УДК 534.24, 661.666.1

ИССЛЕДОВАНИЕ ИНДУКЦИОННОГО ПЕРИОДА ПРОЦЕССА ОБРАЗОВАНИЯ НАНОДИСПЕРСНЫХ УГЛЕРОДНЫХ ЧАСТИЦ ПРИ ПИРОЛИЗЕ УГЛЕВОДОРОДОВ ЗА ФРОНТОМ ОТРАЖЕННОЙ УДАРНОЙ ВОЛНЫ

А. Г. Шайтанов, В. Ф. Суровикин

Институт проблем переработки углеводородов CO PAH, 644040 Oмск shagomsk@ihcp2.oscsbras.ru

Проведены эксперименты, позволяющие оценить время изотермического превращения модельных углеводородов (этилена, бензола, нафталина) в твердые углеродные наночастицы. Использована оптическая методика в сочетании с ударной трубой, с помощью которой экспериментально изучена длительность начальных стадий реакций до появления свечения с непрерывным спектром в видимом диапазоне. Это излучение вызвано образующейся новой (конденсированной, не газовой) фазой атомов углерода при пиролизе углеводорода за фронтом отраженной ударной волны. Измерения основаны на регистрации момента появления излучения с длиной волны $\lambda = 750$ нм. Длительности индукционных периодов заключены в диапазоне $12 \div 160$ мкс и уменьшаются с ростом температуры в диапазоне $1920 \div 2560$ К для каждого углеводорода, а также с ростом числа атомов углерода в молекуле пиролизуемого углеводорода. По результатам измерений длительностей начальных стадий реакций оценены кажущиеся энергии активации образования нанодисперсных углеродных частиц: для этилена — 204 кДж/моль, бензола — 65 кДж/моль, нафталина — 44 кДж/моль.

Ключевые слова: отраженная ударная волна, термический пиролиз индивидуальных углеводородов, индукционный период, образование предшественников дисперсных углеродных частиц.

ВВЕДЕНИЕ

Многие характеристики процессов горения и пиролиза жидких и газообразных углеводородов трудны для экспериментального изучения из-за высоких скоростей процессов, малого времени жизни и незначительных концентраций промежуточных продуктов, нанометровых размеров объектов, а также из-за несовершенства измерительных средств и методик. К таковым относится индукционный период появления нанодисперсных углеродных частиц при горении или пиролизе. Интерес к этому параметру обусловлен его фундаментальным характером и одновременно большой технологической значимостью при формировании нанодисперсных углеродных продуктов или подавлении их образования при горении топлив [1]. Цель настоящей работы — экспериментальная оценка времени изотермического превращения ряда углеводородов в полициклические ароматические углеводороды, кластеры и аромеры, которые, как предполагалось в работах [2, 3], являются основными предшественниками твердых углеродных наночастиц.

МЕТОДИКА И ЭКСПЕРИМЕНТ

Проведены измерения индукционных периодов образования дисперсных углеродных частиц при термическом разложении газообразных индивидуальных углеводородов за фронтом отраженной ударной волны. При исследованиях в проточном реакторе или в пламени моменты достижения системой фиксированной температуры и появления наноразмерных углеродных частиц установить трудно или же они определяются с большой ошибкой. В ударной трубе такие измерения обеспечивают лучшее разрешение во времени.

За начало индукционного периода принят момент достижения углеводородной смесью температуры реакции за фронтом отраженной ударной волны. Появление наноразмерных углеродных частиц связано с окончанием индукционного периода. Их появление регистрировалось оптическим методом по возникновению собственного излучения частиц с непрерывным спектром в видимом диапазоне, приближенно совпадающем со спектром черного тела. Максимум интенсивности такого излучения, согласно закону Вина, при температу-

