Химия в интересах устойчивого развития 25 (2017) 311-319

УДК 542.65:66.093:661.887 DOI: 10.15372/KhUR20170310

Получение малатов висмута (III) осаждением из нитратных растворов

Е. В. ТИМАКОВА^{1, 2}, Л. И. АФОНИНА^{1, 2}, Ю. М. ЮХИН¹, Н. В. БУЛИНА¹, В. А. ВОЛОДИН^{3, 4}

¹Институт химии твердого тела и механохимии Сибирского отделения РАН, Новосибирск, Россия

E-mail: timakova@solid.nsc.ru

²Новосибирский государственный технический университет, Новосибирск, Россия

³Институт физики полупроводников им. А. В. Ржанова Сибирского отделения РАН, Новосибирск, Россия

⁴Новосибирский государственный университет, Новосибирск, Россия

(Поступила 06.04.16)

Аннотация

Методами рентгенофазового анализа, ИК- и КР-спектроскопии, термогравиметрии и химического анализа исследовано осаждение висмута (III) из азотнокислых растворов в зависимости от концентрации малат-ионов, температуры процесса, значений рН раствора при добавлении к ним оптически активного изомера L(-)- и рацемической формы DL-яблочной кислоты. Показано, что при добавлении L(-)-яблочной кислоты в азотнокислые растворы осаждается моногидрат малата висмута состава ВіС₄H₃O₅· H₂O, а в случае добавления *DL*-яблочной кислоты образуется соединение состава BiC₄H₃O₅ · 0.5H₂O. Спектроскопическими методами исследована координация катиона висмута с анионами яблочных кислот. Установлено, что в исследуемых соединениях остатки яблочных кислот трижды депротонированные, и их связь с висмутсодержащим катионом осуществляется посредством всех функциональных групп яблочных кислот. Проведенные исследования морфологии полученных малатов висмута показали, что образцы L-малата по сравнению с DL-малатом висмута однородные в плане распределения частиц по размерам. Благодаря этому не требуются дополнительные затраты на измельчение образца до однородного состояния при использовании его в качестве лекарственной субстанции, а повышение температуры процесса способствует получению более мелкокристаллических порошков. Показана целесообразность получения малатов висмута для медицинского использования путем предварительного окисления металлического висмута кислородом воздуха, растворением полученного оксида в азотной кислоте (1:1) и осаждением малата висмута (III) добавлением висмутсодержащего раствора к раствору малата натрия при молярном отношении малат-ионов к висмуту, равном 1.1-1.2, и температуре процесса (60±10) °С.

Ключевые слова: осаждение из растворов, *L*(-)-яблочная кислота, *DL*-яблочная кислота, малат висмута (III), синтез, рентгенофазовый анализ, ИК- и КР-спектры, термический анализ

введение

Соли висмута с янтарной и диоксиянтарными (винной) кислотами находят широкое применение в медицинских целях. Основная соль янтарной кислоты служит лекарственной субстанцией препаратов Biquinol (Merck, Германия) и Pholcones (Соорег, Франция), применяется для лечения ангин, ларингитов и фарингитов. Моногидрат тартрата висмута

© Тимакова Е.В., Афонина Л.И., Юхин Ю.М., Булина Н.В., Володин В.А., 2017

состава $BiC_4H_3O_6 \cdot H_2O$ является действующим веществом в противосифилитическом препарате Бисмоверол [1]. В этой связи для использования в медицинских целях при изготовлении антибактериальных препаратов перспективны также соли висмута с яблочной (гидроксиянтарной) кислотой. Яблочная кислота является метаболитом цикла Кребса и ее действие на организм отличается высокой физиологичностью. Благодаря наличию ассиметричного атома углерода, яблочная кислота существует в двух оптически активных [2] и рацемических формах [3, 4]. В природе распространена L(-)-яблочная кислота, которая содержится в кислых плодах крыжовника, рябины, в ревене, в виде кальциевой соли в табаке, а также в небольшом количестве в вине [5].

