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Abstract—This is an overview of existing methods for joint analysis and inversion of geophysical data, including conventional tech­
niques and alternative options based on simultaneous and sequential inversion of different data sets and posterior analysis of separate inver­
sion results. Advantages and disadvantages of different methods are compared using examples of typical cases, and the respective practical 
recommendations are provided for each method.
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IntroDuctIon 

Geophysical data have implications for lithology, petro­
logy, or reservoir properties (saturation, porosity, permea­
bility) of rocks, etc. These super-parameters are anyhow re­
lated with rock physical properties (conductivity, density, 
temperature, etc.) that can be determined explicitly or im­
plicitly from measurable geophysical data. The interface be­
tween the model spaces of different levels is ensured with 
petrophysical and geostatistical data between the first-level 
model space and the data by forward modeling using the 
respective measured values (Fig. 1).

Independent models for specific data sets are obtained by 
different algorithms with reference to a priori geological 
and geophysical data. This kind of modeling often faces 
problems associated with 

– low resolution of measured data with respect to target 
parameters;

– low accuracy and resolution of the models resulting from 
shortage and/or poor quality of measurements and priors; 

– non­uniqueness and instability of inversion;
– poor efficiency of existing inversion algorithms (espe­

cially, in 3D/4D problems); 
– lack of mechanisms for quantifying the prior and peer 

inspection results. 
These problems are anyhow resolvable in inversion of 

some specific types of data. Yet, geologists or geophysicists 
often find the results unsatisfactory and try to reduce the un­
certainty and thus improve the inversion quality by integrat­
ing data from different methods (Bedrosian, 2007; Spichak, 
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2009, 2010; Integrated…, 2016; Fullea, 2017). Researches 
try to obtain consistent and robust models of geological/geo­
physical systems by combining independent data sets, which 
often differ in physics, scale, resolution, quality, etc. This 
integration may be difficult as well, because the data sets

– may be measured in different areas and/or to different 
resolution; 

– may differ in resolution with respect to the target pa­
rameters; 

– may lead to rock properties/parameters that poorly cor­
relate with one another, etc. 

If these risks are neglected, joint inversion may deterio­
rate the results instead of improving them. However, re­
searchers may even remain unaware of this loss in the real 
practice (rather than in a modeled situation), in the absence 
of objective criteria to judge whether the quality of joint in­
version is better than inversion of independent data sets. 
Therefore, a critical review of approaches to data integration 
is of both academic and practical interest. 

This overview offers a preliminary classification and 
comparative analysis of parallel and sequential inversion of 
geophysical data and posterior analysis of independent in­
version results. 

JoInt InVerSIon

The idea of joint inversion consists in modeling the be­
havior of a parameter using all available data in order to re­
duce the ambiguity and improve the accuracy. Different 
models are built with the respective data set each and cor­
related with reference to a priori data (priors) introduced by 
the user during the inversion. The approaches are either de­
terministic or stochastic according to the mathematical ap­
paratus. 
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DeterMInIStIc ApproAch 

The simplest way of joint inversion of all available data 
is optimization: designing an objective function that, once 
minimized, will provide a model that fits the best the ob­
served data. The user can vary the influence of single data 
sets on the final result (level I parameters) by changing the 
respective weight coefficients (regularization term) in the 
functional (Lelievre et al., 2012). The approach can be im­
plemented using modified Newton-Gauss iteration (Habashy 
and Abubakar, 2004), e.g., in petrophysical inversion 
(Abubakar et al., 2012; Gao et al., 2012). In the latter case, 
the parameters of level II (porosity and water content) are 
originally included into the minimized function assuming 
that they are related with level I parameters (conductivity, 
seismic velocity, and density) by empirical relationships. 
Joint inversion of electromagnetic and seismic data allows 
level II models of porosity and water saturation and leads to 
more accurate models than the separate inversion of single 
data sets (Abubakar et al., 2012; Gao et al., 2012). On the 
other hand, the exact effect of inversion for level II param­
eters compared with the two­stage procedure (level I and 
then II) remains unclear. The two­stage modeling does not 
require postulating empirical relationships between the pa­
rameters of different levels, which may distort the results. 

In some cases, there are reasons to expect that the level I 
and II models are structurally similar and may fit a common 

geometrical model (Golizdra, 1978). Then, the curvature or 
gradients of physical properties characterize the geometrical 
features of the model and become prior linkage between two 
different data sets which is formalized and used compel­
lingly in the inversion.