ре $T_5 \approx 2\,560$ K приходится на область длин волн $\lambda = 1000 \div 1100$ нм (здесь и далее в тексте нижний индекс 5 означает принадлежность параметра к области за фронтом отраженной ударной волны). Кроме непрерывного излучения твердых частиц возможно излучение возбужденных двухатомных молекул типа CN, C₂, СН, а также излучение хемилюминесцентного происхождения, которые могут существенно влиять на результаты измерений. Данные излучения наблюдаются в обычном диффузионном пламени и появляются раньше, чем непрерывное излучение твердых частиц [4], имеют полосатый спектр и в основном расположены в коротковолновой части видимого диапазона ($\lambda < 390$ нм) и в ультрафиолетовой области. В ударной трубе остающиеся после откачки реакционной камеры азот и кислород могут образовывать соединения с углеродом и водородом типа НСО, NH₂, H₂O, CO₂. Эти молекулы являются составной частью газообразных продуктов реакции и при температурах пиролиза могут давать тепловые излучения в близкой инфракрасной части спектра с $\lambda = 2\,800 \div 4\,400$ нм. Чтобы излучение с длинами волн $\lambda < 390$ нм и $\lambda > 1000$ нм не искажало результаты измерений, для регистрации момента появления излучения твердых углеродных частиц выбран узкий участок в видимом диапазоне с центром при $\lambda = 750$ нм вблизи области, где интенсивность излучения максимальна. При выборе участка учитывали положение максимума чувствительности фотоумножителя, как в работе [5], и пропускающую способность оптической системы.

Схемы установки и оптических измерений в ударной трубе приведены на рис. 1. Параметры смеси за фронтом отраженной ударной волны (температура T_5 и плотность ρ_5) рассчитывали с точностью ± 3 %. Расчеты выполнены по уравнениям, описывающим распространение плоских стационарных падающих и отраженных волн в смесях идеальных газов с учетом зависимости энтальпии смеси от температуры методом последовательных приближений. В расчетах использовали экспериментальную скорость падающей волны, которую измеряли с помощью двух датчиков давления, установленных на определенном расстоянии друг от друга. Тепловые эффекты реакций не учитывались в связи с использованием сильно разбавленных смесей. Детальное описание методики, отдельных узлов установки и расчетов приведены в работах [6-9].

Оптический датчик 3 (см. рис. 1, 6) имел такие же внешние размеры, как датчики давления 8 (см. рис. 1,a), и устанавливался на минимально возможном расстоянии от торца трубы (0.028 м). Диаметр внутреннего светопроводящего канала не превышал 0.008 м. Уплотнительная прокладка (одновременно световод) изготавливалась из плоского стекла толщиной 0.004 м и диаметром 0.012 м и имела полосу пропускания 300 ÷ 820 нм. В качестве монохроматора использовали монохроматор «Спекол» с дифракционной решеткой и спектральной шириной щели ≈4.0 нм. Рабочая область длин волн фотоэлектронного умножителя составляла 380 ÷ 830 нм. Стабилизированный источник питания (на схеме не показан) обеспечивал ускоряющее напряжение до 2.8 кВ. Усилители собраны по стандартной схеме с коэффициентом усиления $S \approx 10 \div 15$. Двухлучевой осциллограф работал в ждущем режиме с запуском развертки от датчиков давления, расположенных на расстоянии $0.5 \div 1.4$ м от торцевой поверхности. На верхний луч подавался сигнал давления с торцевого датчика, на нижний — оптический сигнал.

В сечении наблюдения А-А измерялись промежутки времени между приходом скачка давления за фронтом отраженной ударной волны (условное начало нагрева) и появлением световой эмиссии с непрерывным спектром на участке с длиной волны $\lambda = 750$ нм (ширина участка 4 нм). Регистрируемое излучение обусловлено образованием в реакционном объеме раскаленных квазикристаллических углеродных частиц, размеры которых в момент возникновения излучения ориентировочно составляют $2 \div 10$ нм [6]. На осциплограммах (см. рис. $1, \delta$) начальная точка временного промежутка определялась по переднему фронту отраженной волны, конечная — по положению точки, в которой амплитуда сигнала эмиссии составляет ≈5 % от максимума. Эти времена задержек эмиссии условно приравнивались к индукционным периодам появления наноразмерных твердых частиц углерода. Изучались 2%-е индивидуальные смеси этилена, бензола и нафталина с аргоном в диапазоне температур $T_5 = 1920 \div 2560$ К. Оценка температуры T_5 проводилась по измерениям скорости падающей ударной волны с точностью не хуже ±20 К. Разброс давлений всех изученных смесей за фронтом отраженной ударной волны со-