До настоящего момента соединения висмута с L(-)-яблочной кислотой рассматривались лишь как модели с целью описания структур солей висмута, использующихся для лечения хронического гастрита [6]. Исследована структура соли, полученной при взаимодействии эквимолярных количеств пентагидрата нитрата висмута и L(-)-яблочной кислоты [7]. При выдерживании системы в течение нескольких дней формируются бесцветные, кубические монокристаллы состава $C_4H_5BiO_6$, кристаллизующиеся в пространственной группе $P3_121$. В работе [7] также отмечается, что порошкообразный продукт осаждается метанолом из водных растворов.

Ранее нами показано образование с активным изомером винной кислоты различных соединений висмута[1], перспективных для использования в качестве антибактериальных препаратов, полученных из растворов минеральных кислот. Однако систематических исследований, касающихся возможности образования соединений висмута с яблочной кислотой, которые получены в результате осаждения из висмутовых растворов, до сих пор не проводилось. Соединения висмута (III) синтезируют обычно гидролитической переработкой растворов висмута в азотной кислоте. Вследствие этого исследование процесса осаждения малатов висмута непосредственно из нитратных растворов представляет практический интерес.

С целью получения соединений висмута для их дальнейшего использования в качестве лекарственных субстанций нами исследовано влияние концентрации малат-ионов, температуры процесса и кислотности среды на степень осаждения висмута и состав образующихся соединений при добавлении к висмутсодержащим азотнокислым растворам оптически активного изомера L(-)- и рацемической формы *DL*-яблочной кислоты. На основании проведенных исследований предложен экологичный способ получения малата висмута (III) непосредственно из нитратных растворов производства соединений висмута.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе использовали минеральные кислоты, соли и щелочи квалификации "х. ч." или "ос. ч.". Исходный раствор нитрата висмута (400 г/л висмута, 100 г/л свободной азотной кислоты) готовили растворением оксида висмута квалификации "ос. ч. 13-3" в азотной кислоте с концентрацией 6 моль/л.

Гидролитическое осаждение висмута из нитратных растворов проводили во фторопластовых или стеклянных сосудах, снабженных мешалками, термостатирование которых осуществляли на водяных банях WB-2. Малаты висмута осаждали из азотнокислых растворов добавлением висмутсодержащего раствора к водному раствору яблочной кислоты или малата натрия. Соотношение объемов исходного и конечного растворов составляло 1 : 10, его корректировали добавлением дистиллированной воды. Смесь перемешивали в течение 1 ч. Осадок отфильтровывали, промывали дистиллированной водой и сушили на воздухе.

Для определения фазового состава образцов использовали метод рентгеновской дифракции. Съемку проводили на дифрактометре D8 Advance (Bruker, Германия) в геометрии Брэгта– Брентано с характеристичным излучением Си K_{α} в диапазоне углов 4° < 20 < 70° с шагом 0.02°. Фазовый анализ проводили с использованием базы данных ICDD PDF-2.

Инфракрасные спектры поглощения в средней ИК-области ($400-4000 \text{ сm}^{-1}$) записывали на ИК-Фурье спектрометре Scimitar FTS 2000 (Digilab, США), образцы готовили в виде таблеток с прокаленным KBr. Спектры комбинационного рассеяния света регис-

трировали при комнатной температуре в геометрии обратного рассеяния, для возбуждения использовалась линия Ar⁺ лазера с длиной волны 514.5 нм, сигнал от рассеянного света анализировали в поляризации, перпендикулярной поляризации падающего света (геометрия Z(XY)-Z). Использовался спектрометр T64000 производства компании Horiba Jobin Yvon в режиме работы одиночной моды (без пред-монохроматора).

Макроколичества Bi(III) в растворах определяли титрованием раствором комплексона III с индикатором ксиленоловым оранжевым; микроколичества определяли фотоколориметрически с йодидом натрия [8]. Продукты осаждения растворяли при нагревании в разбавленной HNO₃ (1 : 1). Содержание углерода, водорода и азота в синтезированных образцах определяли модифицированным методом Прегля с гравиметрическим окончанием анализа. Анализ примесных металлов осуществляли атомно-абсорбционным методом на спектрофотометре Varian AA 280FS (Австралия).

Концентрацию свободных ионов водорода в растворах проводили титрованием раствором едкого натра с предварительным маскированием катионов висмута комплексоном III с индикатором метиловым красным [9].

