УДК 534.833:620.178.3

ИДЕНТИФИКАЦИЯ ХАРАКТЕРИСТИК УПРУГОСТИ И ДЕМПФИРОВАНИЯ УГЛЕПЛАСТИКА НА ОСНОВЕ ИССЛЕДОВАНИЯ ЗАТУХАЮЩИХ ИЗГИБНЫХ КОЛЕБАНИЙ ТЕСТ-ОБРАЗЦОВ

В. Н. Паймушин*,**, В. А. Фирсов**, И. Гюнал**, В. М. Шишкин***

* Казанский (Приволжский) федеральный университет, 420008 Казань, Россия

** Казанский национальный исследовательский технический университет им. А. Н. Туполева, 420111 Казань, Россия

*** Вятский государственный университет, 610000 Киров, Россия E-mails: vpajmushin@mail.ru, vafirsov_49@mail.ru, igyunal@kai.ru, tism1@rambler.ru

Предложен теоретико-экспериментальный метод определения характеристик упругости и демпфирования материалов, основанный на анализе виброграмм затухающих изгибных колебаний тест-образцов с различной структурой. Показано, что при растяжениисжатии и сдвиге углепластика, армированного углеродной тканью Porcher 3692, с полимерным связующим ЭДТ-69НМ по мере увеличения частоты его деформирования в диапазоне 0 ÷ 120 Гц динамический модуль упругости существенно уменьшается. Путем минимизации невязки между экспериментальными и расчетными параметрами внутреннего демпфирования соответствующих тест-образцов определены амплитудные зависимости логарифмических декрементов колебаний указанного углепластика при растяжении-сжатии и сдвиге.

Ключевые слова: теоретико-экспериментальный метод, тест-образец, внутреннее демпфирование, аэродинамическое демпфирование, целевая функция.

DOI: 10.15372/PMTF20160417

Введение. Как известно, прочностные, жесткостные и демпфирующие свойства слоистых волокнистых композитных материалов с одинаковыми коэффициентами армирования и одинаковыми составляющими слоев могут существенно различаться, что приводит к необходимости идентификации данных свойств по результатам механических испытаний специально изготовленных тест-образцов. В настоящее время для экспериментального определения демпфирующих свойств материалов в диапазоне частот 50 ÷ 5000 Гц используется международный стандарт ASTM E-756 [1], в соответствии с которым акустическим методом в резонансном режиме исследуется динамическое поведение консольно закрепленных тест-образцов с различной структурой. Однако указанный стандарт имеет ряд ограничений, значительно сужающих область его применения: 1) невозможность определения демпфирующих свойств материалов в диапазоне частот 0÷50 Гц, соответствующем реальным условиям эксплуатации большинства конструкций; 2) невозможность установления зависимости демпфирующей способности материалов от амплитуды деформаций, так как

Работа выполнена при финансовой поддержке Российского научного фонда (код проекта 14-19-00667).

[©] Паймушин В. Н., Фирсов В. А., Гюнал И., Шишкин В. М., 2016

Рис. 1. Схема экспериментальной установки:

1 — основание, 2 — стойка для крепления консоли, 3 — консоль, 4 — захват, 5 — тест-образец, 6 — подвижная платформа для крепления датчика перемещений, 7 — лазерный датчик перемещений

стандарт основан на измерениях и обработке значений амплитуды давления акустических волн, излучаемых тест-образцами при их колебаниях в резонансных режимах; 3) неучет демпфирования воздушной среды при колебаниях тест-образцов, что может привести к возникновению существенных погрешностей при определении демпфирующих свойств как материала, так и конструкции в целом [2].

Для определения упругих и демпфирующих свойств различных материалов в низкочастотном диапазоне динамических деформаций предложен теоретико-экспериментальный метод [2], в котором используется известная методика непосредственной обработки экспериментальных виброграмм изгибных затухающих колебаний консольно закрепленных тест-образцов (см., например, [3]). Разработан также алгоритм аппроксимации экспериментальных данных и определения частоты и логарифмического декремента колебаний в зависимости от амплитуды колебаний с точностью, достаточной для измерения амплитудных и частотных характеристик даже при амплитуде порядка 10⁻⁴ м [2].

1. Экспериментальная установка для исследования изгибных затухающих колебаний тест-образцов. Для определения динамических характеристик упругости в диапазоне малых частот и амплитудной зависимости демпфирующих свойств материалов необходимо использовать тест-образцы значительной длины. С целью исключения статической составляющей прогиба динамические испытания таких образцов целесообразно осуществлять при их вертикальном расположении. Для реализации данной возможности проведена модернизация разработанной ранее экспериментальной установки [2], схема которой представлена на рис. 1. Установка состоит из основания и стойки, жестко соединенных между собой. На стойке неподвижно закреплена консоль с помощью захвата на конце. Защемление тест-образца осуществляется с помощью разнесенных жестких планок, соединенных с консолью болтовыми соединениями и исключающих поворот тест-образца в сечении заделки. На стойке установлена подвижная платформа для крепления лазерного датчика перемещений, которая может перемещаться вдоль стойки для измерения амплитуды колебаний конца тест-образца при изменении длины его колеблющейся части (стрелы вылета). В экспериментах используется триангуляционный лазерный датчик фирмы RIFTEK (RF603-X/100), обеспечивающий измерение амплитуды колебаний с точностью до 0,01 мм. Разработанное математическое обеспечение позволяет осуществлять до 2000

замеров прогибов в секунду, что обеспечивает высокую точность описания экспериментальных виброграмм затухающих колебаний исследуемых тест-образцов.

