где c — постоянная, не зависящая от h.

3. Построение интерполяционного оператора
на кубической сетке

Пусть B =
{

(x1, x2, x3) : x2
1 + x2

2 + x2
3 < 1

}
— единичный шар, ζ — его граница, B =

B ∪ ζ. На основе формулы Тейлора любая гармоническая функция u ∈ C4,λ
(
B
)
может

быть представлена для любой точки (x1, x2, x3) ∈ B в виде

u(x1, x2, x3) = c0,0H
0
0 +

3∑
n=1

(
c0,nH

0
n(x1, x2, x3) +

n∑
m=1

[
cm,nH

m
n (x1, x2, x3) + c̃m,nH̃

m
n (x1, x2, x3)

])
+O

(
r4
)
, (10)

где r =
√
x2

1 + x2
2 + x2

3. ОбозначенияH0
k (k = 0, 1, 2, 3),Hm

n и H̃m
n (n,m = 1, 2, 3) использу-

ются для гармонических многочленов, приведенных в таблице 1 (см. также [24, глава 12]).
Кроме того,

c0,n =
1

n!

∂nu

∂xn3
, n = 0, 1, 2, 3,

c1,1 =
∂u

∂x1
, c1,2 =

1

2!

2

3

∂2u

∂x1∂x3
, c1,3 =

1

3!

1

2

∂3u

∂x1∂x2
3

,

c2,2 =
1

2!

1

6

(
∂2u

∂x2
1

− ∂2u

∂x2
2

)
, c2,3 =

1

3!

1

10

(
∂3u

∂x2
1∂x3

− ∂3u

∂x2
2∂x3

)
,

c3,3 =
1

3!

1

15

(
−3

4

∂3u

∂x1∂x2
2

+
1

4

∂3u

∂x3
1

)
,

(11)

и
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c̃1,1 =
∂u

∂x2
, c̃1,2 =

1

2!

2

3

∂2u

∂x2∂x3
, c̃1,3 =

1

3!

1

2

∂3u

∂x2∂x2
3

,

c̃2,2 =
1

2!

1

3

∂2u

∂x2∂x1
, c̃2,3 =

1

3!

1

5

∂3u

∂x1∂x2∂x3
,

c̃3,3 =
1

3!

1

15

(
3

4

∂3u

∂x2∂x2
1

− 1

4

∂3u

∂x3
2

)
суть значения частных производных гармонической функции u в (0, 0, 0).

Таблица 1. Гармонические многочлены в разложении (10)

H0
0 1 H0

1 x3

H1
1 x1

H̃1
1 x2

H0
2 x23 −

1

2
x21 −

1

2
x22

H1
2 3x1x3

H2
2 3x21 − 3x22

H̃1
2 3x2x3

H̃2
2 6x1x2

H0
3 x33 −

3

2
x21x3 −

3

2
x22x3

H1
3 6x1x

2
3 −

3

2
x31 −

3

2
x1x

2
2

H2
3 15x21x3 − 15x22x3

H3
3 15x31 − 45x1x

2
2

H̃1
3 6x2x

2
3 −

3

2
x21x2 −

3

2
x32

H̃2
3 30x1x2x3

H̃3
3 45x21x2 − 15x32

Представим разложение (10) в виде

u(x1, x2, x3) = R1(x1, x2, x3) +R2(x1, x2, x3) +R3(x1, x2, x3) +O(r4),

где

R1(x1, x2, x3) =
3∑

n=0

cn,nH
n
n (x1, x2, x3) +

3∑
m=2

cm−2,mH
m−2
m (x1, x2, x3) ,

R2(x1, x2, x3) =

3∑
n=1

(
n∑

m=1

c̃m,nH̃
m
n (x1, x2, x3)

)
,

R3(x1, x2, x3) =

2∑
n=1

c0,2n−1H
0
2n−1 (x1, x2, x3) +

3∑
m=2

cm−1,mH
m−1
m (x1, x2, x3) .