The structure operator of the model S can be found as 
(Haber and Oldenburg, 1997)
0, |∇2 m|< τ1

S (m) = P5 (|∇2 m|), τ1<|∇2 m|< τ2  (1) 

1, τ2<|∇2 m| 

where m is the model parameter vector and P5 is the fifth 
degree polynomial chosen such that S were a discontinuous 
twice differentiable function. 

As follows from (1), the structural operator is always 
positive and normalized to the (0, 1) interval. Thereby (i) 
both positive and negative changes are taken into account in 
the same way and (ii) the operator S is invariant with respect 
to the scale of models. The application of such an operator 
is illustrated in Fig. 2 by two examples for τ1 = τ2 = 10–5.

Correspondingly, the structural similarity requirement 
for two models is reduced to minimization of their differ­
ence, or the penalty function 

2
1 1 2

1
( ) ( ) min

N
i i

i
S m S m

=
 ϕ = − ⇒ ∑   

 
(2)

Fig. 1. Spaces of models and data in joint inversion of geophysical data, modified after (Bosch, 1999). 
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where mi
1 and mi

2 are the values of model parameters in the 
i­th grid cell and N is the total number of cells, provided that 
the data are properly constrained. 

The structural inversion has a pitfall that the arbitrary 
choice of the τ1 and τ2 thresholds of “large difference” may 
influence the solution: e.g., too small τ1 and large τ2 would 
mean that the structure covers the entire modeling domain. 
Another drawback is that the joint inversion neglects the di­
rection of structure changes.

The problems were overcome by introducing a dimen­
sionless function of cross­gradients (Gallardo and Meju, 
2003) which, unlike the operator S (1), defines the geometri­
cal similarity of two models as distribution of gradients 
rather than the values of parameters:

2
2 1 2

1
min

N
i i

i
m m

=
 ϕ = ∇ ×∇ ⇒ ∑   

 
(3)

 

To put it differently, the inversion uses structure con­
straints according to the parameter gradients. Note that zero 

vector dot product in (3) may mean that the gradients are 
either perfectly collinear or zero at least in one model.

The approach of geometrical similarity between two 
models (Gallardo et al., 2005) is illustrated in Fig. 3, where 
the vectors in contour line maps (Fig. 3a, b) are parameter 
gradients in the respective model zones. Structural similari­
ty is almost absent for vectors (1) and (2) which have large 
magnitudes but are directed almost orthogonally to each 
other but is present in the case of vectors (3) having oppo­
site directions. The contour line map (Fig. 3c) shows that 
the highest positive or negative values of cross­gradients 
calculated for the models p and q fall within the zones of 
least structural semblance. 

Gallardo and Meju (2007) applied the approach to joint 
inversion of magnetotelluric (MT) and seismic traveltime 
data (Fig. 4). The inversion was performed for synthetic elec­
tromagnetic and seismic data (Fig. 4a) that represent typical 
geological features, such as a sedimentary basin, undifferen­
tiated crust, upper mantle, an isolated reservoir, a steep con­

Fig. 2. The result of applying the structural operator: a, Models; b, images (atτ1 = τ2 = 10–5) (Haber and Oldenburg, 1997).

Fig. 3. Illustration of the concept of geometrical similarity between two images using schematic p (a) and q (b) images. The coincident vectors 
represent the gradients of the properties in corresponding zones. The contour map in panel c shows calculated values of the cross­gradient function 
for the p and q images (Gallardo et al., 2005).
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tact fault, and a basement arch. Joint inversion of two data 
sets (Fig. 4e, f), with added noise, provided better depth reso­
lution than the separate inversion and better resolved the fea­
tures beneath the isolated reservoir (Fig. 4c, d). 

This inversion method has an ample literature (Haber and 
Oldenburg, 1997; Pinheiro et al., 1997; Kaipio et al., 1999; 
Gallardo and Meju, 2003, 2007; 2011; Gallardo et al., 2005; 
Saunders et al., 2005; Fregoso and Gallardo, 2009; Hu et al., 
2009; Doetsch et al., 2010; Infante et al., 2010; Moorkamp 
et al., 2011; Hamdan et al., 2012; Lochbuhler et al., 2013), 
but its numerical implementation is often unstable and re­
quires regularization. For this reason, Galardo et al. (2005) 
suggested applying joint inversion for simple structures 
only, which impairs the practical value of the method. 

The regularization is run with a second­order tensor (co­
variance matrix), and the algorithm is implemented by qua­
dratic programming which allows for simultaneous varia­
tions in the properties of two models (structural semblance); 
for this, Lagrangians are used without limiting the values of 
physical parameters which can be any real number and pro­
vide additional information to reduce the uncertainty of 
modeling results.