2. Идентификация упругих свойств углепластика. Наиболее достоверную информацию о характеристиках упругости материала можно получить с использованием динамического способа, основанного на измерении циклической частоты f затухающих колебаний тест-образцов и сравнении ее с расчетной частотой идеально упругого образца. Исследованы затухающие изгибные колебания серии тест-образцов, состоящих из шести слоев углеткани Porcher 3692 (связующее — ЭДТ-69НМ). Упругие свойства слоя в направлениях под углами, равными 0 и 90°, одинаковы и определяются соответственно модулями упругости $E_1 = E_2 = E$. Для определения величины E использовались вертикально расположенные тест-образцы шириной b = 15,5 мм и толщиной h = 1,32 мм с углами укладки слоев 0° относительно их продольной оси. Длина L колеблющейся части тест-образцов изменялась в диапазоне 100 ÷ 450 мм, что соответствует диапазону измеренных частот $5,9 \div 112,5$ Гц.

Следует отметить, что при вертикальном расположении тест-образца на частоты собственных колебаний оказывает влияние сила тяжести, зависящая от длины образца. Для учета этого влияния получено решение задачи о свободных колебаниях вертикального идеально упругого консольного стержня с учетом силы тяжести

$$\rho h \frac{\partial^2 w}{\partial t^2} + \frac{Eh^3}{12} \frac{\partial^4 w}{\partial x^4} - \rho g h \frac{\partial}{\partial x} \left((L-x) \frac{\partial w}{\partial x} \right) = 0$$
(2.1)

с краевыми условиями

$$x = 0$$
: $w = \frac{\partial w}{\partial x} = 0$, $x = L$: $\frac{\partial^2 w}{\partial x^2} = \frac{\partial^3 w}{\partial x^3} = 0$,

где t — время; ρ — плотность материала; h, L — толщина и длина стержня соответственно; E — модуль упругости; g — ускорение свободного падения. С использованием приближенного решения уравнения (2.1) методом Бубнова — Галеркина можно построить формулу для учета влияния силы тяжести на частоту основной моды колебаний:

$$f/f_0 = \sqrt{1,008 + 0,126s}$$
 (2.2)

Здесь f, f_0 — частота данной моды с учетом и без учета силы тяжести соответственно; $s = 12\rho g L^3/(Eh^2)$. Частота f_0 определяется из решения уравнения (2.1) при g = 0:

$$f_0 = \frac{3,516}{2\pi} \frac{h}{L^2} \sqrt{\frac{E}{12\rho}}.$$
 (2.3)

Из выражений (2.2), (2.3) следует формула для идентификации динамического модуля упругости материала по экспериментально полученной частоте колебаний f вертикально расположенного тест-образца:

$$E_d = \left(38,0164f^2 - 1,5\frac{g}{L}\right)\frac{\rho L^4}{h^2}.$$
(2.4)

Вычисленные по формуле (2.4) значения E_d для углепластика имеют некоторый разброс. Однако при этом наблюдается уменьшение значений E_d по мере увеличения частоты f, которое можно охарактеризовать следующей аппроксимацией:

$$E_d = 3,11 \cdot 10^3 \,\mathrm{e}^{-2,34 \cdot 10^{-2}f} + 3,77 \cdot 10^4 \,\mathrm{e}^{-3,56 \cdot 10^{-4}f} \,. \tag{2.5}$$

На рис. 2 приведены найденные по формуле (2.4) значения динамического модуля упругости E_d углепластика при частотах $f = 5,9 \div 112,5$ Гц и аппроксимационная зависимость (2.5), в соответствии с которой в отмеченном диапазоне частот f значения динамического модуля упругости E_d углепластика уменьшаются на 9,64 %.

