УДК 621.397

ДАЛЬНОСТЬ ДЕЙСТВИЯ ТЕПЛОВИЗИОННЫХ СИСТЕМ. Ч. II. АЛГОРИТМ, ИСХОДНЫЕ ДАННЫЕ И РЕЗУЛЬТАТЫ РАСЧЁТОВ

В. М. Тымкул, Л. В. Тымкул, Е. В. Лаптев, М. П. Исаев, Е. А. Крапивко, Ю. А. Фесько, А. Н. Поликанин

Сибирская государственная геодезическая академия, 630108, г. Новосибирск, ул. Плахотного, 10 E-mail: y.a.fesko@gmail.com

Рассматриваются результаты вычислительного эксперимента, выбор исходных данных и алгоритм расчёта дальности действия тепловизионных приборов и систем при наблюдении объекта с различными параметрами объектно-фоновой обстановки и составных звеньев регистрирующего устройства. Приводится сопоставление результатов вычислительного эксперимента и натурных исследований на примере тепловизора "IRIS-AWS".

Ключевые слова: дальность действия, обнаружение, вычислительный эксперимент, тепловизор.

Введение и постановка задачи. В работе [1] подробно рассмотрена методика расчёта дальности действия тепловизионных систем, которая основана на анализе и установлении функциональной связи искомой величины с пороговой температурной чувствительностью $\Delta T_{\text{пор}}$ и температурно-частотной характеристикой $\Delta T_{\text{раз}}(\nu)$ при наблюдении объектов на однородном и неоднородном полях теплового излучения. Так, применительно к условию наблюдения изотермических объектов на излучающем тепловом фоне получено следующее выражение для дальности действия тепловизоров:

$$l = \frac{hr_{\Sigma}(\nu)\Delta T_{\text{pa3}}(T_{\Gamma}f_{\kappa})^{1/2}C_{2}D^{*}(d/f')^{2}f'\int_{\lambda_{1}}^{\lambda_{2}} [S(\lambda)\tau_{0}(\lambda)\tau_{a}(\lambda)\varepsilon(\lambda)W(\lambda,T)\lambda^{-1}]d\lambda}{6\sqrt{2}k_{3}T^{2}\sqrt{\Delta f_{R}}Nm},$$
(1)

где D^* и $S(\lambda)$ — удельная обнаружительная способность и относительная спектральная чувствительность приёмника оптического излучения (ПОИ); Δf_R — шумовая полоса частот электрической схемы включения ПОИ; (λ_1, λ_2) — границы спектральной чувствительности ПОИ; k_3 — коэффициент использования ПОИ эталонного источника; m — отношение сигнал/шум; $W(\lambda, T)$ — спектральная светимость АЧТ с температурой T; T(x, y) и $T_{\Phi}(x, y)$ — функции распределения температуры по поверхности объекта и фона в случае наблюдения прибором неоднородных тепловых полей объектно-фоновой обстановки; $\varepsilon(\lambda)$ спектральный коэффициент излучения поверхности объекта; $\tau_o(\lambda)$ и $\tau_a(\lambda)$ — спектральные коэффициенты пропускания оптической системы тепловизора и слоя атмосферы между объектом и прибором; C_2 — постоянная в формуле Планка; T_{Γ} и f_{κ} — постоянная времени глаза и частота кадров тепловизора; ν — пространственная частота (рад⁻¹); $r_{\Sigma}(\nu)$ результирующий модуль передаточной функции всех звеньев тепловизора; d — диаметр входного зрачка оптической системы тепловизора; N — критерий (число) Джонсона, имеющий смысл количества периодов эквивалентной миры, укладывающихся в критический размер h объекта при решении системой задачи наблюдения (обнаружения, распознавания, классификации и идентификации).

Целью предлагаемой работы является проверка сходимости результатов расчёта дальности действия тепловизионной системы [1] с экспериментальными данными, полученными при наблюдении реального объекта в различных атмосферных условиях.

Выбор исходных данных, моделей составных звеньев тепловизора и параметров атмосферы. Если рассматривать тепловизор как линейную систему с последовательно расположенными звеньями в виде оптической системы, приёмника оптического излучения, электронного тракта, видеоконтрольного устройства и глаза оператора, то с учётом работы [2] суммарный модуль $r_{\Sigma}(\nu)$ передаточной характеристики тепловизора можно представить формулой

$$r_{\Sigma}(\nu) = r_{\rm o}(\nu) r_{\rm np}(\nu) r_{\rm uh}(\nu) r_{\rm cuh}(\nu) r_{\rm b}(\nu) r_{\rm yc}(\nu) r_{\rm BKy}(\nu) r_{\rm r}(\nu) r_{\rm cm}(\nu), \qquad (2)$$

где $r_{\rm o}(\nu)$ — функция передачи модуляции (ФПМ) оптической системы тепловизора; $r_{\rm пp}(\nu)$ — ФПМ приёмной площадки ПОИ; $r_{\rm ин}(\nu)$ — ФПМ инерционности элементов ПОИ; $r_{\rm син}(\nu)$ — ФПМ синхронизации элементов изображения тепловизора; $r_{\rm B}(\nu)$ — ФПМ выборки по строке и кадру; $r_{\rm yc}(\nu)$ — ФПМ усилителя сигналов ПОИ; $r_{\rm BKY}(\nu)$ — ФПМ видеоконтрольного устройства; $r_{\rm r}(\nu)$ — ФПМ глаза оператора; $r_{\rm cm}(\nu)$ — ФПМ смазов изображения по строке и кадру.