The main advantage of the structural approach is in poste­
rior correlation of different physical properties (though the 
known correlation coefficient may be included a priori into 
the covariance matrix of the model). Yet, not necessarily the 
derived model would be useful and the petrophysical rela­
tionships would fit the true ones. Furthermore, the minimiza­
tion of the cross-gradient function has to be checked care­
fully against petrophysical models and available local 
geology evidence.

The major drawback of the approach is that it requires 
structural semblance of the models. Note also that 3D inver­
sion often consumes too much computer core memory and 
may be impossible, either with Lagrangians or with quadrat­
ic programming. 

StochAStIc (Monte cArlo) ApproAch 

The approach consists in choosing an acceptable realiza­
tion of a stochastic process among multiple generated ver­
sions. Processes with the same probabilistic parameters 
known from practice or theory (Sambridge and Mosegaard, 
2002) can be simulated using Gibbs sampling (Geman and 
Geman, 1984), genetic (Holland, 1975; Haupt and Haupt, 
2004; Moorkamp et al., 2006, 2007, 2010), or simulated an­
nealing (Kirkpatrick et al., 1983; Cerny, 1985; Aarst and 
Korst, 1989; Bertsimas and Tsitsiklis, 1993; Harris and Mac­
Gregor, 2007; Mota and Monteiro Santos, 2010) algorithms.

The Bayesian approach, first applied by Goltsman and 
Kalinina (1973) in Russia for integration of geophysical 
data, appears to be most flexible and allows appropriate 
modeling by combining the collected data with geological 
and geophysical priors. The approach was developed in 
many later studies (Tarantola, 1987; Backus, 1988; Mose­
gaard and Tarantola, 1995; Bosch, 1999; Bosch et al., 2001; 
Press, 2002; Muñoz et al., 2010; Dell’Aversana et al., 2011; 
Tondi et al., 2012; JafarGandomi and Binley, 2013; Jardani 
et al., 2013; MacCalman et al., 2014; Mellors et al., 2014; 
Ren et al., 2017). The approach of this kind suggested by 
Bosch (1999) for joint inversion of geophysical, petrophysi­
cal, and geostatistical data, constrained by prior geological 

Fig. 4. Inversion of a single data set and joint cross­gradient inversion.  a, b, MT­resistivity and seismic models, respectively; c, d, separate inver­
sion of MT data and P arrivals, respectively; e, f, joint inversion of the same data sets. Thick lines outline test structures: sedimentary basin; crust; 
upper mantle; isolated reservoir; steep fault; and basement arch (Gallardo and Meju, 2007).
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evidence, uses statistical descriptions of the model structure 
at the input and yields separate models explicitly related 
with geophysical data (via a physical theory) and lithologi­
cal (or other) models.

Assume that m = {m1, m2,…, mN} is a set of all level I or 
II parameters; M is the respective set of all model parame­
ters (m∈M); mp is the vector of level I model parameters 
(mp∈Mp, where p = 1,…,k); and ms is the vector of level II 
model parameters (ms∈Ms where s = k + 1,…, N); corre­
spondingly, M = Mp × Ms.

The information on the properties of the subsurface and 
their distribution can be expressed via the probability density 
function (pdf) defined over a set of model parameters. Bosch 
et al. (2001) inverted multidisciplinary geophysical data con­
strained by geological and geostatistical priors. They used 
data on lithology, statistical correlation between lithology 
and rock physics, and a joint likelihood function defined on 
the sets of individual model parameters. The Bayesian inver­
sion leads to the posterior pdf 

papost (ms | mp) = c θs/p (ms | mp) papr (mp) L (ms). (4)

Each term in (4) represents different components of the 
information:

– pdf function papr (mp) defined over the primary model 
parameter space describing prior information on lithology; 

– conditional probability θs/p (ms|mp) describing informa­
tion on the secondary model parameters, their spatial rela­
tionships, cross relationships, and dependence on the pri­
mary properties; 

– joint likelihood function L (ms), which measures prob­
ability misfit between the data calculated from the joint 
model and the geophysical observations; 

– normalization constant c calculated based on the proba­
bilistic postulate that an inverse solution exists over the set 
of all parameters (M). 

Thus, the resulting pdf papost (ms|mp) consists of two fac­
tors corresponding to two different information sources: 
joint likelihood function L(ms), which is a dot product of 
independent likelihood functions associated with each geo­
physical data set and joint prior pdf. The latter, in turn, com­
prises the marginal papr (mp) and conditional θs/p (ms|mp) 
pdfs in the primary (physical) and secondary (lithological) 
spaces of model parameters. 