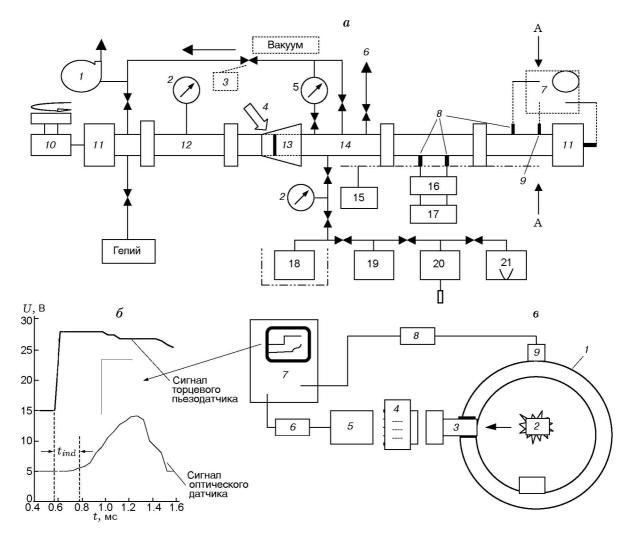


Рис. 1. Общая схема ударной трубы (a), типичные осциллограммы давления и световых сигналов (b), схема регистрации оптического излучения с $\lambda = 750$ нм в сечении трубы A-A (в):

a: 1 — вакуумный насос, 2 — манометры, 3 — запорные и напускные вентили, 4 — пневматический плунжер, 5 — вакуумметр, 6 — сброс в атмосферу, 7 — двухлучевой осциллограф, 8 — пьезодатчики давления, 9 — оптический датчик (в сечении наблюдения A-A), 10 — механическая лебедка с электроприводом, 11 — концевые фланцы, 12 — камера высокого давления (КВД), 13 — соединительная секция с диафрагмой, 14 — обогреваемая камера низкого давления (КНД, реакционная), 15 — терморегулятор и обогреватель, 16 — усилитель, 17 — частотомер, 18 — обогреваемая емкость для приготовления смесей нафталина с аргоном, 19 — баллон с аргоном, 20 — обогреваемый баллон для приготовления смесей бензола с аргоном (внизу обозначен шприц для ввода бензола), 21 — U-образный ртутный манометр; 6: 1 — корпус ударной трубы, 2 — излучающий дисперсный углерод (точка наблюдения), 3 — оптический датчик, 4 — монохроматор с дифракционной решеткой и спектральной щелью, 5 — фотоумножитель, 6, 8 — усилители, 7 — двухлучевой осциллограф, 9 — датчик давления, установленный во фланце

ставлял $(0.98 \div 1.54) \pm 0.01$ бар.

Отсутствие излучения с длиной волны $\lambda=750$ нм в контрольных опытах (при температурах T_5 , меньших температуры порога образования твердых углеродных частиц, и при настройках регистрирующей аппаратуры на максимальную чувствительность) свидетельствует, что излучения промежуточных и побоч-

ных высокомолекулярных продуктов не вносят заметных искажений в результаты измерений при пиролизе вышеназванных углеводородов в данном участке спектра.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Результаты измерений длительностей за-