Подробный системный анализ передаточных характеристик всех звеньев тепловизора рассмотрен в [2, 3]. Согласно этим работам входящие в формулу (2) модули передаточной функции звеньев аппроксимируются аналитическими соотношениями, которые нами используются в программе MATLAB.

При этом следует отметить, что пространственная частота ν связана с дальностью l следующим образом:

$$\nu = lN/(2h \cdot 1000), \text{ mpag}^{-1}.$$
 (3)

Для анализа влияния слоя атмосферы между объектом и прибором на дальность действия тепловизора, а также оценки роли метеорологической дальности видимости ($S_{\rm M}$), абсолютной (ω) и относительной ($f_{\rm OTH}$) влажности воздуха и его температуры ($t_{\rm B}$) входящий в формулу (1) интегральный коэффициент пропускания атмосферы определяется по методике, предложенной в работе [2].

Исходные данные тепловизоров для расчёта дальности действия. Для подтверждения расчётных исследований дальности обнаружения использовались исходные данные — технические параметры и характеристики тепловизора "IRIS-AWS" (Франция) с рабочим диапазоном спектра $\Delta \lambda = 8-12$ мкм. Как указывается в [3], в нём применяется матричный ПОИ на основе соединения КРТ формата 320×240 элементов с размером элемента 30×30 мкм (аналог "MARS LV" фирмы "Sofradir").

Выбор этого тепловизора в качестве объекта исследований обусловлен тем, что в работе [3] приведены результаты натурных экспериментов по определению его дальности обнаружения, которые будут использованы для сравнения с данными расчётов.

В целом технические параметры и характеристики тепловизора, а также исходные данные по объектно-атмосферной обстановке следующие: h = 2,7 м (танк); d = 160 мм; f' = 280 мм; $D^* = 1,2 \cdot 10^{11}$ см · $\Gamma \mu^{1/2}$ /Вт; $\Delta T_{\text{pa3}} = 0,02$ K; $\lambda_1 = 8$ мкм; $\lambda_2 = 12$ мкм; $\lambda_0 = 10$ мкм; T = 293 K (лето); T = 263 K (зима); a = b = 30 мкм (линейные размеры

чувствительной площадки ПОИ); $f_{\rm K} = 25$ Гц; $\tau_{\rm o} = 0.9$; $T_{\rm r} = 0.2$ с; N = 2 (обнаружение объекта на фоне с сильной неоднородностью [4]); $f_{\rm oth} = 50-70$ %; $t_{\rm B} = 20$ °C; $t_{\rm B} = -10$ °C; $S_{\rm M} = 0.25-20$ км.

Анализ результатов расчёта дальности обнаружения и сопоставление с данными натурных исследований. С использованием приведённой методики расчёта дальности действия тепловизоров, основанной на соотношениях (1), (2) с учётом моделей передаточных функций всех звеньев тепловизора и методики расчёта коэффициента пропускания атмосферы между объектом и прибором, разработан соответствующий алгоритм расчёта дальности обнаружения, классификации, распознавания и идентификации объектов.

С помощью этого алгоритма была составлена компьютерная программа в среде MATLAB для расчёта и моделирования указанных дальностей применительно к тепловизионным системам с рабочими диапазонами спектра $\Delta \lambda = 8-12$ и $\Delta \lambda = 3-5$ мкм.

Перед сопоставлением расчётных данных с результатами имеющихся экспериментов рассмотрено следующее обстоятельство. В работах [3, 5] установлено, что в ходе натурных экспериментов при любых тепловых контрастах (от 2 до 9°) и любых сочетаниях температур и относительных влажностей воздуха дальность обнаружения тепловизора "IRIS-AWS" (область спектра 8–12 мкм) в атмосферной дымке в 5 раз больше, чем метеорологическая дальность видимости при $S_{\rm M} \geq 1$ км. Эти экспериментальные данные и послужили узловым моментом для оценки наших расчётных исследований.

В итоге в предлагаемой работе получены:

1) расчётные данные по зависимости дальности обнаружения объекта в виде танка и автомобиля ЗИЛ-131 для тепловизора "IRIS-AWS" от метеорологической дальности видимости $S_{\rm M}$ в диапазоне 0,5–20 км;

2) результаты расчётов для условий наблюдения объекта летом ($t_{\rm B} = 20$ °C) и зимой ($t_{\rm B} = -10$ °C) при относительной влажности $f_{\rm OTH} = 50-100$ %;

3) сопоставительный анализ расчётных данных и результатов экспериментов из работ [3, 5].