Рис. 2. Зависимость динамического модуля упругости от частоты колебаний: точки — расчет по формуле (2.4), линия — аппроксимационная зависимость (2.5)

Для определения динамического модуля упругости исследуемого углепластика при сдвиге использовались шестислойные тест-образцы с углами укладки слоев 45° относительно продольной оси тест-образца шириной b = 15,5 мм и толщиной h = 1,32 мм. Длина L рабочей части тест-образцов изменялась в диапазоне $100 \div 500$ мм, что соответствует диапазону измеренных частот $2,9 \div 66,4$ Гц. Предварительно по измеренным частотам колебаний f с помощью формулы (2.4) определялись динамические модули упругости $E_{x,d}$ пакета слоев вдоль продольной оси тест-образцов. Экспериментально полученные значения $E_{x,d}$ можно аппроксимировать выражением

$$E_{x,d} = 2,15 \cdot 10^3 \,\mathrm{e}^{-1,60 \cdot 10^{-2}f} + 1,21 \cdot 10^4 \,\mathrm{e}^{-2,43 \cdot 10^{-4}f} \,. \tag{2.6}$$

Для вычисления модуля упругости E_x пакета симметрично уложенных композитных слоев с помощью элементов D_{11} , D_{12} , D_{22} матрицы жесткости D данного пакета можно использовать формулу [4]

$$E_x = D_{11} - D_{12}^2 / D_{22}.$$

Матрица D определяется выражением

$$D = \frac{1}{h} \sum_{k=1}^{l} H_k^{\mathrm{T}} D_s H_k h_k.$$

Здесь h_k — толщина слоя k; H_k — матрица, зависящая от угла укладки φ_k данного слоя; D_s — матрица жесткости в системе координат, связанной с осями ортотропии слоя:

$$H_{k} = \begin{bmatrix} \cos^{2} \varphi_{k} & \sin^{2} \varphi_{k} & 0.5 \sin 2\varphi_{k} \\ \sin^{2} \varphi_{k} & \cos^{2} \varphi_{k} & -0.5 \sin 2\varphi_{k} \\ -\sin 2\varphi_{k} & \sin 2\varphi_{k} & \cos 2\varphi_{k} \end{bmatrix},$$
$$D_{s} = \begin{bmatrix} E_{1}/(1 - \nu_{12}\nu_{21}) & \nu_{21}E_{1}/(1 - \nu_{12}\nu_{21}) & 0 \\ \nu_{12}E_{2}/(1 - \nu_{12}\nu_{21}) & E_{2}/(1 - \nu_{12}\nu_{21}) & 0 \\ 0 & 0 & G_{12} \end{bmatrix}$$

Коэффициенты Пуассона ν_{12} и ν_{21} связаны зависимостью $\nu_{21}E_1 = \nu_{12}E_2$.

При углах укладки $\varphi_k = \pm 45^\circ$ элементы D_{11}, D_{12}, D_{22} матрицы D имеют вид

$$D_{11} = D_{22} = a + G_{12}, \qquad D_{12} = a - G_{12},$$

Рис. 3. Зависимость динамического модуля сдвига от частоты колебаний

где

$$a = (E_1 + E_2 + 2\nu_{12}E_2)/[4(1 - \nu_{12}\nu_{21})].$$
(2.7)

В этом случае получаем выражение для E_x в виде

$$E_x = 4aG_{12}/(a + G_{12}),$$

откуда следует формула для вычисления модуля сдвига композитного слоя

$$G_{12} = aE_x/(4a - E_x).$$

Аналогичную формулу можно записать для динамического модуля сдвига G_{12.d}:

$$G_{12,d} = aE_{x,d}/(4a - E_{x,d}). (2.8)$$

Величина *а* для исследуемого углепластика определяется выражением (2.7) при $E_1 = E_2 = E_d$ и $\nu_{21} = \nu_{12} = 0.163$. Таким образом, с помощью аппроксимаций (2.5), (2.6), построенных по экспериментально определенным частотам и динамическим модулям E_d , $E_{x,d}$ исследуемого углепластика, получена формула (2.8), представляющая собой аналитическую зависимость $G_{12,d}(f)$. При этом, как и в случае зависимости $E_d(f)$, наблюдается значительное уменьшение получаемого динамического модуля сдвига $G_{12,d}$ при увеличении частоты колебаний f тест-образца (рис. 3).

3. Идентификация демпфирующих свойств углепластика. Демпфирующие свойства исследуемого углепластика при деформировании его под углами 0 и 90° одинаковы и определяются логарифмическим декрементом колебаний (ЛДК) δ , зависящим от амплитуды деформации ε_0 . Для идентификации зависимости $\delta(\varepsilon_0)$ используются тестобразцы с углами укладки слоев, равными 0°. Демпфирующие свойства тест-образца определяются ЛДК δ , зависящим от амплитуды колебаний A его свободного конца. На данную зависимость существенное влияние оказывает внешнее аэродинамическое демпфирование, которое нужно исключать из экспериментально определяемой величины ЛДК при вычислении параметра внутреннего демпфирования тест-образца, необходимого для идентификации зависимости $\delta(\varepsilon_0)$:

$$\delta^*(A) = \delta(A) - \delta_a(A).$$

Аэродинамическую составляющую демпфирования $\delta_a(A)$ можно получить с использованием теоретико-экспериментального метода [5] при исследовании изгибных затухающих колебаний дюралюминиевых тест-образцов, в которых, как известно [6], внутреннее трение