Углеводород	$[C]_0, cm^{-3}$	$E_a,$ кДж/моль	$t_{ind}, \ _{ ext{MKC}^*}$	$T_5,~{ m K}$
Этилен	$2.5\cdot 10^{18}$	204.5	150	1 920
			145	1960
			130	$2\ 040$
			120	$2\ 080$
			100	$2\ 170$
Бензол	$0.35\cdot 10^{16}$	65.3	98	1 920
			95	$2\ 000$
			82	$2\ 080$
			70	$2\ 170$
			30	2700
Нафталин	$3\cdot 10^{16}$	43.6	72	2 040
			40	$2\ 220$
			30	$2\ 460$
			12	2560

 Π р и м е ч а н и е. *Значения индукционных периодов t_{ind} приведены с учетом времени, необходимого для прихода отраженной ударной волны в сечение наблюдения A-A.

держек эмиссии излучения возникающих углеродных частиц для смесей этилена, бензола и нафталина с аргоном при $\lambda = 750$ нм и их зависимостей от температуры T_5 приведены в таблице и на рис. 2. Условия проведения опытов и концентрации углеводородов ($\approx 2\%$) подбирались таким образом, чтобы концентрации атомов углерода при нагреве за фронтом отраженной ударной волны были приблизительно равны или изменялись незначительно. Температура варьировалась в диапазоне 1920 ÷ 2560 К, т. е. всегда превышала соответствующие пороги образования углерода для этих углеводородов. На рис. 2, б нанесены также длительности задержек эмиссии появления дисперсного углерода для пиролиза смеси бензола с аргоном на другой волне спектра эмиссии — $\lambda = 800$ нм. Опыты с $\lambda = 800$ нм выполнены при $T_5 = 2120$, 2450 и 2630 К с целью определения влияния длины волны на длительность начальной стадии процесса при определении их одним методом. На этом же рисунке приведены результаты экспериментов [10] с $\lambda = 632.8$ нм, в которых измерялись индукционные периоды для 2%-й смеси бензола.

Как следует из рис. 2, нафталин характеризуется большей склонностью к образованию углерода, чем бензол: индукционные периоды

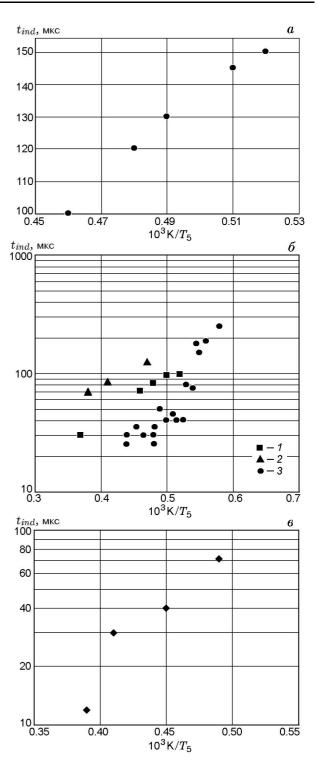
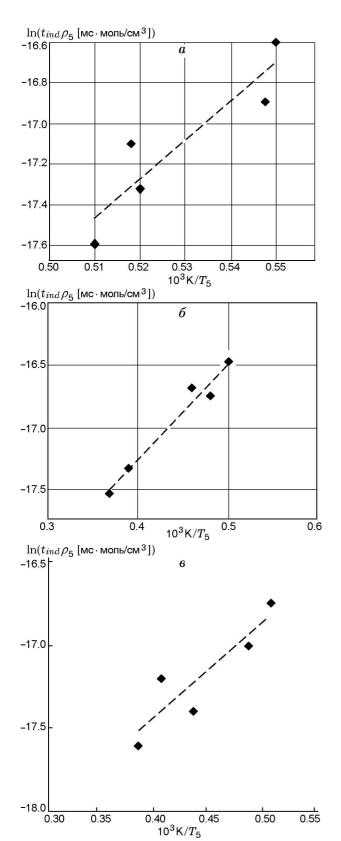