The conditional pdf θs/p (ms|mp) can well account for em­
pirical or theoretical petrophysical laws relating different 
properties of rocks. The rock physics, obviously controlled 
by lithology, is a macroscopic expression of rock structure 
(composition, texture, and genesis). This relationship was 
studied for different types of subsurface and can be investi­
gated empirically for each specific area.

The marginal pdf papr (mp) is good to describe the proper­
ties that are better constrained by priors based on the knowl­
edge of local geology (geological maps, probable lithofacies 
and their geometrical relationships, stratigraphy, etc.).

The statistical relationships between properties within 
each lithology (e.g., average values and variograms or, more 

generally marginal and conditional pdf) can be better de­
scribed and may be uniform at favorable conditions. This 
assumption is of special importance because most of models 
used for estimation and modeling of the Earth properties as­
sume that the data are statistically homogeneous or spatially 
stable. If the properties are assumed to be uniform within 
each lithofacies, the conditional pdf will be trivial and the 
inversion will consist in estimating primary model parame­
ters. Specifically, the joint pdf for a single property of a geo­
physical data set becomes reduced to a simple posterior pdf 
for inversion of independent data sets, e.g., the Bayesian 
inversion of electromagnetic data (Roussignol et al., 1993; 
Grandis, 1994; Spichak, 2005; Spichak et al., 1999). 

As mentioned above, level I models may include also 
other properties (porosity, permeability, saturation, etc.) ac­
cording to the problem formulation. The key primary prop­
erties of the subsurface depend on the problem scale and 
type: lithology for shallow crust; lithology, porosity, fluid 
saturation, and stratigraphy for basins; etc. Generally speak­
ing, the level I parameters should be useful for the identifi­
cation and characterization of lithofacies and govern statisti­
cally dependent level II parameters.

Since all functions in (4) are complex, the posterior mar­
ginal pdf for the model parameters is not closed and can be 
calculated only numerically with statistical methods (their 
description is beyond this publication). The posterior values 
of levels I and II are easily found after the function has been 

Fig. 5. Plan view (a) and cross­sections (b) of a preliminary 3D model 
along a profile (NW—SE) of panel a (Bosch et al., 2001).
1, sediments, 2, volcanics, 3, gabbro, 4, gabbrodioritic intrusion, 5, 
migmatite, 6, granitic intrusion, 7, Precambrian continental margin, 8, 
Precambrian continent.
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determined using multiple joint models chosen during the 
Bayesian inversion.

The steps of joint inversion of magnetic and gravity data 
to obtain lithological sections (Bosch et al., 2001) are shown 
in Figs. 5 and 6: map of local geology (Fig. 5a) and pre­
liminary lithological cross-sections in the NW-SE and NE-
SW directions (Fig. 5b), and joint inversion of magnetic and 
gravity data to posterior lithological patterns, as well as joint 
magnetic susceptibility and density patterns, with reference 
to geological and geophysical priors (Fig. 6).

Thus, the stochastic techniques can provide formalized 
tools for including geological and geophysical priors and 
peer inspection results for integration of different geophysi­
cal data sets, which is advantageous over the deterministic 
approach. Furthermore, the inversion not only yields the 
sought parameter distributions but also allows posterior 
evaluation of uncertainty at each grid node. On the other 
hand, the inversion quality depends on whether the param­
eters of random processes in the algorithms faithfully repre­
sent the reality. The approach may be problematic because it 

requires specifying prior pdf in all parameters, which are 
assumed to have a Gaussian distribution. Furthermore, the 
computation consumes extremely large computer memory 
and time re sour ces and may take many weeks, even with 
advanced multi­processor systems.

SequentIAl InVerSIon

Instead of inverting independent data sets jointly, inver­
sion can be interactive and sequential: the inversion results 
for one data set can be used as starting models to invert 
other data. The approach was first suggested by Lines et al. 
(1988) and was revisited in the 2000s (Dell’Aversana, 2001, 
2006, 2014; Dell’Aversana et al., 2002, 2011; Zhu and Har­
ris, 2011; Paasche et al., 2012). It can be better understood 
with the example of MT and gravity data inverted in a series 
of sequential steps, as in (Dell’Aversana, 2001): 

(1) building a detailed velocity model following a tomo­
graphic inversion of the first breaks (Fig. 7); 