Термический анализ образцов проводили на синхронном термоаналитическом комплексе STA 449 F1 Jupiter (Netzsch, Германия) в динамическом режиме при нагревании в атмосфере Ar/O₂ (80/20; O₂ 10 мл/мин; Ar 40 мл/мин). Навески массой 180–200 мг помещали в тигли (сплав Pt-10 % Rh) и нагревали со скоростью 10 °C/мин до 500 °C.

Исследование образцов методом растровой электронной микроскопии (РЭМ) проводили с применением сканирующего электронного микроскопа Hitachi TM 1000 (Япония).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Результаты исследования по осаждению малатов висмута из азотнокислых растворов при температуре (23 ± 2) и (60 ± 2) °C и добавлении к ним рацемической формы *DL*- и активного изомера L(-)-яблочной кислоты свидетельствуют о том, что степень осаждения висмута зависит от введенного количества малат-ионов и температуры процесса. С ростом

Рис. 1. Рентгенограммы продуктов осаждения Bi(III) из азотнокислых растворов при добавлении к ним DL-яблочной (1, 2) и L(-)-яблочной кислот (3) и штрих-спектр для L(-)-малата висмута (4), смоделированный на основе данных [7]. Молярное отношение малат-ионов к Bi(III) n: 0.5 (1), 1 (2, 3); температура 60 °С.

концентрации малат-ионов и температуры процесса увеличивается степень осаждения висмута *R*. При молярном соотношении *DL*малат-ионов к висмуту в растворе (*n*), равном 1.0, степень осаждения висмута составляет 79.7 и 85.7 % для температур (23 ± 2) и (60 ± 2) °C соответственно. При *n* = 3.0 степень осаждения висмута возрастает до 92.6 и 95.7 % соответственно.

По данным РФА, в отсутствие малат-ионов в системе при 23 и 60 °С образуются основные нитраты состава [Bi₆O₄(OH)₄](NO₃)₆·4H₂O и [Bi₆O₄(OH)₄](NO₃)₆ · H₂O соответственно [10]. При n, равных 0.25 и 0.5, на рентгенограммах полученных осадков (рис. 1, кривая 1) отчетливо видны дифракционные максимумы, указывающие на образование в системе нового соединения. Дифракционных максимумов, характерных для свободной DL-яблочной кислоты (ICDD 46-1864), не обнаружено. Рентгенограммы образцов, полученных при n = 1, как при $23 \,^{\circ}$ С, так и при 60 °C, соответствуют DL-малату висмута (см. рис. 1, кривая 2); литературных данных о получении данного соединения нами не найдено. При этом результаты химического анализа этих образцов (58.5 % Ві, 13.79 % C, 1.12 % H) показывают, что молярное отношение висмута (III) к малат-ионам в них равно 1:1. С учетом данных термического анализа состав осаждаемого соединения можно представить как $BiC_4H_3O_6 \cdot 0.5H_2O$. При дальнейшем увеличении молярного отношения малат-ионов к висмуту в системе до n = 3и более также наблюдается осаждение соединения указанного состава. В результате многократных промывок водой, согласно данным РФА, состав соединения не изменяется.

Данные РФА образцов, полученных при добавлении L(-)-яблочной кислоты в азотнокислые растворы при 60 °С, показали, что, начиная с n = 0.5, на дифрактограммах продуктов осаждения появляются дифракционные максимумы (см. рис. 1, кривые 3, 4), характерные для моногидрата малата висмута состава $C_4H_3O_5Bi \cdot H_2O$ [7]. Дифракционные максимумы, характерные для свободной L(-)-яблочной кислоты (ICDD 42-1702), не наблюдаются. При n = 1.0 содержание висмута в полученном осадке составляет 57.6 % (вычислено 58.4 %), С – 12.68 % (13.41 %), Н – 1.29 (1.40 %). Степень извлечения висмута в осадок составляет 59.8 %. При дальнейшем повышении концентрации малат-ионов в системе степень осаждения висмута не увеличивается и, согласно данным $P\Phi A$, также образуется $C_4H_3O_5Bi\cdot H_2O$. От промывки осадка водой его состав не изменяется.

Степень осаждения висмута из азотнокислых растворов L(-)-яблочной кислотой при 23 °С не превышает 40.8 % при исследованных значениях n. Данные РФА и химического анализа свидетельствуют об образовании рентгеноаморфного L(-)-малата висмута состава BiC₄H₃O₆ · H₂O.