Можно заметить, что

(а) многочлены R1 (x1, x2, x3) являются четными по отношению как к x2, так и x3;
(б) многочлены R2 (x1, x2, x3) равны нулю на плоскости x1x3 и также являются нечет-

ными по x2 относительно этой плоскости;
(в) многочлены R3 (x1, x2, x3) равны нулю на плоскости x1x2 и также являются нечет-

ными по x3 относительно этой плоскости.

Пусть Ωδ — подобласть параллелепипеда Π, такая что расстояние до каждой точки
от γ не меньше δ > 0 за исключением ребер γµ0ν0 , для которых ϕµ0 = ϕν0 = 0. Кроме
того, пусть

F3 (x1, x2, x3) = R1(x1, x2, x3) +R2(x1, x2, x3) +R3(x1, x2, x3). (12)

Интерполяционный оператор четвертого порядка S4
3 строится, исходя из условия, что

выражение S4
3 (F3) дает точное значение любого гармонического многочлена F3(x1, x2,

x3), определяемого (12) в каждой точке P ∈ Ωδ.
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Пусть h0 < δ/5 — фиксированное вещественное число и пусть h ≤ h0 — размер шага
сетки Π

h (см. п. 2).

Случай 1. Точка P ∈ Ωδ лежит на ребре ячейки кубической сетки.

Расположим начало прямоугольной системы координат на узле P0 и направим поло-
жительную ось x1 вдоль ребра ячейки сетки таким образом, чтобы P = P (αh, 0, 0), 0 <
α < 1 (рисунок 1). Возьмем узлы P1(h, 0, 0), P2(h, h, 0), P3(0, h, 0), P4(h, 0, h), P5(0, 0, h) и
получим коэффициенты λk, k = 0, 1, . . . , 5, такие чтобы представление

u = λ0u0 + λ1u1 + λ2u2 + λ3u3 + λ4u4 + λ5u5 (13)

удовлетворялось для всех гармонических многочленов R1 (x1, x2, x3) , где u = u(P ),
uk = u(Pk), k = 0, 1, . . . , 5. Это дает систему уравнений

λ0 + λ1 + λ2 + λ3 + λ4 + λ5 = 1,

λ1 + λ2 + λ4 = α,

−1

2
λ1 − λ2 −

1

2
λ3 +

1

2
λ4 + λ5 = −α

2

2
,

3λ1 − 3λ3 + 3λ4 = 3α2,

−3

2
λ1 − 3λ2 +

9

2
λ4 = −3α3

2
,

15λ1 − 30λ2 + 15λ4 = 15α3.

(14)

Рис. 1. Узлы, используемые в случае 1 для построения S4
3u

Решив систему (14), мы получим

λ0 (α) =
1

3

(
3− 7α+ 6α2 − 2α3

)
,

λ1 (α) =
1

3

(
α+ 2α3

)
,

λ2 (α) = λ4 (α) = −1

3
(−1 + α)α (1 + α) ,

λ3 (α) = λ5 (α) =
1

3
(−2 + α) (−1 + α)α.

(15)
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Теперь возьмем узлы P6(h,−h, 0) и P7(0,−h, 0), которые симметричны узлам P2 и P3

соответственно, относительно плоскости x1x3, а также узлы P8 (h, 0,−h) и P9 (0, 0,−h) ,
которые симметричны P4 и P5 соответственно, относительно плоскости x1x2 (см. рис. 1,
показывающий распределение используемых узлов). Поскольку

R1(x1, x2, 0) = −R1(x1,−x2, 0), R1(x1, 0, x3) = −R1(x1, 0,−x3), (16)

с использованием (13) и (15) мы получим

R1(P ) = S4
3R1(P ) ≡

9∑
k=0

µk (α)R1(Pk), (17)

где
µ0 (α) = λ0 (α) , µ1 (α) = λ1 (α) ,

µq (α) = µq+2 (α) = µq+4 (α) = µq+6 (α) = λq (α) /2, q = 2, 3.
(18)

Используя свойства симметричности многочленов в суммах R2 и R3, приведенных
выше, мы получим равенства