Fig. 6. Prior (a) and posterior (b) models resulting from Bayesian joint inversion of magnetic and gravity data (geological model along profile 
NW-SE from Fig. 5), modified after Bosch et al. (2001).
The density and magnetic susceptibility scales (bottom) are logarithmic; lithotypes are described in Fig. 5. Observed and calculated data are in 
red and blue, respectively. Yellow belt indicates +/-1 standard deviation uncertainty in the observed data.
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(2) transforming the velocity/depth section vP into a resis­
tivity/depth section R, with reference to resistivity well logs 
analyzed for possible empirical velocity­resistivity relation­
ship. The best fit curve in the velocity/resistivity cross-plot 
(Fig. 7c) has the analytic form 

(ln(ln( )))Pv a R b= + , (5) 

which is used to convert velocity from the model of (Fig. 7b) 
to resistivity (Fig. 7d);

(3) forward MT modeling using the derived resistivity 
model as a starting one; separating the model into the TE 
and TM modes; correcting static shift problems; 

(4) a series of 2D MT inversions using the synthetic re­
sistivity section of step 3 as a reference model and the resis­
tivity measured in boreholes as constraints (see Fig. 7e) for 
the final model; 

(5) checking the quality of the resistivity model (Fig. 7e) 
by modeling the gravity. For this the resistivity section is 
converted to density according to the empirical equation de­

rived from well logs and geological hypotheses. Although 
the gravity inversion is not unique in principle, it can con­
strain the range of geometry and density variations and thus 
reduce the ambiguity; 

(6) converting the resistivity model (Fig. 7e) back to a 
new velocity section, using the same empirical formula (5), 
with subsequent depth­to­time conversion (Fig. 7f).

If necessary, the new seismic section is further used to 
simulate resistivity, etc. The interactive cycle 1­6 continues 
until the inversion errors become stable for all types of data; 
eventually it yields an integrated multidisciplinary geophys­
ical model, which is easier to interpret than the initial model 
(compare Figs. 7a, f).

The approach is advantageous in being relatively simple 
and requiring much less computer core memory than the si­
multaneous joint inversion. On the other hand, the interac­
tive process uses relationships between the prior petrophysi­
cal properties measured in boreholes or in cores. Yet, these 
empirical relationships may be not always available, and not 
necessarily valid throughout a 2D or especially 3D model. 

Fig. 7. Steps of interactive inversion, modified from (Dell’Aversana, 2001): a, Common receiver gather (seismic section); b, tomographic vP 
model; c, empirical relationship between resistivity and velocity, from well log analysis; d, resistivity model derived from seismic tomography and 
borehole information; e, final magnetotelluric model; f, parametric model imported into the seismic section. 
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clASSIFIcAtIon MethoDS

A basically different approach to integration of geophysi­
cal data consists in separate inversion of different data sets 
(level I models) followed by detection of regions with ho­
mogeneous physical properties using classification methods; 
the homogeneous regions are used to predict level II param­
eters with reference to expertise and geological and geo­
physical priors. The approach stems from the basic assump­
tion that geological objects differ in their physical properties 
and are detectable by individual measurements of the re­
spective parameters. Thus, the structures are detectable if 
their difference in the space of parameters exceeds the vari­
ance of parameters within their limits.

This section focuses on main approaches to joint analysis 
of separate inversion results for single data sets, without go­
ing into details of each inversion procedure. The most fre­
quently used classification methods (Reimann et al., 2008), 

such as cluster analysis, Gaussian classification, k-means 
clustering, and discriminant analysis, are characterized 
briefly below. 

• Cluster analysis is grouping according to proximity of 
samples in the space of properties. Unlike other classifica­
tion methods that use training samples for statistical model­
ing, grouping in cluster analysis is based on properties with­
out regard to lithology (Hartigan, 1975; Kaufman and 
Rousseeuw, 2005). 

• Gaussian classifier is based on the assumption that the 
vector of properties has an n­dimensional Gaussian distribu­
tion of the conditional pdf within each lithological group. 
Each lithofacies should have its center and covariance ma­
trix determined from training samples (Rasmussen and Wil­
liams, 2006).

• K-means clustering implies iterative search of a set of 
points (centers) so as to minimize the mean squared distance 
from each data point to its nearest center in training samples 

Fig. 8. Statistical structural classification using level I models (Bedrosian, 2007).
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Fig. 10. 3D resistivity model of the northern Tien Shan crustal area. 
Elementary prisms (red) are zones of best correlation between resistiv­
ity and density of earthquakes (Spichak et al., 2006).

(Kanungo et al., 2002). Each point is assigned to one of 
k clusters; thus the center represents each cluster while each 
point is closer to the center of its cluster than to the centers 
of other clusters. 

