УДК 239.374

ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ ПРОЧНОСТИ СОСТАВНЫХ ПЛИТ ПРИ ИЗГИБЕ

Г. В. Геворкян, М. А. Задоян, Г. Р. Саакян, С. М. Саркисян

Институт механики НАН Армении, 375019 Ереван

Исследуется прочность составных плит при изгибе и ее зависимость от угловых параметров у вершин стыков составляющих. На основе анализа фотоупругостных картин (изохром), линий разрушений и разрушающих моментов получена приблизительная экспериментальная кривая конечных напряжений ($\lambda = 1$) в плоскости углов (α, β), отделяющая зону малонапряженности от зоны концентраций напряжений у угловой точки стыков составляющих, которая сравнивается с теоретической кривой, полученной из решения соответствующей задачи. Получена также экспериментальная зависимость прочности плиты от соотношения угловых параметров составляющих при концентрационных и малонапряженных состояниях у угловых вершинных точек стыков.

Введение. Теоретические исследования прочности края контактной поверхности составного тела на основе изучения малонапряженности сводятся к установлению соотношения между параметрами кривых растяжения материалов и углов растворов составляюцих клиньев [1]. Предельные кривые, отделяющие в координатной плоскости углов зоны малонапряженности от зон концентраций напряжений, зависят лишь от физических и геометрических параметров материалов. Однако прочность реальных клеевых соединений составных тел зависит также от технологии изготовления, толщины клеевого слоя и его прочностных свойств. Для подтверждения теоретических результатов необходимы экспериментальные исследования, учитывающие реальные условия работы слоистого тела.

1. Постановка задачи. Теоретические исследования малонапряженности стыковых составных плит при изгибе позволяют получить представление о зонах малонапряженности в окрестности углового ребра соединения двух составляющих материалов в зависимости от механических и геометрических параметров [2, 3]. Это дает возможность путем варьирования геометрических форм избежать концентраций напряжений и определить критерии прочности, зависящие от геометрических и физических параметров.

Ставилась задача экспериментально показать существование и расположение зон малонапряженности и концентрации напряженности в угловых точках составных плит (пластин) на плоскости геометрических переменных составляющих. Целью работы также являлся расчет интенсивности критических моментов разрушения в угловых точках. При концентрации напряжений в угловых точках возможно разрушение при малых нагрузках.

2. Вывод уравнения предельной кривой. Пусть клиновидная составная пластина толщиной h, изготовленная из упрочняющихся по степенному закону эпоксида и дюралюминия, подвергается поперечному изгибу (α — угол раствора клина, изготовленного из эпоксида, β — из дюралюминия) (рис. 1). В нейтральной плоскости пластины введена цилиндрическая система координат. Разлагая перемещения в ряд Тейлора по степеням z, ограничиваясь первыми двумя членами, используя соотношения теории упругопластических деформаций, уравнения равновесия и учитывая поперечные сдвиги, получим выражения для моментов и перерезывающих сил

$$M_{ij}^{(k)}(r,\theta) = r^{(\lambda-1)m} F_{ij}^{(k)}(\theta,\lambda), \quad Q_i^{(k)}(r,\theta) = r^{(\lambda-1)m+1} \Phi_i^{(k)}(\theta,\lambda),$$

Рис. 1

где k = 1, 2 соответственно для эпоксида и дюралюминия; индексы i, j соответствуют r, θ ; λ — собственное значение задачи; функции $F_{ij}^{(k)}(\theta, \lambda)$ и $\Phi_i^{(k)}(\theta, \lambda)$ нелинейно выражаются через собственные функции. Основные компоненты напряжения в окрестности угловой точки имеют вид

$$\sigma_{ij}^{(k)}(r,\theta) = \frac{M_{ij}^{(k)}(r,\theta)z}{J}.$$
(1)

На краях выполняются условия

$$M_{\theta}^{(k)}(r,\theta) = 0, \quad M_{r\theta}^{(k)}(r,\theta) = 0, \quad Q_{\theta}^{(k)}(r,\theta) = 0$$
 (2)

при $\theta = \alpha, \beta,$ а на контактной поверхности $\theta = 0$ — условия непрерывности

$$M_{\theta}^{(1)}(r,0) = M_{\theta}^{(2)}(r,0), \quad M_{r\theta}^{(1)}(r,0) = M_{r\theta}^{(2)}(r,0), \quad Q_{\theta}^{(1)}(r,0) = Q_{\theta}^{(2)}(r,0).$$
(3)