0 = R2(P ) = S4
3R2(P ), 0 = R3(P ) = S4

3R3(P ). (19)

На основании (12), (17) и (19) имеем

F3(P ) = S4
3F3(P ) ≡

9∑
k=0

µk (α)F3(Pk). (20)

Следовательно, построенный оператор дает точное значение любого гармонического мно-
гочлена F3 (x1, x2, x3), определяемого (12) в каждой точке P ∈ Ωδ. Из (10), (12) и (20)
следует, что для аппроксимации решения в точке P ∈ Ωδ, лежащей на ребре сетки, с
точностью четвертого порядка используем оператор S4

3 :

uh = S4
3uh, (21)

где

S4
3uh ≡

9∑
k=0

µk (α)uh;k, uh;k = uh(Pk), (22)

и uh — конечно-разностное решение, описанное в п. 2. Мы назовем Pk, k = 0, 1, . . . , 9,
соседними к P узлами.

Легко убедиться в том, что

µk (α) ≥ 0, k = 0, 1, . . . , 9, и
9∑

k=0

µk (α) = 1. (23)

Случай 2. Точка P ∈ Ωδ лежит на одной из граней ячейки кубической сетки.

Используя прямоугольную систему координат, определенную в случае 1, мы положим
P = P (αh, 0, σh) , 0 < α, σ < 1, и на ребрах ячейки сетки возьмем дополнительные точки
(см. рис. 2):
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P ′0 (0, 0, σh) , P ′1 (h, 0, σh) , P ′2 (h, h, σh) , P ′3 (0, h, σh) ,

P ′4 (h, 0, σh+ h) , P ′5 (0, 0, σh+ h) , P ′6 (h,−h, σh) ,

P ′7 (0,−h, σh) , P ′8 (h, 0, σh− h) , P ′9 (0, 0, σh− h) ,

которые являются вершинами искусственных кубических сеток.
Поскольку точка P лежит на одной из граней ячейки искусственной сетки, мы можем

сформировать выражение

S4
3u ≡

9∑
l=0

µl (σ)u′l,

где u′l = u (P ′l ) . Поскольку все искусственные узлы P ′l , l = 0, 1, . . . , 9, лежат на гра-
нях ячеек сетки, выразим все значения u′l в терминах узловых значений функции по
формуле (22) и получим выражение

S4
3uh ≡

9∑
l,k=0

µl (σ)µk (α)uh;l,k, (24)

где uh;l,k = uh (Pl,k), Pl,k (l, k = 0, 1, . . . , 9) являются соседними узлами P в случае 2.

Рис. 2. Ребра искусственной сетки, используемые в случае 2 для построения S4
3u

Случай 3. Точка P ∈ Ωδ лежит внутри ячейки сетки.

Пусть точка P , в прямоугольной системе координат случая 1, есть P = P (αh, βh, σh),
0 < α, β, σ < 1. На гранях сетки мы используем точки P ′′m, m = 0, 1, . . . , 9, приведен-
ные ниже, для образования искусственной кубической сетки (см. рис. 3, где показаны
плоскости искусственной сетки):

P ′′0 (0, βh, σh) , P ′′1 (h, βh, σh) , P ′′2 (h, βh+ h, σh) , P ′′3 (0, βh+ h, σh) ,

P ′′4 (h, βh, σh+ h) , P ′′5 (0, βh, σh+ h) , P ′′6 (h, βh− h, σh) ,

P ′′7 (0, βh− h, σh) , P ′′8 (h, βh, σh− h) , P ′′9 (0, βh, σh− h) .
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Следовательно, мы сформулируем выражение для u(P ) как в случае 1:

S4
3u ≡

9∑
m=0

µm (β)u′′m, (25)

где u′′m = u (P ′′m), m = 0, 1, . . . , 9. Наконец, выразим все значения u (P ′′m) через узловые
значения функции и, таким образом, получим выражение

S4
3uh ≡

9∑
m,l,k=0

µm (β)µl (σ)µk (α)uh;m,l,k (26)

для приближенного значения u(P ). Как и выше, uh;m,l,k = uh (Pm,l,k), m, l, k = 0, 1, . . . , 9,
и Pm,l,k являются соседними узлами P.