• discriminant analysis searches the functions of proper­
ties which separate groups in an optimal way (in terms of 
root mean square) in order to choose the combination of lin­
ear coefficients to maximize the variance of group centroids 
while minimizing the variance within the groups (Huberty, 
1994). The discriminant functions are used as additional co­
ordinates for data presentation: a discriminant space. This 
method has widespread applications of the graphic represen­
tation of multidimensional data and classification. 

Cluster analysis is most often performed by probabilistic 
or neural network methods. 

Probabilistic clustering requires interpolating (Fig. 8) 
the parameters obtained by inversion of independent data 
sets to the common coordinate grid (Bedrosian, 2007), as­
suming that each level I model is specified by discrete points 
at its coordinate grid nodes so that each node has its set of 
points for two or more physical parameters. Then joint pdf 
is determined in the common space of parameters (correla­
tion) and is used as a basis for detecting local zones of high 
probability density, i.e., identifying classes and their bound­
aries in the common space of parameters (classification). At 
the final step (mapping), these zones are mapped back to the 
coordinate space in which each class determines the geo­
logical structure (lithology). 

Figure 9 illustrates the use of this approach with an ex­
ample from (Maercklin et al., 2005). It shows 2D slices of the 
3D velocity structure vP (left) and logarithmic resistivity log r 
(right) derived by separate inversion of seismic and MT data 
sets, respectively (Fig. 9a), from the vicinities of the Arava 
fault (AF). The jointly analyzed level I models are presented 
as a histogram of velocities vP versus resistivities log r 
(Fig. 9b), with darker regions corresponding to stronger cor­
relation and ellipses outlining clusters of best correlated pa­
rameters. Finally, the outlined clusters (Fig. 9c) are mapped 
back from the space of parameters to that of coordinates.

Bedrosian et al. (2007) used an approach based on Gauss­
ian clustering assuming that lithotypes are spatially con­
nected domains characterized by uniform physical proper­
ties which are normally distributed about a mean. The 
optimum number of classes (clusters) was determined from 
examination of global misfit as a function of the number of 
fit classes. 

In other publications (Muñoz et al., 2010; Jousset et al., 
2011), the clusters were related to geological structures based 
on regional stratigraphy and on measured velocity and resis­
tivity values, with reference to geological surveys, well logs, 
and independent geophysical data. Correlation of indepen­
dent models showed that no simple empirical relationships 
existed between different physical properties, except for lo­
cal correlations, each corresponding to a separate lithology. 

Neural classification techniques, such as maximum cor­
relation similitude (Spichak et al., 2006, 2007) or self-orga­

nizing maps (Kohonen, 2001) are based on learning of neural 
networks by correspondence between physical parameters. 

The maximum correlation similitude technique, like the 
probabilistic methods, requires interpolation of level I mod­
els onto a common grid followed by search of best correla­
tion regions for the target physical properties (Spichak et al., 
2007). The clusters can be considered as spatially stable re­
gions and taken for reference in further lithological division. 
The approach can be used to reveal potentially active seis­
mic areas (Fig. 10) by joint analysis of resistivity and earth­
quake density patterns. Zones of maximum correlation (el­
ementary prisms) correspond to resistive brittle crust and 
deep faults. 

This approach to integration of geophysical data is ad­
vantageous over probabilistic clustering (Maercklin et al., 
2005; Bedrosian, 2007; Bedrosian et al., 2007). Namely, (i) 
it provides better accuracy due to neural interpolation for 
estimating two physical parameters at the same grid nodes 
instead of the conventional kriging; (ii) classification in the 
coordinate space without interpolation to the space of pa­
rameters and back (Fig. 8) allows avoiding side problems 
(e.g., assuming a Gaussian distribution of parameters, which 
is not always the case); (iii) the optimal number of clusters 
is set automatically rather than being specified by the user. 
On the other hand, the method is limited to only two simul­
taneously analyzed properties. 

The technique of self-organizing maps (SOM) uses un­
supervised learning by the Kohonen rule (Kohonen, 2001) 
with reference to a priori information on the number of 
clusters with similar properties, which are outlined in the 
target space (Bauer et al., 2012). The Kohonen network 
consists of two layers (Fig. 11), and each neuron of the first 
(input) layer is connected with all neurons of the second 
(output) layer arranged in a 2D grid (map). The neurons of 
the input layer correspond to physical properties of rocks 
(seismic velocity vP, velocity anisotropy, and attenuation in 
our case); the number of output neurons (cluster elements) 
is specified externally and defines the maximum possible 
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number of clusters distinguishable in the input data (e.g., 
lithotypes). 