Рис. 4. Зависимость логарифмического декремента колебаний от амплитуды колебаний для тест-образца длиной L = 200 мм:

точки — экспериментальная зависимость, сплошная линия — аппроксимация экспериментальной зависимости степенным полиномом (3.1), штрихпунктирная — аэродинамическая составляющая ЛДК, штриховая — внутреннее демпфирование аппроксимации (3.1)

не зависит от амплитуды колебаний A. На основе этого исследования получена формула для определения составляющей $\delta_a(A)$ тест-образцов, изготовленных из любого материала:

$$\delta_a(A) = \frac{\rho_a}{\rho} \frac{b}{h} \left(\frac{6,140}{\sqrt{\mu}} + \frac{25,928\varkappa^{2,074}}{1+5,534\varkappa^{1,641}} \right), \qquad \mu = \frac{b^2 f}{\nu}, \quad \varkappa = \frac{A}{b}$$

Здесь ρ_a , ρ — плотность воздуха ($\rho_a = 1,29 \text{ кг/м}^3$) и плотность материала соответственно; $\nu = 1,5 \cdot 10^{-5} \text{ м}^2/\text{c}$ — кинематическая вязкость воздуха. Исследуемый углепластик имеет плотность $\rho = 1320 \text{ кг/m}^3$.

Экспериментально ЛДК $\delta(A)$ тест-образцов обычно определяются при различных амплитудах колебаний A_j , что приводит, во-первых, к увеличению времени идентификации зависимости $\delta(\varepsilon_0)$ и необходимости учета всех амплитуд A_j , во-вторых, к снижению точности определения данной зависимости вследствие разброса значений $\delta(A_j)$. Поэтому экспериментальную зависимость $\delta(A)$ необходимо аппроксимировать некоторой функцией. Проведенные численные эксперименты показали, что для этой цели можно использовать степенной полином

$$\delta(A) = c_0 + c_1 \varkappa + c_2 \varkappa^2 + c_3 \varkappa^3 + c_4 \varkappa^4.$$
(3.1)

На рис. 4 приведены экспериментальная зависимость $\delta(A)$ (точки), ее аппроксимация степенным полиномом (3.1) (сплошная линия), аэродинамическая составляющая ЛДК $\delta_a(A)$ (штрихпунктирная линия) и величина внутреннего демпфирования $\delta^*(A)$ (штриховая линия), найденная с использованием аппроксимации (3.1), для тест-образца длиной L = 200 мм. Численные эксперименты показали, что возрастание зависимости $\delta^*(A)$ на начальной стадии и последующее ее убывание характерны для всех использованных тестобразцов в диапазоне длин $L = 100 \div 450$ мм. Поэтому для получения корректной зависимости $\delta(\varepsilon_0)$ целесообразно использовать начальный диапазон значений амплитуды A, соответствующий возрастанию зависимости $\delta^*(A)$.

Для представления зависимости $\delta(\varepsilon_0)$ предлагается использовать степенную функцию

$$\delta(\varepsilon_0) = \alpha \varepsilon_0^{\beta}. \tag{3.2}$$

Идентификация зависимости $\delta(\varepsilon_0)$ состоит в нахождении параметров α и β функции (3.2) по имеющейся зависимости $\delta^*(A)$, так чтобы выполнялось условие

$$F(\alpha, \beta) = \|\boldsymbol{\delta}^* - \boldsymbol{\delta}\| = \min, \qquad (3.3)$$

где $F(\alpha,\beta)$ — целевая функция, неявно зависящая от параметров α и β ; δ^* , δ — векторы, содержащие соответственно экспериментальные и расчетные ЛДК тест-образца при амплитудах колебаний A_j ; $\|\delta^* - \delta\|$ — норма Евклида вектора $\delta^* - \delta$. Для нахождения минимума функции $F(\alpha,\beta)$ следует использовать прямые методы нулевого порядка [7] (симплекс-метод, метод конфигураций Хука — Дживса, метод Розенброка). Более предпочтительным является метод конфигураций Хука — Дживса.

Для определения параметров α и β функции (3.2) данным методом необходимо многократно решать прямую задачу вычисления компонент вектора δ при известных значениях данных параметров. Для решения указанной задачи предлагается использовать метод конечных элементов. Поскольку длина L тест-образца существенно больше его ширины b, можно использовать расчетную модель, составленную из балочных конечных элементов. Затухающие колебания конечно-элементной модели вертикально расположенного тест-образца описываются системой дифференциальных уравнений

$$M\ddot{\boldsymbol{r}} + C\dot{\boldsymbol{r}} + (K + K_a)\boldsymbol{r} = 0 \tag{3.4}$$

с начальными условиями $\mathbf{r}(0) = \mathbf{r}_s$, $\dot{\mathbf{r}}(0) = 0$, где M, C, K, \mathbf{r} — матрица масс, матрица демпфирования, матрица жесткости и вектор узловых перемещений отмеченной модели соответственно; K_g — матрица геометрической жесткости, учитывающая влияние силы тяжести тест-образца на частоту f; \mathbf{r}_s — вектор узловых перемещений \mathbf{r} при начальном отклонении w_s свободного конца тест-образца от положения равновесия. Точка означает дифференцирование по времени t. Матрицы M, K, K_g формируются из соответствующих матриц $M^{(e)}, K^{(e)}, K_g^{(e)}$ конечных элементов [8].