Рис. 3. Искусственные плоскости, используемые в случае 3 для построения S4
3u

Замечание 1. Коэффициенты µl (σ), µk (α) выражения (24) и µm (β), µl (σ), µk (α)
(m, l, k = 0, 1, . . . , 9) выражения (26) неотрицательные и их сумма равна 1.

В случаях 1, 2 и 3 предполагается, что все соседние узлы P находятся в Π
h
. Теперь

рассмотрим случай, когда некоторые из соседних узлов выходят через границу Π.

Случай 4. Соседние узлы выходят через грани Π ∩ Ωδ.

Подслучай 4а. Пусть соседние узлы выходят только через грань Γm, 1 ≤ m ≤ 6, и
пусть ϕm = 0.

Для простоты представления мы предполагаем, что узлы выходят через грань x3 = 0.
Поскольку любая гармоническая функция при u(x1, x2, 0) = 0 является нечетно продол-
жаемой относительно плоскости x1x2, мы имеем

u(x1, x2, x3) = −u(x1, x2,−x3). (27)

Используя (27) в выражении (26), мы получим приближение u(P ) с узлами в Πh.

Подслучай 4б. Пусть ϕm ∈ C4,λ (Γm), 0 < λ < 1. Расположим начало прямоугольной
системы координат на грани Γm, так чтобы узел P (x1, x2, x3) лежал на положительной
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оси x2. Решение задачи (1), (2) представим в окрестности
√
x2

1 + x2
2 + x2

3 ≤ 5h начала
новой системы координат с использованием формулы Тейлора вида (10).

Поскольку
R2 (x1, 0, x3) = 0,

путем разложения функции ϕm ∈ C4,λ (Γm) в начале системы координат, используя фор-
мулу Тейлора, коэффициенты (11) можно найти с использованием граничной функции
ϕm и ее производных.

Определим для x2 > 0 функцию

ũ(x1, x2, x3) ≡ u(x1, x2, x3)−R1(x1, x2, x3)−R3(x1, x2, x3) = R2(x1, x2, x3) +O(h4),

и поскольку R2(x1, x2, x3) является нечетным по отношению к плоскости x1x3, завершим
определение ũ(x1, x2, x3) для x2 < 0 следующим образом:

ũ(x1, x2, x3) = −ũ(x1,−x2, x3).

Очевидно, что ũ(x1, x2, x3) равно гармоническому многочлену R2(x1, x2, x3) с точно-
стью O(h4). Следовательно, создав выражение для S4

3 ũ(x1, x2, x3) и прибавив величину
(R1 +R3) (P ), мы получим приближение четвертого порядка для u (P ) .

Подслучай 4в. Если P ∈ Ωδ находится на расстоянии менее 5h от одной из граней Π,
соседние узлы будут выходить через обе грани Γµ0 и Γν0 , прилегающие к грани γµ0ν0 , где
ϕµ0 = ϕν0 = 0.

Предположим, например, что P находится рядом с ребром (0, 0, x3), δ < x3 < a3 − δ.
Поскольку u(0, 0, x3) = 0 и ϕ1 = ϕ2 = 0, решение может быть продолжено относительно
обеих плоскостей x1 = 0 и x2 = 0 как нечетная функция. Следовательно, для узла
(x1, x2, x3) ∈ Πh имеем

−u(−x1, x2, x3) = u(x1, x2, x3), −u(x1,−x2, x3) = u(x1, x2, x3).

Кроме того, для точек (−x1,−x2, x3), участвующих в построении S4
3uh, мы используем

свойство
u(−x1,−x2, x3) = −u(x1,−x2, x3) = u(x1, x2, x3).

Замечание 2. Несмотря на нечетное продолжение в случае 4, коэффициенты оператора
остаются неотрицательными и их сумма не превышает единицы.