На рис. 1 приведены результаты расчётных исследований отношения дальности обнаружения l тепловизора "IRIS-AWS" к метеорологической дальности видимости $S_{\rm M}$ в зависимости от величины $S_{\rm M}$. При этом условия наблюдения объекта в виде автомобиля следующие: кривая 1 - T = 263 K (зима), $f_{\rm oth} = 75$ %, $t_{\rm B} = -10$ °C; кривая 2 - T = 293 K (лето), $f_{\rm oth} = 75$ %, $t_{\rm B} = 20$ °C; кривая 3 - T = 293 K (лето), $f_{\rm oth} = 100$ %, $t_{\rm B} = 20$ °C.

Для анализа результатов расчёта и сопоставления с данными экспериментов на рис. 2 и 3 приведены термограммы наблюдаемой сцены при обнаружении автомобиля на мест-

Puc. 2

Puc. 3

ности, заимствованные из работы [5]. Рис. 2 соответствует пригоризонтному наблюдению объекта при $S_{\rm M} = 3$ км и l = 15 км, а рис. 3 получен при $S_{\rm M} = 8$ км и l = 15 км.

Заключение. Анализ и сопоставление результатов расчётов и имеющихся экспериментов приводят к следующим выводам.

По данным расчётов зависимость $l/S_{\rm M}$ от $S_{\rm M}$ в диапазоне 0,5–20 км с ростом $S_{\rm M}$ спадает. Диапазон значений $l/S_{\rm M}$ соответствует величинам от 3,64 до 0,84. Физически это объясняется тем, что: а) спектральный показатель аэрозольного рассеяния земной атмосферы $\sigma\lambda$ с ростом длины волны уменьшается, поэтому при наличии атмосферной дымки и формировании значений $S_{\rm M}$ от 0,5 до 6 км величины $\sigma\lambda$ в видимом диапазоне больше, чем в ИК-области спектра 8–14 мкм; б) исходя из этого «прозрачность» атмосферы в ИК-области спектра выше, чем в видимой части, поэтому l в замутнённой атмосфере может быть больше $S_{\rm M}$ в несколько раз; в) в области $S_{\rm M}$ от 6 до 20 км динамика спада зависимости $l/S_{\rm M}$ от $S_{\rm M}$ более плавная, что объясняется практически линейным характером соотношения $\sigma(\Delta\lambda_1)/\sigma(\Delta\lambda_2)$, где $\Delta\lambda_1 = 8-14$ мкм, $\Delta\lambda_2 = 0,4-0,8$ мкм.

По данным экспериментов (см. рис. 2 и 3) дальность обнаружения тепловизора "IRIS-AWS" в некоторых случаях (при $S_{\rm M} = 3$ км) достигала значения $l = 5S_{\rm M}$, но, на наш взгляд, устойчивое обнаружение объекта реализуется при $l/S_{\rm M} = 2$, что практически подтверждается термограммой, полученной при $S_{\rm M} = 8$ км и l = 15 км (см. рис. 3).

Сопоставление результатов расчёта дальности действия тепловизионной системы с натурными исследованиями влияния параметров оптической системы тепловизора, приёмника оптического излучения, электронной схемы обработки информации, видеоконтрольного устройства, поля температур объектно-фоновой обстановки и слоя атмосферы на дальность действия показывает, что предложенная в [1] методика может быть использована как в теории, так и в инженерной практике проектирования, расчёта и моделирования работы тепловизионных систем и ИК-систем наблюдения.

СПИСОК ЛИТЕРАТУРЫ

- 1. Тымкул В. М., Тымкул Л. В., Фесько Ю. А., Поликанин А. Н. Дальность действия тепловизионных систем. Ч. І. Методика расчёта // Автометрия. 2014. **50**, № 4. С. 96–101.
- 2. **Иванов В. П., Курт В. И., Овсянников В. А., Филлипов В. Л.** Моделирование и оценка современных тепловизионных приборов. Казань: Отечество, 2006. 594 с.
- 3. Шипунов А. Г., Семашкин Е. Н. Дальность действия, всесуточность и всепогодность телевизионных и тепловизионных приборов наблюдения. М.: Машиностроение, 2011. 216 с.
- 4. Holst G. C. Electro-Optical Imaging System Performance. USA: SPIE Press, 2003. 455 p.
- 5. Шипунов А. Г., Семашкин Е. Н., Черноусов А. А. и др. Экспериментальные исследования дальности действия и всепогодности телевизионных и тепловизионных приборов наблюдения // Оптический журнал. 2007. 74, № 9. С. 61–65.

Поступила в редакцию 24 мая 2013 г.