Матрица $C^{(e)}$ зависит от модели неупругого деформирования материала. При одноосном напряженном состоянии простейшая из таких зависимостей, наиболее часто используемая на практике, соответствует известной модели Фойгта — Томпсона — Кельвина [9]

$$\sigma = E\varepsilon + \eta \dot{\varepsilon},\tag{3.5}$$

где σ , ε , $\dot{\varepsilon}$ — нормальное напряжение, относительная деформация и скорость ее изменения во времени t соответственно; E, η — модуль упругости и коэффициент вязкости материала, связанный с логарифмическим декрементом колебаний $\delta(\varepsilon_0)$ зависимостью

$$\eta = E\delta(\varepsilon_0)/(\pi\omega),\tag{3.6}$$

 ω — круговая частота деформирования материала. В случае зависимости упругих свойств материала от частоты ω модуль E необходимо заменить динамическим модулем упругости E_d . С учетом такой замены и зависимости (3.6) модель (3.5) принимает вид

$$\sigma = E_d \varepsilon + E_d \delta(\varepsilon_0) \dot{\varepsilon} / (\pi \omega). \tag{3.7}$$

На основе представления (3.2) и выражения (3.7) построена матрица демпфирования балочного конечного элемента, пропорциональная его матрице жесткости $K^{(e)}$:

$$C^{(e)} = \frac{3\alpha(\chi_0 h/2)^{\beta}}{\pi\omega(\beta+3)} K^{(e)}.$$
(3.8)

Здесь χ_0 — амплитуда кривизны деформированной оси в середине элемента.

Для решения системы (3.4) необходимо использовать шаговые методы интегрирования, пересчитывая матрицы $C^{(e)}$ конечных элементов в каждом цикле колебаний в соответствии с достигнутыми в них значениями χ_0 . Поэтому шаг интегрирования Δt , необходимый для получения данных значений, должен быть достаточно малым (100 ÷ 120 шагов в одном цикле колебаний), а число решений системы (3.4) при поиске параметров α и β зависимости (3.2) прямыми методами может составлять несколько тысяч. Это приводит к неприемлемому времени вычисления и накоплению погрешности счета. Однако измерения амплитуды колебаний A тест-образца проводятся не с момента начального отклонения от положения равновесия w_s , а через определенный промежуток времени, в течение которого заканчивается переход от статической формы изгиба к колебаниям по низшей моде F_1 . Это позволяет перейти от системы (3.4) к уравнению относительно обобщенной координаты $q_1(t)$ данной моды

$$m\ddot{q}_1(t) + c\dot{q}_1(t) + (k + k_g)q_1(t) = 0$$
(3.9)

с начальными условиями

$$q_1(0) = A_{\max}/F_w, \qquad \dot{q}_1(0) = 0.$$

Здесь $m = \mathbf{F}_1^{\mathrm{T}} M \mathbf{F}_1$, $c = \mathbf{F}_1^{\mathrm{T}} C \mathbf{F}_1$, $k = \mathbf{F}_1^{\mathrm{T}} K \mathbf{F}_1$, $k_g = \mathbf{F}_1^{\mathrm{T}} K_g \mathbf{F}_1$ — модальные параметры тест-образца; A_{\max} — максимальная амплитуда на рассматриваемом участке зависимости $\delta^*(A)$; F_w — компонента моды \mathbf{F}_1 , соответствующая прогибу w свободного конца тест-образца.

Уравнение (3.9) можно представить в виде

$$\ddot{q}_1(t) + 2n\dot{q}_1(t) + \omega^2 q_1(t) = 0, \qquad (3.10)$$

где n = c/(2m); $\omega^2 = (k + k_g)/m$. Коэффициент затухания n неявно зависит от параметров α , β зависимости (3.2) через матрицы $C^{(e)}$ демпфирования конечных элементов и должен пересчитываться в каждом цикле колебаний i в соответствии с достигнутой амплитудой колебаний A_i тест-образца. При этом значение данного коэффициента между амплитудами A_i и A_{i+1} можно считать постоянным и равным значению n_i при амплитуде колебаний A_i . Это позволяет использовать известное аналитическое решение для огибающей $A(\tau)$ в текущем цикле колебаний

$$A(\tau) = A_i e^{-n_i \tau} \qquad (0 \leqslant \tau \leqslant T), \tag{3.11}$$

где au — локальное время; T — период колебаний.