Рис. 2. Зависимости длительности индукционного периода образования дисперсного углерода от температуры за фронтом отраженной ударной волны в 2%-й смеси этилена с аргоном (a), 2%-й смеси бензола с аргоном (б) и 2%-й смеси нафталина с аргоном (в):

 $\begin{array}{l} a \longrightarrow \lambda = 750 \text{ mm, } [\mathrm{C}] = (2 \div 2.5) \cdot 10^{17} \text{ cm}^{-3}; \\ 6: 1 \longrightarrow \lambda = 750 \text{ mm, } [\mathrm{C}] = (1.3 \div 2.1) \cdot 10^{17} \text{ cm}^{-3}, \\ 2 \longrightarrow \lambda = 800 \text{ mm, } 3 \longrightarrow \lambda = 632.8 \text{ mm } [10]; \\ 6 \longrightarrow \lambda = 750 \text{ mm, } [\mathrm{C}] \approx 3 \cdot 10^{17} \text{ cm}^{-3} \end{array}$

образования дисперсного углерода из нафталина примерно вдвое короче при измерениях на одинаковой длине волны. Это хорошо видно при сравнении значений t_{ind} на рис. 2,6 и 2,6 при $\lambda=750$ нм в точке $1\,000/T_5\approx 0.46$. Аналогичные утверждения можно сделать и в отношении этилена и бензола: у последнего в практически одинаковых по температуре T_5 условиях (и одинаковых концентрациях по атомам углерода) индукционный период на 30~% меньше, чем у этилена (ср. рис. 2,a и рис. 2,6: в точке $T_5=2\,180~\mathrm{K}~(1\,000/2\,180=0.46)$ для этилена $t_{ind}\approx 100~\mathrm{mkc}$, а для бензола $\approx 70~\mathrm{mkc}$).


Результаты измерений по t_{ind} для бензола на разных длинах волн ($\lambda = 632.8, 750$ и 800 нм) приведены на рис. 2, б. Из рисунка видно, что существует зависимость между временем задержки и длиной волны, на которой проведены измерения. Индукционные периоды (в области $T_5 > 2\,000\,\mathrm{K}$), измеренные в настоящей работе на длине волны $\lambda = 750$ нм, в $1.5 \div 2$ раза выше, чем в работах [10, 11] с $\lambda = 632.8$ нм, в которых регистрировали поглощение лазерного излучения появляющимися углеродными частицами диаметром до 20 нм. Результаты [10, 11] получены в близких условиях пиролиза по температуре, давлению за фронтом отраженной ударной волны и концентрации углерода, но с использованием другого физического явления, лежащего в основе оптических измерений. Заметим, что аналогичная зависимость проявилась для бензола и при измерениях индукционного периода одним физическим методом, но на разных длинах волн (ср. результаты настоящей работы на рис. 2, б для длин волн 800 и 750 нм, полученные по регистрации собственного излучения частиц). Для толуола это отмечалась ранее в [12], а для бензола — в [13]. В работах [12, 13] для определения t_{ind} применяли рассеяние внешнего светового излучения. Сложный характер поведения оптической плотности изучаемых объектов в этих ситуациях (в том числе, зависимость от размеров самих этих объектов) не изучен, и требуются дополнительные экспериментальные и теоретические исследования для объяснения наблюдаемых расхождений (или зависимостей от λ).

Тем не менее, поскольку наклон экспериментальных зависимостей $t_{ind}(1\,000/T_5)$ в процессах пиролиза бензола в ударной трубе в этом диапазоне температур приблизительно одинаков, а получены они независимыми методами на разных длинах волн, сделана попыт-