В результате получаем задачу на собственные значения для системы обыкновенных нелинейных дифференциальных уравнений 12-го порядка при однородных граничных и контактных условиях. Численное решение указанной задачи позволяет определить собственное число λ в зависимости от физических и геометрических параметров составной плиты: $\lambda = \lambda(\alpha, \beta, m, \gamma)$, где γ — отношение коэффициентов модулей деформации материалов; m = 1/n (n — степень упрочнения, одинаковая для обоих материалов). Задавая значение λ и решая обратную задачу, можно определить зависимость между указанными параметрами. Полагая $\lambda = 1$, в координатной плоскости (α, β) определяем предельную кривую, отделяющую зону малонапряженности от зоны сильной концентрации напряжений (моментов). В предельном случае линейно-упругих материалов (m = 1) получим следующее уравнение предельной кривой:

$$\frac{\sin 2\alpha}{1+3\cos 2\alpha} + \gamma \frac{\sin 2\beta}{1+3\cos 2\beta} = 0. \tag{4}$$

3. Эксперимент. В эксперименте изучалось напряженное состояние в угловых точках клиновидных пластин с угловыми растворами составляющих, удовлетворяющими условию $\alpha + \beta = \pi$ (рис. 2).

В эксперименте на прочность исследовались образцы составных плит из дюралюминиевых ($E_{\rm g} = 7, 1 \cdot 10^5 \, {\rm kr/cm^2}, \, \nu_{\rm g} = 0,35$) и эпоксидных ($E_{\rm g} = 3,05 \cdot 10^4 \, {\rm kr/cm^2}, \, \nu_{\rm g} = 0,41$) составляющих, изготовленных по схеме, представленной на рис. 2. Эксперименты проводились для 17 пар значений α и β при условии $\alpha + \beta = \pi$. Для склеивания составляющих использовались циакриновый и эпоксидный клеи. Образцы склеивались при комнатной температуре. Толщина стыкового слоя δ циакринового клея равна 0,03–0,07 мм, эпоксидного — 0,05–0,10 мм. Для каждого варианта стыкового угла и вида клея испытывалось

Рис. 2

по 6 образцов. Общее количество образцов составляло 204. Погрешность технической обработки углов составляла ±1°.

Экспериментальная установка спроектирована и сконструирована по аналогии с известными установками [4] и позволяет квазистатическим нагружением довести образцы до разрушения, получить картины изохром и значения разрушающих моментов с погрешностью 5–7%.

В ходе эксперимента образец подвергался чистому изгибу до разрушения путем непрерывного квазистатического нагружения. Фиксировались значения разрушающих моментов (нагрузок) для разных образцов, делались снимки изохром. Разрушенные образцы осматривались с целью определения точек возникновения разрушения и вида разрушения (адгезионного или когезионного).

4. Обсуждение результатов. На рис. 3 приведены предельные кривые в плоскости (α , β), разделяющие зоны, соответствующие состояниям концентраций напряжений и малонапряженности в угловой точке образца. Кривые 1 и 2 построены по уравнению (4) при $\gamma = 1$ и $\gamma = 23,28$, кривая 3 построена по экспериментальным данным ($\gamma = 23,28$) для составного образца, склеенного эпоксидным клеем. На кривой 1 находятся точки, соответствующие комбинациям углов составляющих у угловых точек стыков образцов. Светлые точки соответствуют парам углов (α , β), при которых имеет место состояние

Рис. 3

Рис. 4

малонапряженности или конечных напряжений, темными — состояние концентраций напряжений у угловых точек стыков. Количественное различие между кривыми 2 и 3 может объясняться допущениями о несжимаемости и линейном поведении материалов при выводе уравнения (4).

На рис. 4 приведены зависимости разрушающего момента M^*/M_0^* от угла α . Кривая 1 соответствует склейке составляющих эпоксидным клеем, кривая 2 — циакриновым. На кривой 1 отрезки, показанные штриховой линией, соответствуют малонапряженным состояниям в угловой точке (M_0^* — среднее значение разрушающего момента при малонапряженных состояниях в угловой точке). Кривые 1 и 2 сдвинуты относительно друг друга на $\pm (5 \div 15)^\circ$.