Для получения целевого продукта с достаточной степенью его извлечения в осадок мы исследовали влияние кислотности среды на степень осаждения DL- и L(-)-малатов висмута из азотнокислых растворов (рис. 2). Исследования проводили при постоянном молярном отношении малат-ионов к висмуту в растворе n = 1.1, при температуре процесса 60 °С с добавлением различных количеств едкого натра (первые точки зависимости соответствуют растворам без добавления щелочи). Видно, что по мере уменьшения кислотности раствора закономерно увеличивается и степень осаждения висмута в осадок: 99.0 % для DL- (см. рис. 2, кривая 1) и 95.0 % для L(-)-малата висмута (кривая 2); свободная кислотность растворов равна 0.37 и 0.32 моль/л и соответствует нейтрализации яблочной кислоты до средней натриевой соли. При добав-

Рис. 2. Зависимость степени осаждения Bi(III) R (%) от свободной кислотности раствора при добавлении к азотнокислому висмутсодержащему раствору DL- (1) и L(-)яблочной кислоты (2). Молярное отношение малат-ионов к Bi(III) n = 1.1. Температура процесса 60 °C. Штриховой линией показано значение кислотности раствора, соответствующей нейтрализации яблочной кислоты до средней натриевой соли.

лении едкого натра до кислотности раствора 0.07 и 0.086 моль/л степень извлечения висмута в осадок является количественной и составляет 99.9 и 99.8 % соответственно. Согласно данным РФА и химического анализа, во всем интервале исследуемых значений кислотности растворов продуктами осаждения в случае добавления DL-яблочной кислоты является DL-малат висмута состава $C_4H_3O_5Bi \cdot 0.5H_2O$, а при добавлении L(-)-яблочной кислоты осаждается L(-)-малат висмута С $_4H_3O_5Bi \cdot H_2O$.

Наличие воды в составе исследуемых солей подтверждается также данными термического анализа (рис. 3, *a* и б). Характер кривых ТГ (см. рис. 3 *a* и б, кривые 1) малатов висмута может быть обусловлен удалением молекул кристаллизационной воды (эндоэффект с максимумом при 100 (*a*) и 80 °C (б)) и последующим разложением соединений с экзоэффектом на кривой ДТА при максимуме

Рис. 3. Кривые термического анализа образца среднего *L*- (*a*) и *DL*-малата (б) висмута на воздухе: ТГ (1), температура (2), ДСК (3).

290 (а) и 310 °С (б) (см. рис. 3, кривые 3), связанным, по данным масс-спектрометрии, с выделением воды и СО2 в результате разложения малат-ионов. Последующие незначительные экзоэффекты при ~375 °C связаны с переходом тетрагональной модификации β-Ві₂О₃ в моноклинную α-Ві₂О₃. Потеря массы на первой стадии разложения L(-)-малата висмута в результате удаления воды составляет 5.0 % (рассчитано 5.03 %) (см. рис. 3, а, кривая 1), что соответствует удалению одной молекулы воды, согласно установленному составу BiC₄H₃O₆ · H₂O. Для DL-малата висмута потеря массы на первой стадии меньше и составляет 2.50 % (рассчитано 2.58 %), что указывает на удаление в два раза меньшего количества молекул воды и соответствует предлагаемому составу $BiC_4H_3O_6\cdot 0.5H_2O$. Общая потеря массы составляет 35.0 % (рассчитано 35.1 %) для L(-)- и 33.5 % (рассчитано 33.2 %) для DL-малата висмута, что соответствует образованию оксида висмута состава Ві₂О₃. Таким образом, данные термического анализа указывают на возможность сушки малатов висмута при температурах 60-70 °C без изменения составов соединений.