ка оценить другой важный кинетический параметр реакций образования наночастиц углерода — кажущуюся энергию активации E_a . Этот параметр отражает суммарную энергию активации (инициирования) цепных газофазных и, возможно, гетерогенных реакций, протекающих одновременно в начальной стадии пиролиза (в индукционный период) перед появлением светящихся твердых частиц углерода. Величина E_a является важнейшей энергетической характеристикой появления и роста полициклических ароматических углеводородов, аромеров и кластеров — предшественников частиц углерода, и ее оценка для углеводородов разного строения в одинаковых условиях пиролиза (что реализовано в настоящей работе) представляет несомненный интерес. Полученные нами в опытах данные по временам задержки излучения обработаны с помощью уравнения типа Аррениуса: $t_{ind}\rho_5 \sim \exp(E_a/RT_5)$, где t_{ind} задержка излучения, мс; R — газовая постоянная, $8.3 \, \text{Дж}/(\text{K} \cdot \text{моль}); \, \rho_5$ — плотность смеси за фронтом отраженной ударной волны; E_a/R температурный коэффициент, где E_a имеет размерность энергии и относится к инициированию реакций, образующих светящиеся твердые частицы углерода. Линейная аппроксимация экспериментальных значений для этих углеводородов проведена методом наименьших квадратов (рис. 3). По наклонам этих прямых для интервала $T_5 = 2000 \div 2500$ K определены кажущиеся (брутто) энергии активации: для нафталина — ≈ 44 кДж/моль, бензола — ≈ 65 кДж/моль, этилена — ≈ 204 кДж/моль.

Экспериментальные результаты по индукционным периодам для исследованных углеводородов в зависимости от числа атомов углерода в исходной молекуле углеводорода представлены на рис. 4. Для построения этой кривой привлечены данные других авторов: а) для метана при давлении 2 ÷ 3 бар и близкой концентрации атомов углерода — из работы [14]; б) для этана при давлении $\approx 1 \div 2$ бар, близкой концентрации и диаметре трубы 57 мм из работы [5]; в) для толуола при давлении 8 ÷ 13 бар и большой концентрации углерода $[{
m C}] pprox 5.6 \cdot 10^{17} {
m cm}^{-3}$ в трубе меньшего диаметра $(d \approx 50 \text{ мм})$ — из [12]; г) для ацетилена при высоком давлении ≈ 60 бар — из [13]. Все значения периода индукции взяты для температуры 2 100 К. Полученная кривая описывается экспоненциальной зависимостью

$$t_{ind} \approx 187 \cdot \exp(-0.17n)$$
 [MKC],

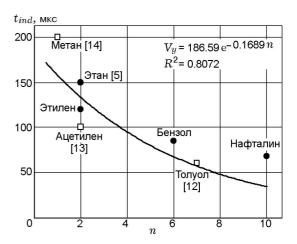


Рис. 4. Зависимость индукционных периодов образования конденсированного наноуглерода из разных углеводородов (метана, ацетилена, этилена, этана, толуола, бензола, нафталина) при температуре $T_5 \approx 2\,100$ K за фронтом отраженной ударной волны от числа атомов углерода n в молекулах исходных углеводородов

где n — число атомов углерода в молекуле углеводорода, коэффициент достоверности аппроксимации $R^2 \approx 0.81$.

Сопоставляя результаты, приведенные на рис. 4, по относительному расположению значений энергии активации (взяты из этих же работ) для насыщенных (метан, этан) и ненасыщенных (этилен, ацетилен) углеводородов, а также для представителей ароматического ряда (толуол, бензол, нафталин) при одной и той же температуре и примерно близких концентрациях атомов углерода, получим для последовательности энергий активации в ряду метан — этилен — этан — толуол бензол — нафталин следующее соотношение: 403 : 204 : 150 : 162 : 65 : 44. Анализ данных по индукционному периоду и энергии активации для сравниваемых углеводородов показал следующее: а) возрастает склонность к образованию частиц дисперсного угле-

Рис. 3. Обработка экспериментальных данных с целью определения энергии активации: точки — данные настоящей работы; a = 2~% этилена, $[C] = (2 \div 2.5) \cdot 10^{17}~\mathrm{cm}^{-3}$, линия — аппроксимация, y = 24.6x - 30; $\delta = 2~\%$ бензола, $[C] = (1.3 \div 2.1) \cdot 10^{17}~\mathrm{cm}^{-3}$, линия — аппроксимация, y = 7.85x - 20.41; $\delta = 2~\%$ нафталина, $[C] \approx 3 \cdot 10^{17}~\mathrm{cm}^{-3}$, линия — аппроксимация, y = 4.7x - 19.3