Пусть ω1 обозначает множество точек P ∈ Ωδ в случаях 1, 2 и 3, а ω2 — множество
точек в случае 4. Выразим оператор S4

3 следующим образом:

S4
3 (u, ϕ) =

{
S4

3u на ω1,

S4
3(u−R1 −R3) + (R1 +R3) (P ) на ω2,

где

ϕ =

 ϕ1 на Γ1,

ϕj на Γj\
(⋃j−1

i=1 Γi

)
, j = 2, . . . , 6.

(28)

Теорема 3. Пусть граничные функции ϕj , j = 1, 2, . . . , 6, в (2) удовлетворяют услови-
ям (3)–(6). Тогда для точного решения u задачи (1), (2)
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max
Ωδ

∣∣S4
3 (u, ϕ)− u

∣∣ ≤ c0h
4, (29)

где c0 — постоянная, не зависящая от h.

Доказательство. Согласно теореме 1, из условий (3)–(6) следует, что u ∈ C4,λ
(
Π
)
.

Тогда на основании (10), (21)–(26) и замечаний 1 и 2 мы получим неравенство (29).

Теорема 4. Для оператора четвертого порядка S4
3 верна следующая оценка :

max
Π
h∩Ωδ

∣∣S4
3(uh, ϕ)− u

∣∣ ≤ c1h
4,

где uh — решение системы (8), (9), u — точное решение задачи (1)–(6), а c1 — постоян-
ная, не зависящая от h.

Доказательство. На основании теорем 2, 3 и линейности оператора S4
3 имеем∣∣S4

3(uh, ϕ)− u
∣∣ ≤ ∣∣S4

3(uh − u, 0)
∣∣+
∣∣S4

3(u, ϕ)− u
∣∣ ≤ c2h

4 + c0h
4 ≤ c1h

4,

где c2 — постоянная, не зависящая от h.

4. Реализация разностной задачи

Для вычисления приближенного значения u(P ), P ∈ Ωδ, при помощи интерполяци-
онного оператора, построенного в п. 3, необходимо решить разностную задачу (8), (9)
в соседних узлах P. Следовательно, мы рассматриваем вопрос о численной реализации
задачи (8), (9) путем развития формулы Вазова [17] в двух направлениях:

i) расширение до трех измерений,
ii) увеличение порядка точности до четвертого.

Для построения формулы реализации в трех измерениях необходимо, чтобы гранич-
ные значения обращались в нуль на ребрах параллелепипеда, а также на вершинах.
Поэтому мы определяем гармонический многочлен Q(x1, x2, x3) в виде

a1a2a3Q(x1, x2, x3) = − A000(x1 − a1)(x2 − a2)(x3 − a3) +Aa100x1(x2 − a2)(x3 − a3) +

A0a20(x1 − a1)x2(x3 − a3) +A00a3(x1 − a1)(x2 − a2)x3 −
Aa1a20x1x2(x3 − a3)−Aa10a3x1(x2 − a2)x3 −
A0a2a3(x1 − a1)x2x3 +Aa1a2a3x1x2x3,

где Aabc — значения граничной функции ϕ, определяемой посредством (28) в вершинах
(a, b, c). Этот многочлен используется для замены ϕ на ϕ∗ = ϕ−Q, где ϕ∗ обращается в
нуль в вершинах Π и его вторые и высшие производные такие же, что и у ϕ.

Чтобы граничные значения обращались в нуль, например на ребре x2 = a2, x3 = 0,
0 < x1 < a1, обозначенном γ35, вычтем следующую функцию:

u3,5(x1, x2, x3) =

a1
h
−1∑

n=1

dn sin
nπx1

a1

sin nπ√
2a1
x2

sin nπa2√
2a1

sinhβn (a3 − x3)

sinhβna3
, (30)

при
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dn =
2h

a1

a1
h
−1∑

k=1

ϕ∗ (kh, a2, 0) sin
nπx1

a1

и

βn =
2

h
sin−1


√√√√ 6 sin2 nπh

2a1
+ 6 sin2 nπh

2
√

2a1
− 4 sin2 nπh

2a1
sin2 nπh

2
√

2a1

6− 4 sin2 nπh
2a1
− 4 sin2 nπh

2
√

2a1
+ 8 sin2 nπh

2a1
sin2 nπh

2
√

2a1

 .