По результатам рентгеноструктурного анализа (PCA) [7], в структуре L(-)-малата висмута состава BiC₄H₃O₆ · H₂O висмут хелатирован четырьмя трижды депротонированными остатками яблочной кислоты различным образом, образуя пятичленное, шестичленное и два четырехчленных кольца. В координационную сферу с общим координационным числом 9 включен также атом кислорода кристаллизационной молекулы воды. Данные ИКи КР-спектроскопии согласуются с данными РСА. На рис. 4 приведены ИК-спектры полученных висмутовых солей в сравнении с соответствующими яблочными кислотами. Основные характеристические полосы колебаний для яблочных кислот, исчезающих затем в ИК- и КР-спектрах их висмутовых солей, приведены в табл. 1 [11, 12]. Наблюдаемые изменения в спектрах солей указывают на наличие трижды депротонированных остатков яблочных кислот и на связывание висмутсодержащего катиона со всеми функциональными группами яблочной кислоты. Данные выводы также находят подтверждение в появлении характеристических для солей полос в ИК-спектрах. Так, в ИК-спектрах L-малата висмута (см. рис. 4, *a*, кривая 2) появляются полосы асимметричных $v_{as}(COO^-)$ валентных колебаний карбоксилатных группировок с максимумом при 1539 и 1549 см⁻¹ и симметричных $v_s(COO^-)$ валентных колебаний карбоксилатных группировок при 1400 и 1413 см⁻¹, что свидетельствует о замещении протонов в карбоксильной группе карбоновой кислоты на Ві-содержащий катион. В спектрах *DL*-малатов висмута (см. рис. 4 б, кривая 2) валентным колебаниям карбоксилатных группировок $v_{as}(COO^-)$ и $v_s(COO^-)$ соответствуют полосы с волновыми числами 1583, 1526 см⁻¹ и 1425, 1381 см⁻¹ соответственно. Деформа-

Рис. 4. ИК-спектры поглощения яблочных кислот (1) и их висмутовых солей (2) при добавлении в азотнокислые растворы *L*(–)-яблочной (*a*) и *DL*-яблочной (б) кислот.

ционные колебания карбоксилатных группировок проявляются в виде полос средней интенсивности при 812 (см. рис. 4, а, кривая 2) и 811 см⁻¹ (см. рис. 4, б, кривая 2) [13]. Кроме того, наблюдаются валентные колебания связи Ві-О в виде полосы средней интенсивности с двумя максимумами при 511 и 496 см⁻¹ (см. рис. 4, *a*, кривая 2) и полосы при 509 см⁻¹ (см. рис. 4, б, кривая 2). На наличие молекул воды в исследуемых соединениях указывают широкие полосы средней интенсивности валентных колебаний связей v(O-H) воды в ИКспектрах солей с максимумами при ~3400 см⁻¹, деформационным колебаниям молекул воды соответствуют слабые полосы при 1668 (см. рис. 4, *a*, кривая 2) и 1725 см⁻¹ (см. рис. 4, б, кривая 2) [13]. Аналогичные изменения наблюдаются в КР-спектрах полученных солей.

Электронно-микроскопические снимки свидетельствуют о том, что образцы L-малата висмута, полученные при осаждении висмута (III) из азотнокислых растворов при 60 °С добавлением L(-)-яблочной кислоты при концентрации свободной кислоты в растворе, равной 0.55 моль/л (без добавления в систему едкого натра), представляет собой агрегаты размером 30-50 мкм, которые состоят из кристаллов размером 3-5 мкм (рис. 5, а). Образцы L-малата висмута, полученные при температуре процесса 60 °С и кислотности раствора 0.32 моль/л (при нейтрализации яблочной кислоты едким натром до средней натриевой соли), представляют собой мелкие кубические кристаллы размером 1-2 мкм (см. рис. 5, б). При высушивании на воздухе образцы L-малата висмута представляют собой порошки белого цвета, тогда как при высушивании образцов DL-малатов висмута образуется стеклоподобное вещество белого цвета, при измельчении которого, в зависимости от степени физического воздействия, образуются кристаллы неправильной формы и различной морфологии (см. рис. 5, в) или порошок. При этом концентрация свободной кислоты в растворе не влияет на морфологию продукта. Кроме того, данные химического анализа показали, что образцы L-малата висмута, полученные без подщелачивания раствора, а также образцы DL-малатов висмута, полученные при любой кислотности раствора, содержат ~0.4 % азота, что в пере-