Расчетный ЛДК тест-образца при амплитуде A_i связан с коэффициентом n_i известной зависимостью $\delta_i = n_i T$ [10]. Подставляя в эту зависимость $n_i = c_i/(2m), T = 2\pi/\omega$, получаем

$$\delta_i = c_i \pi / (m\omega). \tag{3.12}$$

С помощью выражений (3.11), (3.12) можно построить алгоритм для получения амплитуд колебаний и соответствующих им расчетных ЛДК тест-образца, не используя процедуру шагового интегрирования уравнения (3.10):

$$A_{i+1} = A_i e^{-n_i T}, \qquad \delta_{i+1} = \frac{c_{i+1}\pi}{m\omega}.$$
 (3.13)

Адекватность алгоритма (3.13) подтверждается решением прямой задачи, состоящей в определении зависимости $\delta^*(A)$ при известных параметрах α и β функции (3.2).

Естественно полагать, что демпфирующие характеристики материала, полученные с использованием тест-образцов различной длины, должны иметь некоторый разброс. Поэтому идентификацию зависимости (3.2) необходимо проводить по параметрам внутреннего демпфирования $\delta^*(A)$ нескольких тест-образцов, выполняя осреднение полученных результатов.

Для определения параметров α и β зависимости (3.2) методом конфигураций Хука — Дживса необходимо знать координаты α_0 , β_0 начальной точки. Их можно определить по амплитуде деформации ε_0 в окрестности заделки при амплитуде колебаний A($\varepsilon_0 = 1,758Ah/L^2$), а также по зависимости (3.2) и аппроксимации

$$\delta^*(A) = c(A/b)^d. \tag{3.14}$$

Таблица 1

L, MM	c	d	α	eta	F(lpha,eta)	N
140	0,0216	0,3219	$0,\!1987$	0,3188	0,0000519	27480
160	0,0163	0,3383	0,1888	0,3368	0,0000283	20365
180	0,0147	0,2835	0,1195	$0,\!2817$	$0,\!0000359$	315
200	0,0126	$0,\!2748$	$0,\!1046$	$0,\!2749$	0,0000020	120
220	0,0152	0,3602	0,2617	0,3588	$0,\!0000278$	21930
240	0,0123	0,2602	0,1019	0,2601	0,0000020	110
260	0,0126	0,4293	$0,\!4330$	0,4274	0,0000248	42240

Параметры тест-образцов с углами укладки слоев, равными 0°

В результате получаем $\alpha_0 = c(L^2/(1,758hb))^d$, $\beta_0 = d$. Проведенные численные эксперименты показали, что аппроксимацию (3.14) можно использовать не только для вычисления α_0 , β_0 , но и для идентификации зависимости $\delta(\varepsilon_0)$.

В табл. 1 приведены длины L семи тест-образцов с углами укладки слоев, равными 0°, параметры c и d аппроксимации (3.14) для данных тест-образцов, найденные параметры α и β зависимости (3.2), соответствующие им значения целевой функции $F(\alpha, \beta)$, а также число N исследованных точек в пространстве поиска (α, β) . Все тест-образцы моделировались 20 конечными элементами.

Параметры α и β определялись следующим образом: сначала шаг поиска по каждому параметру составлял 0,001; после достижения минимума целевой функции шаг последовательно уменьшался в 10 раз до получения окончательных значений искомых параметров α и β . По найденным параметрам α и β построена осредненная зависимость $\delta(\varepsilon_0)$ в диапазоне $4,29 \cdot 10^{-5} \leq \varepsilon_0 \leq 6,80 \cdot 10^{-4}$, который включает значения ε_0 для всех семи тест-образцов:

$$\delta(\varepsilon_0) = 0.1810\varepsilon_0^{0.3248}.\tag{3.15}$$

Следует отметить, что значения параметра β в табл. 1 близки к его начальным значениям $\beta_0 = d$ для всех рассмотренных тест-образцов, а параметр α в зависимости $\delta(\varepsilon_0) = \alpha \varepsilon_0^\beta$ всегда больше его начального значения α_0 . Это позволяет рассматривать одномерную задачу, полагая $\beta = \beta_0$ и увеличивая параметр α от начального значения α_0 . Кроме того, из выражения (3.8) следует, что расчетные параметры внутреннего демпфирования тест-образца, а следовательно, и целевая функция (3.3) должны линейно зависеть от параметра α (достоверность данного утверждения подтверждается результатами проведенных численных экспериментов).