Функция (30) имеет следующие свойства:

(i) удовлетворяет уравнению (8),
(ii) обращается в нуль на всех ребрах за исключением γ35,

(iii) u3,5(x1, a2, 0) =
∑a1

h
−1

n=1 dn sin
nπx1
a1

.

Для остальных 11 ребер вычитаемые функции могут быть получены по аналогии
с (30). Обозначим сумму этих 12 функций путем u∗(x1, x2, x3). Рассмотрим конечно-
разностную задачу

uh = Ruh на Πh, (31)

uh = φ на Γh, (32)

где φ = ϕ∗ − u∗. Поскольку граничная функция φ задачи (31), (32) обращается в нуль
на всех ребрах и вершинах, решение может быть представлено в виде суммы решений
шести частных задач:

ulh = Rulh на Πh, (33)

ulh = ψl на Γ
′h
j , l, j = 1, 2, . . . , 6, (34)

ulh = 0 на γ, l = 1, 2, . . . , 6, (35)

где

ψl =

{
0 на Γ

′h
j , j 6= l,

φl = φ на Γ
′h
l .

(36)

Рассмотрим случай l = 3 в задаче (33)–(35). Его решение может быть представлено
на Πh в виде

u3
h(x1, x2, x3) =

a1
h
−1∑

m=1

a2
h
−1∑

n=1

bmn sin
mπx1

a1
sin

nπx2

a2

sinhβmn (a3 − z)
sinhβmna3

, (37)

где

bmn =
4h2

a1a2

a1
h
−1∑

k=1

a2
h
−1∑

l=1

φ3 (kh, lh) sin
mπkh

a1
sin

nπlh

a2

суть коэффициенты Фурье-функции φ3 и

βmn =
2

h
sin−1

√√√√ 6 sin2 mπh
2a1

+ 6 sin2 nπh
2a2
− 4 sin2 mπh

2a1
sin2 nπh

2a2

6− 4 sin2 mπh
2a1
− 4 sin2 nπh

2a2
+ 8 sin2 mπh

2a1
sin2 nπh

2
√

2a2

 .

Решения разностных задач для остальных 5 задач (33)–(35) могут быть получены по
аналогии со случаем l = 3. Тогда решение uh задачи (31), (32) можно представить в виде
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uh =

6∑
l=1

ulh. (38)

Следовательно, приближенное решение задачи (1), (2) — это решение конечно-разност-
ной задачи (8), (9), представленное в виде

uh(x1, x2, x3) = uh(x1, x2, x3) +Q(x1, x2, x3) + u∗(x1, x2, x3), (x1, x2, x3) ∈ Π
h
. (39)

Из формулы (39) следует, что для нахождения решения системы (8), (9) только в
виде оператора S4

3 нам не нужно решать всю систему конечно-разностных уравнений,
так как решение может быть вычислено прямо в требуемых узлах.

5. Численный пример

Пусть Π — единичный куб с границей Γ, Π = Π ∪ Γ. Также определим полусфериче-
скую поверхность

S =

{
(x1, x2, x3) :

(
x1 −

1

2

)2

+

(
x2 −

1

2

)2

+ x2
3 = 0.4 и x3 ≥ 0

}
,

такую что S ⊂ Π (см. рис 4). Рассмотрим краевую задачу

∆u = 0 на Π, (40)

u = v2(x1, x2, x3) на Γ, (41)

где
v2(x1, x2, x3) =

1

100
cos(2x1) sinh(

√
3(π − x2)) cosh(x3)

является точным решением. Интерес для нас представляет приближенное решение зада-
чи (40), (41) четвертого порядка точности на поверхности S. Такие задачи часто встре-
чаются при реализации методов декомпозиции области [1–6], которые являются очень
эффективными, благодаря возможности их параллельной обработки [1]. Например, ко-
гда S является частью границы сферической области, пересекающей Π, решение на S
необходимо для получения решения внутри сферы методом декомпозиции области. То-
гда как конечно-разностное решение задачи четвертого порядка (40), (41) может быть
получено на Πh методом, разработанным в п. 4. Точки на S обычно лежат между уз-
лами сетки. Следовательно, для получения решения на S требуется интерполяционный
оператор.