ТАБЛИЦА	1
---------	---

Характеристические полосы колебаний в ИК- и КР-спектрах яблочных кислот

L(-)-яблочная кислота		DL-яблочная кислота		Отнесение полос
ИК	КР	ИК	КР	
3536 сл.	3540 сл.	3490 сл. пл.	3495 оч. сл.	v(OH) _{CHOH}
3392 сл.	3393 сл.	3447 ср.	3446 сл.	
3070 ш. сл.	3100 сл.	3015 ш. пл.		v(OH) _{COOH} , включенные в водородные связи
2668 сл.		2667 сл.		Димеры, связанные водородными связями
2600 - 2500				
1732 оч. с.	Неактивна	1739 c.	Неактивна	v(C=O) димеров карбоксильных групп
	в КР	1716 c.	в КР	вне плоскости [12]
		1700 c.		
		1689 оч. с.		
Неактивна	1655 c.	Неактивна	1679 c.	v(C=O) димеров карбоксильных групп
в ИК		в ИК	1636 c.	в плоскости [12]
1440 пл.	1444 ср.	1443 cp.	1451 cp.	Составные колебания v(C-O) + δ (OH) _{COOH}
1291 ср.	1292 пл.	1289 ш. с.	1298 сл.	$\delta(OH) + \nu(C-O)_{COOH}$
1278 сл.	1282 пл.	1277 пл.	1280 сл.	$\delta_\tau(CH_2),\ \delta(OH),\ \nu(C{-}O)$
1269 ср.	1269 сл.	1267 пл.	1263 сл.	$\delta(CH)_{CHOH}$
1115 ср.	1119 сл.	1103 с.	1100 ср.	$\delta_s(CH_2), \nu(C=O), \delta(OH)$
1098 ср.	1100 ср.			
956 ср. пл.	960 cp.	968 cp.	967 c.	$\nu(C-C), \delta_{\gamma}(C-O)$
	969 ср. пл.			

Примечание. V – валентное колебание; δ – плоское деформационное колебание; δ_{τ} – крутильное колебание; δ_{s} – ножничное колебание; δ_{γ} – неплоское деформационное колебание (торсионное); с. – сильная; оч.с. – очень сильная; ср. – средняя; сл. – слабая; пл. – плечо; ш. – широкая.

счете на содержание нитрат-ионов составляет примерно 2 %. Это свидетельствует о соосаждении висмута в виде оксогидроксонитрата или захвате примеси нитрат-ионов из растворов, что связано с особенностями морфологии получаемых продуктов. Проведенные исследования показали, что образцы L-малата висмута, полученные при температуре 60 °С и подщелачивании раствора, однородные по распределению частиц по размерам. Благодаря этому не требуется дополнительных затрат на измельчение образца до однородного состояния при использовании его в качестве лекарственной субстанции. Кроме того, согласно данным химического анализа, содержание нитрат-ионов в данных образцах не превышает 0.01 %. Таким образом, учитывая, что в живых организмах яблочная кислота присутствует именно в L(-)-форме, а осаждаемые из азотнокислых растворов образцы L-малата висмута морфологически однородны и лучше соответствуют требованиям чистоты для лекарственных веществ, то именно они наиболее перспективны в качестве субстанции для изготовления антибактериальных препаратов висмута по сравнению с DLмалатами висмута. С учетом вышесказанного, мелкокристаллические порошки L-малата висмута следует получать осаждением из азотнокислых растворов висмута путем добавления раствора средней соли малата натрия при температуре процесса (60 ± 10) °C.

Ранее мы предложили экологически безопасный способ получения трибензоата висмута [14], при котором для приготовления азотнокислых растворов висмута используется оксид висмута, предварительно полученный при окислении металлического висмута кислородом воздуха. Приготовленный таким способом [14] азотнокислый раствор висмута (420 г/л

30 мкм

Рис. 5. Микрофотографии *L*-малата (*a*, б) и *DL*-малата (*в*) висмута, полученных осаждением из азотнокислых растворов при температуре процесса 23 (а, в) и 60 °С (б) с добавлением яблочной кислоты (а, в) и ее натриевой соли (б).