Отмеченные особенности позволяют выполнить линейную экстраполяцию по точкам α_0 и α_1 до значения α , соответствующего F = 0:

$$\alpha = \frac{F(\alpha_0)\alpha_1 - F(\alpha_1)\alpha_0}{F(\alpha_0) - F(\alpha_1)}.$$
(3.16)

Учитывая, что α может превышать α_0 весьма несущественно, значение α_1 следует выбирать в интервале $(1,01 \div 1,05)\alpha_0$. На основе (3.16) построена осредненная по тем же семи тест-образцам амплитудная зависимость ЛДК углепластика при растяжении-сжатии в диапазоне $4,3 \cdot 10^{-5} \leq \varepsilon_0 \leq 6.8 \cdot 10^{-4}$:

$$\delta(\varepsilon_0) = 0.1833\varepsilon_0^{0.3263}.$$
 (3.17)

На рис. 5 приведены зависимости $\delta(\varepsilon_0)$, построенные по выражениям (3.15) (сплошная линия) и (3.17) (точки). Видно, что эти зависимости практически совпадают.

Демпфирующие свойства углепластика при сдвиге определяются ЛДК δ_{12} , зависящим от угла сдвига $\gamma_{12,0}$. Для идентификации зависимости $\delta_{12}(\gamma_{12,0})$ используются параметры

Рис. 5. Зависимость логарифмического декремента колебаний от деформации: линия — расчет по формуле (3.15), точки — расчет по формуле (3.17)

внутреннего демпфирования $\delta^*(A)$ тест-образцов с углами укладки слоев, равными 45°. Зависимость $\delta(\varepsilon_0)$ при растяжении-сжатии углепластика считается известной и определяется выражением (3.15). Зависимость $\delta_{12}(\gamma_{12,0})$ представляется в виде степенной функции

$$\delta_{12}(\gamma_{12,0}) = \xi \gamma_{12,0}^{\theta}. \tag{3.18}$$

Модель неупругого динамического деформирования углепластика при сдвиге можно представить в виде, аналогичном (3.7):

$$\tau_{12} = G_{12,d}\gamma_{12} + G_{12,d}\delta_{12}(\gamma_{12,0})\,\dot{\gamma}_{12}/(\pi\omega). \tag{3.19}$$

Для пакета ортогонально-армированных композитных слоев с углами укладки, равными 45°, справедливы преобразования

$$\varepsilon_1 = \varepsilon_2 = \varepsilon = 0,5(1 - \nu_{xy})\varepsilon_x, \qquad \gamma_{12} = (1 + \nu_{xy})\varepsilon_x, \qquad (3.20)$$

где ε_x — относительная деформация пакета в направлении продольной оси тест-образца; ν_{xy} — коэффициент Пуассона (для рассматриваемого углепластика $\nu_{xy} = 0.831$). С помощью моделей деформирования (3.7), (3.19), а также представлений (3.2), (3.18) и преобразований (3.20) можно построить матрицу демпфирования многослойного балочного конечного элемента с углами укладки слоев, равными ±45°:

$$C^{(e)} = 3 \left[\frac{\alpha (1 - \nu_{xy})^{2+\beta}}{2(\beta+3)} \frac{E_d}{E_{x,d}} \left(\frac{\chi_0 h}{4} \right)^{\beta} + \frac{\xi (1 + \nu_{xy})^{2+\theta}}{\theta+3} \frac{G_{12,d}}{E_{x,d}} \left(\frac{\chi_0 h}{2} \right)^{\theta} \right] \frac{K^{(e)}}{\pi \omega}.$$
 (3.21)

Матрица $C^{(e)}$, определяемая выражением (3.21), получена при условии $E_{1,d} = E_{2,d} = E_d$.

Алгоритм поиска параметров ξ и θ зависимости (3.18) остается таким же, как и при определении параметров α , β зависимости (3.2). В качестве координат начальной точки можно выбрать значения $\xi_0 = c$, $\theta_0 = d$. В табл. 2 приведены длины L семи тест-образцов с углами укладки слоев, равными 45°, параметры c и d аппроксимации (3.14) для данных тест-образцов, найденные параметры ξ и θ зависимости (3.18), соответствующие им значения целевой функции $F(\xi, \theta)$, а также число N исследованных точек. Все тест-образцы моделировались 20 конечными элементами. По найденным параметрам ξ и θ построена осредненная зависимость $\delta_{12}(\gamma_{12,0})$ в диапазоне $1,72 \cdot 10^{-4} \leq \gamma_{12,0} \leq 1,73 \cdot 10^{-3}$, который включает значения $\gamma_{12,0}$ для всех семи тест-образцов:

$$\delta_{12}(\gamma_{12,0}) = 0.0985\gamma_{12,0}^{0.1498}.$$
(3.22)

Таблица 2

			1							
L, MM	c	d	ξ	θ	$F(\xi, \theta)$	N				
140	0,0430	0,2035	0,1578	0,2012	0,0000901	15395				
160	0,0334	$0,\!1468$	0,0902	0,1458	0,0000156	320				
180	0,0357	$0,\!1897$	0,1381	0,1872	0,0000852	4415				
200	0,0295	0,1082	0,0627	0,1081	0,0000829	225				
220	0,0279	0,0849	0,0557	0,0848	0,0000662	180				
240	0,0372	0,1636	0,1272	0,1606	0,0001091	9875				
260	0,0281	0,1381	0,0833	0,1380	0,0000454	315				
						•				
δ_{12}										
			-	000						
	0.0	13	-							