При углах 75–90° (первый интервал по α , соответствующий концентрациям напряжений в угловых точках) предел прочности составного образца уменьшается примерно в 1,5 раза по сравнению со случаями малонапряженного состояния, при углах 105–160° (второй интервал концентрационного состояния) предел прочности уменьшается примерно в 2,4 раза.

На рис. 5 показаны типичные картины изохром (линий главных напряжений) в составном образце для различных значений угла α ($\alpha + \beta = \pi$). Картина на рис. 5,*a* соответствует углам $\alpha = 20, 35, 50, 60, 70^{\circ}$; на рис. 5, $\delta - \alpha = 75^{\circ}$; на рис. 5, $\epsilon - \alpha = 80, 85^{\circ}$; на рис. 5, $\epsilon - \alpha = 90^{\circ}$; на рис. 5, $\delta - \alpha = 95, 100, 105^{\circ}$; на рис. 5, $\epsilon - \alpha = 110, 120, 130, 145, 160^{\circ}$.

Расположение точки, с которой начинается разрушение образца, и его характер зависят от соотношений между углами α и β .

При концентрации напряжений в угловой точке поверхности соединения (точка B на рис. $5, \epsilon, e$) разрушение начинается в этой точке и распространяется по стыку до противоположной угловой точки или точки C, затем по эпоксиду до противоположной точки C и да-

Рис. 5

лее по стыку. При этом разрушение может иметь адгезионный или адгезионно-когезионный характер.

При малонапряженности в угловой точке разрушение распространяется либо от точки A на боковой поверхности образца (рис. 5,a) до точки C на стыковой поверхности, затем по стыку до симметричной точки C, далее по эпоксиду до симметричной точки A либо от внутренней точки C на поверхности стыка (рис. 5,d) по эпоксиду до точки A на боковой поверхности и по стыку до симметричной точки C. В угловых точках остаются кусочки когезионно разрушенного эпоксида.

В случае концентрации напряжений в угловой точке замкнутые нулевые изохромы (черного цвета) разных порядков концентрируются в окрестности угловой точки, а при малонапряженном состоянии изохромы являются незамкнутыми линиями, распространяющимися от угловой или внутренней точки по всей длине образца. Аналогичные картины изохром приведены в [5, 6].

При углах α , соответствующих точкам, расположенным вблизи предельной кривой 3 (см. рис. 3), в одной из угловых точек может быть концентрация напряжений, а в другой (симметрично расположенной) — малонапряженное состояние (рис. 5, δ). Это может объясняться погрешностью технологической обработки углов у вершинных точек, которая составляла $\pm 1^{\circ}$.

Отметим, что при склейке составляющих (дюралюминия и эпоксида) эпоксидным клеем экспериментальные данные позволяют достаточно четко отделять на плоскости (α, β) области, соответствующие концентрации напряжений в угловых точках, и области малонапряженности. При склейке циакриновым клеем это можно сделать для углов α , не превышающих 50° (область малонапряженности в угловых точках), и в интервале углов 120–160° (состояние концентрации напряжений). Для других значений углов α экспериментальные данные не позволяют определить четкую границу между этими состояниями. По-видимому, это связано с тем, что при склейке циакриновым клеем, несмотря на малую его толщину, образец является трехсоставным телом (дюралюминий, циакрин, эпоксид).

Авторы выражают благодарность Р. Г. Мелик-Елчяну за консультации при обработке картин изохром.

ЛИТЕРАТУРА

- 1. Чобанян К. С. Напряжения в составных упругих телах. Ереван: Изд-во АН АрмССР, 1987.
- 2. Задоян М. А. Пространственные задачи теории пластичности. М.: Наука, 1992.
- Задоян М. А. Об условиях малонапряженности составных плит // Докл. РАН. 1993. Т. 332, № 3. С. 319–321.
- 4. Дюрелли А., Райли У. Введение в фотомеханику. М.: Мир, 1970.
- 5. **Развитие** методики исследования напряжений и деформаций поляризационно-оптическим методом: Сб. тр. № 137. М.: Изд-во М-ва высш. и среднего спец. образования, 1976.
- 6. Файлон Р. Оптический метод исследования напряжений. М.: Гостехтеоретиздат, 1940.

Поступила в редакцию 27/V 1998 г., в окончательном варианте — 23/VIII 1999 г.