Для приближенного решения задачи (40), (41) в различных точках, лежащих на S, мы
используем интерполяционный оператор, построенный в п. 3. Точки, в которых получено
решение, показаны на рис. 4.

В табл. 2 приводятся абсолютные ошибки между точным и приближенным решени-
ем, т. е. |εh|P = |u − uh|P . Приближенное решение было получено в точках P1, P2 ∈ S,
где P1 = P1 (0.800, 0.237, 0.027) и P2 = P2(0.491, 0.101, 0.017). При P1 и P2 использова-
ние интерполяционной функции привело к тому, что некоторые соседние узлы выхо-
дили через грань Π, пересекая x3 = 0. Мы также берем P3 = P3 (0.768, 0.379, 0.270),
P4 = P4 (0.522, 0.340, 0.366) и P5 = P5(0.263, 0.335, 0.276) такие, что P3, P4, P5 ∈ S, и все
соседние узлы, используемые интерполяционным оператором, находятся внутри Π. Ре-
зультаты, приведенные в табл. 2, показывают очень точную аппроксимацию, полученную
с помощью интерполяционной функции.
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Рис. 4. Единичный куб Π и лежащая внутри него полусферическая поверхность S. Интерполя-
ционный оператор четвертого порядка используется для нахождения приближенного решения
задачи (40), (41) в точках Pi, i = 1, 2, . . . , 5

Таблица 2. Абсолютная ошибка приближенного решения задачи (40), (41), полученного с по-
мощью интерполяционной функции на поверхности S

h |εh|P1
|εh|P2

|εh|P3
|εh|P4

|εh|P5

2−3 4.977× 10−6 1.474× 10−4 5.514× 10−7 4.333× 10−6 2.519× 10−5

2−4 1.133× 10−7 5.367× 10−6 3.243× 10−8 3.476× 10−7 1.969× 10−6

2−5 2.370× 10−9 1.078× 10−7 3.269× 10−10 4.056× 10−8 4.076× 10−8

2−6 2.198× 10−10 1.219× 10−9 1.225× 10−10 3.361× 10−9 7.395× 10−9

2−7 1.709× 10−11 2.401× 10−10 8.160× 10−12 1.375× 10−10 3.075× 10−10

6. Выводы

Построен 3D интерполяционный оператор с использованием решения на кубической
сетке задачи Дирихле для уравнения Лапласа в замкнутой подобласти прямоугольного
параллелепипеда. Доказано, что когда четвертые производные граничных функций яв-
ляются непрерывными по Гельдеру и выполняются некоторые условия согласования при
помощи их второй и четвертой производных на гранях параллелепипеда, оператор схо-
дится с точностью четвертого порядка по отношению к размеру сетки. Оператор может
использоваться как оператор согласования в версиях методов декомпозиции области, со-
ставных сетках, блочных сетках и различных типах комбинированных методов. Кроме
того, построенный интерполяционный оператор, обладающий свойствами, указанными
в замечаниях 1 и 2, может играть важную роль в приближении четвертого порядка
и исследовании задач с многоуровневыми нелокальными условиями для 3D уравнения
Лапласа.

Решение в узлах, необходимых для построения оператора, вычисляется по разрабо-
танной новой формуле четвертого порядка. Предложенную формулу можно использо-
вать для решения в одном узле или на плоскости внутри области без необходимости
решать всю систему конечно-разностных уравнений.
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Что касается развития результатов, полученных в данной статье, то дальнейшее раз-
витие оператора согласования и формулы реализации для решения смешанной КЗ для
уравнения Лапласа позволило бы применить эти методы к большему семейству КЗ. Так-
же необходимо изучить вопрос повышения точности этих результатов до шестого поряд-
ка.
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