In the Kohonen approach, the output neurons are not 
matched to reference values (unlike the error back-propaga­
tion technique). The neural network learns from input train­

ing samples, which are physical parameter values (points at 
gird nodes). The learning is competitive: the neurons of the 
cluster layer that represents superparameters compete with 
one another on a winner-takes-all basis, and the winner is 
the neuron whose weight vector is most similar to the input 

Fig. 11. Use of SОM technique for joint interpretation of level I models: a, Synthetic models (from left to right: P velocity vP; velocity anisotropy; 
attenuation); b, Kohonen learning; c, classification (map) (Bauer et al., 2008). 
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(a three­component vector in our case); each input vector in 
this process belongs to some cluster element. 

Once the learning has been completed, the network can 
classify the input examples into groups of similar elements. 
The neurons in the output layer faithfully simulate the pat­
tern of training samples in the multidimensional space of 
parameters. Thus, the Kohonen self­organizing maps pro­
vide mapping of the multidimensional space of parameters 
into that of clusters (Spichak et al., 2015).

The above approach was applied previously (Spichak et 
al., 2008) to obtain a cluster petrophysical cross section 
from three components corresponding to different physical 

properties: seismic velocity, effective density, and resistivity 
along a fragment of the regional transect 1-SB in East Sibe­
ria. The fragment between 400 and 600 km along the tran­
sect is located within the Yenisei Foredeep, the Kamo Arch, 
and the western Baikit Uplift (Fig. 12). The transect travers­
es two gas fields (Omorinsky between 500 and 520 km and 
Yurubchen-Takhoma at 540—580 km); the depth intervals 
of low density in the crust correspond to gas reservoirs. 

Panels a and b in Fig. 12 show, respectively, a SOM pet­
rophysical cross section and physical properties within indi­
vidual clusters. The gas fields are marked by petrophysical 
anomalies (clusters 1—4), with small vertical channels at 

Fig. 12. Cluster petrophysical cross-section along profile 1-SB. a, Cluster section, b: petrophysical clusters (Spichak et al., 2008). 1, resistivity, 
×105 Ohm·m; 2, effective density, g/cm3; 3, P velocity, ×105 m/s.
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Fig. 13. Generalized geometrical model of the crust along transect 1-Siberia, compared with models derived from independent data sets. a, Seis­
mic energy cross­section, b, parameter α for effective density, c, parameter α for effective magnetization, d, parameter α for resistivity (Kaplan et 
al., 2006). 1, layers and blocks in the generalized geometrical model.
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shallow depths, possibly, gas conduits (Fig. 12, a). The 
presence of such anomalies in the vicinity of hydrocarbon 
accumulations may be a necessary (but not always suffi­
cient) indicator of petroleum potential. 

hybrID ApproAcheS 

The construction of a cluster cross­section may be pre­
ceded by general geometric modeling of the subsurface, by 
different techniques: cross-gradients (Hellman et al., 2017) 
or localization of high­gradient zones in models based on 
independent data sets (Nikitin et al., 2003; Cheremisina et 
al., 2006; Kaplan et al., 2006; Galuev and Kaplan, 2009). 
The cited authors used the so-called differential-normalized 
parameter (α) to better highlight the properties of the sub­
surface and to proceed to dimensionless units. The parame­
ter α is a depthward increment (total differential in the gen­
eral case) of logarithmic seismic impedance (density, 
magnetization, or resistivity):

α = 1/2 d/dz ln P dz, (6)

where P stands for v·ς (v is seismic velocity and ς is density) 
for seismic, ς (density) for gravity, and r (resistivity) for 
resistivity data.

Since α (6) represents relative heterogeneity of the sub­
surface, its extreme values traceable in the section may de­
lineate interfaces between blocks with homogeneous phy-
sical properties. Such an integrated crust model along a 

frag ment of the 1-SB transect is compared with models 
based on independent data sets in Fig. 13 (Kaplan et al., 
2006). The next step consists in estimating the statistics of 
each property within the blocks (using the K-means tech­
nique) and geological modeling from block-average physi­
cal properties. Finally, each set of properties within a block 
is related to a level I model parameter, most often a lithotype 
(Fig. 14).

This approach is advantageous as the boundaries of phys­
ically homogeneous blocks are traceable in contour line 
maps of extreme α values which limit the zones of smooth 
changes. Geometrized modeling with subsequent determina­
tion of physical properties in the respective homogeneous 
blocks becomes possible when the block boundaries coin­
cide in different level I models.