Параметры тест-образцов с углами укладки слоев, равными 45°

Рис. 6. Зависимость логарифмического декремента колебаний от угла сдвига: линия — расчет по формуле (3.22), точки — расчет по формуле (3.23)

Из табл. 2 следует, что полученные значения параметра θ зависимости (3.18) при сдвиге несущественно отличаются от его начальных значений $\theta_0 = d$. Это позволяет искать только параметр ξ указанной зависимости при $\theta = d$. Данный факт объясняется тем, что при значении коэффициента Пуассона $\nu_{xy} = 0,831$ отношение первого слагаемого в квадратных скобках в формуле (3.21) ко второму составляет величину порядка $10^{-2} \div 10^{-3}$. Это значит, что параметры внутреннего демпфирования тест-образцов с углами укладки слоев, равными 45°, в основном определяются демпфирующими свойствами углепластика при сдвиге. Кроме того, проведенные численные эксперименты показали, что в этом случае целевая функция F практически линейно зависит от параметра ξ . Это позволяет выполнить линейную экстраполяцию

$$\xi = \frac{F(\xi_0)\xi_1 - F(\xi_1)\xi_0}{F(\xi_0) - F(\xi_1)},$$

на основе которой получается осредненная зависимость

$$\delta_{12}(\gamma_{12,0}) = 0.0996\gamma_{12,0}^{0.1512} \tag{3.23}$$

в диапазоне $1,72 \cdot 10^{-4} \leq \gamma_{12,0} \leq 1,73 \cdot 10^{-3}$.

На рис. 6 представлены зависимости $\delta_{12}(\gamma_{12,0})$, построенные по выражениям (3.22) (сплошная линия) и (3.23) (точки). Видно, что эти зависимости практически совпадают. Из рис. 6 следует, что характеристики демпфирования исследуемого углепластика при сдвиге значительно превышают аналогичные характеристики при его растяжениисжатии (см. рис. 5). Это обусловлено тем, что при малых значениях ЛДК углепластика при растяжении-сжатии параметры внутреннего демпфирования тест-образцов с углами укладки слоев, равными 45°, больше, чем у тест-образцов такой же длины, составленных из слоев с углами укладки, равными 0°.

Заключение. В работе показана возможность идентификации динамических модулей упругости и характеристик демпфирования углепластика при растяжении-сжатии и сдвиге на основе исследования затухающих изгибных колебаний многослойных тест-образцов. Установлено, что при увеличении частоты деформирования в диапазоне, соответствующем частоте колебаний большинства конструкций, указанные модули упругости углепластика значительно уменьшаются. Рассмотрена возможность существенного упрощения идентификации амплитудных зависимостей характеристик демпфирования углепластика и других композиционных материалов за счет выполнения экстраполяции по одному из параметров, определяющих демпфирующие свойства материала.

ЛИТЕРАТУРА

- ASTM E756-04. Standard test method for measuring vibration-damping properties of materials. S. l.: ASTM Intern., 2010.
- 2. Паймушин В. Н., Фирсов В. А., Гюнал И., Егоров А. Г. Теоретикоэкспериментальный метод определения параметров демпфирования на основе исследования затухающих изгибных колебаний тест-образцов. 1. Экспериментальные основы // Механика композит. материалов. 2014. Т. 50, № 2. С. 185–198.
- 3. Пановко Я. Г. Внутреннее трение при колебаниях упругих систем. М.: Физматгиз, 1960.
- Алфутов Н. А. Расчет многослойных пластин и оболочек из композиционных материалов / Н. А. Алфутов, П. А. Зиновьев, Б. Г. Попов. М.: Машиностроение, 1984.
- 5. Егоров А. Г., Камалутдинов А. М., Паймушин В. Н., Фирсов В. А. Теоретикоэкспериментальный метод определения коэффициента аэродинамического сопротивления гармонически колеблющейся пластины // ПМТФ. 2016. Т. 57, № 2. С. 96–104.
- Adams R. D. The damping characteristics of certain steels, cast Irons and other metals // J. Sound Vibrat. 1972. V. 23, N 2. P. 199–216.
- 7. Шуп Т. Решение инженерных задач на ЭВМ. М.: Мир, 1982.
- 8. Клаф Р. Динамика сооружений / Р. Клаф, Дж. Пензиен. М.: Стройиздат, 1979.
- Хильчевский В. В. Рассеяние энергии при колебаниях тонкостенных элементов конструкций / В. В. Хильчевский, В. Г. Дубенец. Киев: Вища шк., 1977.
- 10. Филиппов А. П. Колебания механических систем. Киев: Наук. думка, 1965.

Поступила в редакцию 26/V 2015 г.