висмута, 62 г/л свободной азотной кислоты) добавляли к раствору среднего малата натрия (раствор готовили путем нейтрализации L(-)-яблочной кислоты раствором едкого натра, молярное отношение малат-ионов к висмуту n = 1.1). Смесь нагревали до 60 °С, перемешивали в течение 1 ч и отстаивали. Маточный раствор отделяли декантацией, осадок дважды промывали дистиллированной водой. Продукт сушили при температуре 70 °С в течение 6 ч. Полученный L-малат висмута (III) имел следующий состав, мас. %: Ві 36.51, Pb $5.0 \cdot 10^{-4}$, Cu $2.0 \cdot 10^{-6}$, Ag $3.0 \cdot 10^{-6}$, Fe $1.0 \cdot 10^{-4}$, Zn $3.0 \cdot 10^{-5}$, Cd $6.0 \cdot 10^{-6}$. Выход висмута в конечный продукт составил 94.8 %.

ЗАКЛЮЧЕНИЕ

Таким образом, из азотнокислых растворов при молярном отношении малат-ионов к висмуту в растворе n = 0.25 - 3.0 и температуре 23-60 °С в случае добавления L(-)-яблочной кислоты висмут осаждается в виде моногидрата малата висмута состава BiC₄H₃O₅ · H₂O известной кристаллической структуры, а при добавлении DL-яблочной кислоты – в виде средней соли состава $BiC_4H_3O_5 \cdot 0.5H_2O$. Показано, что малаты висмута целесообразно получать путем предварительного окисления металлического висмута кислородом воздуха, растворением полученного оксида висмута в азотной кислоте, добавлением полученного азотнокислого раствора висмута к раствору среднего малата натрия при молярном отношении малат-ионов к висмуту, равному 1.0-1.2, и температуре процесса (60±10) °С. Преимущество предлагаемого способа заключается в том, что L-малат висмута получают непосредственно из азотнокислых растворов производства его соединений, минуя стадию использования в качестве прекурсора дорогостоящего среднего нитрата висмута. Данный способ экологически безопасный, так как на стадии приготовления азотнокислых растворов удается избежать выделения в атмосферу токсичных оксидов азота.

СПИСОК ЛИТЕРАТУРЫ

- 1 Тимакова Е. В., Логутенко О. А., Евсеенко В. И., Михайлова А. С., Юхин Ю. М. // Химия уст. разв. 2015. T. 23, № 1. C. 379-387.
- 2 Van der Sluis P., Kroon J. // Acta Cryst. 1989. C45. P. 1406-1408.

- 3 Van Loock J. F. J., Van Havere W., Lenstra A. T. H. // Bull. Soc. Chim. Belg. 1981. Vol. 90. P. 161–166.
- 4 Sluis P. van der, Kroon J. // Acta Cryst. 1985. C41. P. 956–959.
- 5 Химическая энциклопедия / Редкол.: Н.С. Зефиров (гл. ред.), Н. Н. Кулов и др. М.: Большая Российская энциклопедия, 1998. Т. 5. 783 с.
- 6 Briand G.G., Burford N. // Chem. Rev. 1999. Vol. 99. P. 2601–2657.
- 7 Herrmann W. A., Herdtweck E., Scherer W., Kiprof P., Pajdla L. // Chem. Ber. 1993. Vol. 126. P. 51–56.
- 8 Коростылев П. П. Фотометрический и комплексонометрический анализ в металлургии: Справ. / под ред. А. И. Бусева. М.: Металлургия, 1984. 272 с.

- 9 Поляк Э. А., Мусихин Р. Н., Родионова Л. А. // Журн. аналит. химии. 1970. Т. 25, № 12. С. 2447–2450.
- 10 Юхин Ю. М., Михайлов Ю. И. Химия висмутовых соединений и материалов. Новосибирск: Изд-во СО РАН, 2001. 360 с.
- 11 Baranska H., Kuduk-Jaworska J., Szostak R., Romaniewska A. // J. Raman Spectroscopy. 2003. Vol. 34. P. 68–76.
- 12 Max J.-J., Chapados C. // J. Phys. Chem. 2004. Vol. 108. P. 3324–3337.
- 13 Kolandaivel P., Selvasekarapandian S. // Cryst. Res. Technol. 1993. Vol. 28, No. 5. P. 665–670.
- 14 Тимакова Е.В., Удалова Т.А., Юхин Ю. М. // Химия уст. разв. 2010. Т. 18, № 1. С. 79–86.