The disadvantage of the approach is a reverse side of its 
advantage, as it often happens: the final model may be poor­
ly reliable in the case of mismatching boundaries of homo­
geneous blocks corresponding to different physical proper­
ties. Like in the method of cross-gradients (see above), if the 
hypothesis does not fit reality, the general structure and its 
population are far from reality as well. 

The discussed clustering techniques are based uniquely 
on statistical correlation of physical properties in the general 
space of parameters and remain independent of theoretical 
or empirical linkage between the physical properties of 
rocks. These methods can be also useful for multi-dimen­
sional statistical description of relations between rock pro-
perties and lithology, as well as for the choice of properties 

Fig. 14. Predicted lithology distribution along transect 1-SB (Kaplan et al., 2006).  1, σ = 2.63 g/cm3, v = 5800 m/s, clastic­carbonate sediments; 
2, σ = 2.64–2,7 g/cm3, v = 5600–6100 m/s, carbonate­clastic sediments; 3, σ = 2.67–2.70 g/cm3, v = 6500 m/s, gneisses, schists, felsic igneous 
rocks; 4, σ = 2.71—2,73 g/cm3, v = 6700–7100 m/s, quartz-biotite two-mica schists, intermediate igneous rocks (granodiorite, diorite, monzonite); 
5, σ = 2.80—2.82 g/cm3, v = 6500–7100 m/s, biotite-hornblende and amphibole schists, crystalline gneisses and intermediate igneous rocks; 6, 
σ = 2.85–2.89 g/cm3, v = 7300–7500 m/s, gabbro, gabbro­diabase and amphibolite; 7, σ = 2.85–2.89 g/cm3, v = 6800–7100 m/s, gabbro, gabbro­
diabase and amphibolite (possibly, highly fractured); 8, σ = 2.93–2.98 g/cm3, v = 7600–7800 m/s, gabbro, basalt, schists and hornblende schists; 
9, σ = 3.0 g/cm3, v = 7900–8300 m/s, dunite, peridotite, pyroxenite, etc.; 10 – σ = 3.07 g/cm3, v = 8300 m/s, eclogite, etc.
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and geophysical data suitable for lithology prediction in spe­
cific exploration scenarios. In terms of methodology, the ap­
proach highlights the structural conformity of models and 
provides natural tools for regularization of joint inversion. 

concluSIonS

The choice of geophysical data used for joint inversion 
depends on problem formulation in terms of superparame­
ters (e.g., lithology). On the other hand, it stems from the 
dialog between a geologist and a geophysicist, which would 
lead to formalized search criteria based on personal experi­
ence. Thus, the most reasonable approach would be to for­
mulate such criteria proceeding from necessary and suffi­
cient conditions in terms of parameters that characterize an 
object or a process. 

Joint inversion itself is neither necessary nor sufficient 
for obtaining faithful models of reality from geophysical 
data. The integration approaches may be difficult to apply to 
data sets, which are acquired at different resolutions and 
scales or are controlled by different physical processes. In 
the latter case, it is almost impossible to know a priori 
whether the data represent some correlated structures in the 
subsurface. Joint inversion is basically simple if all data are 
sensitive to the same properties, and the resulting model is 
expected to be at least no worse than those derived from 
single data sets. However, integration of physically different 
(e.g., electromagnetic and seismic) data may generally fail, 
though providing more insights into the subsurface struc­
ture, reducing ambiguity, and attenuating noise. Cross­gra­
dient modeling may even “detect” an object that actually 
does not exist, because the problem formulation originally 
assumes that all data sets would image some specific struc­
ture, even if the parameters correlate poorly. Therefore, 
evaluation and checking of joint inversion results (against 
some additional priors) is even more important than in the 
case of separate inversion. 

Posterior joint interpretation of independent inverted 
data sets appears to be the most reasonable in terms of 
methodology (at least, free from the above pitfall). It can 
reveal regions of best correlation between parameters 
(which may be proxies of different phenomena) or clusters 
of petrophysical properties related to a certain lithology. 
Such interpretation has to use the mapped geophysical pa­
rameters that are especially sensitive to the target structures 
or processes, i.e., it has to be preceded by sensitivity analy­
sis within each geophysical method. The cluster models ob­
tained by the posterior joint analysis of level I models can 
make reference for further more advanced joint inversion of 
geophysical data.

The manuscript has profited much from a thoughtful re­
view and valuable comments by N.O. Kozhevnikov.

The study was partly supported by grant 18­0500258 
from the Russian Foundation for Basic Research. 
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