рода при пиролизе в последовательности: метан; этилен; этан или толуол; бензол; нафталин; б) вероятно преобладание реакций увеличения ароматичности (конденсации колец) в начальный (активационный) период углеродообразования при пиролизе ароматических углеводородов в ударной трубе (так как энергии в интервале $44 \div 162$ кДж/моль явно недостаточно для отрыва водорода, что наблюдается при пиролизе метана с энергией активации 403 кДж/моль); в) важна роль связей С—С в образовании углеродных частиц, которая определяется из сравнения энергий активации: для метана 403 кДж/моль (нет связи С—С), что более чем в два раза выше, чем у этана -150 кДж/моль (одинарная С—С) или у толуола — $\approx 162 \text{ кДж/моль}$ (чередование C—C=C).

Результаты измерения индукционных периодов для смеси этилен — аргон (рис. 5), полученные по настоящей методике, были сопоставлены с результатами работ [15, 16], в которых проводили измерения индукционных периодов при пиролизе смеси этилена с кислородом и аргоном (соотношение компонентов см. в подписи к рис. 5). Индукционные периоды образования углеродных частиц из этилена при пиролизе несколько превышают значения, полученные

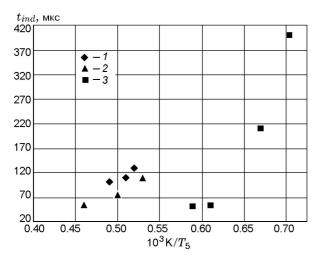


Рис. 5. Зависимости индукционных периодов образования дисперсного углерода из этилена от температуры за фронтом отраженной ударной волны T_5 при пиролизе и окислительном пиролизе:

1 — широлиз 2 % этилена, [C] = $(1.6 \div 2.0) \times 10^{17}~{\rm cm}^{-3}$, настоящая работа; 2 — окислительный пиролиз этилена, 0.5 % ${\rm C_2H_4}$ + 1.0 % ${\rm O_2}$ + 98.5 % Ar [12]; 3 — окислительный пиролиз этилена, 1 % ${\rm C_2H_4}$ + 1.5 % ${\rm O_2}$ + 97.5 % Ar [13]

при окислительном пиролизе смеси с соотношением $C/O \approx 0.5$ в работе [15]. В работе [16] индукционные периоды измерены в «низкотемпературной» области $(T_5 = 1\,100 \div 2\,000 \text{ K})$ методом регистрации инфракрасного излучения на длине волны $\lambda = 4240$ нм, испускаемого появляющимися при окислительном пиролизе молекулами СО2. Экстраполяция индукционных периодов [16] в область исследованных нами температур $T_5 \approx 1920 \div 2560$ K дает более низкое значение по сравнению с полученными в настоящей работе. Соотношение этих экспериментальных значений не соответствует теоретическим представлениям, согласно которым добавление к термическим реакциям пиролиза этилена окислительных реакций на ранних стадиях пиролиза должно, скорее, приводить к удлинению индукционных периодов и, следовательно, к обратному соотношению индукционных периодов реакций пиролиза и окислительного пиролиза.

Сравнение индукционных периодов при пиролизе в ударной трубе с данными, полученными при термоокислительном пиролизе и факельном горении углеводородов, показывает сходство результатов в том, что касается уменьшения периодов индукции в ряду метан, этилен, бензол, нафталин, антрацен [17–20].

выводы

Измерение индукционных периодов, предшествующих образованию дисперсного углерода за фронтом отраженной ударной волны при пиролизе углеводородов разной молекулярной структуры, по регистрации собственного непрерывного излучения конденсированных частиц в участке спектра ($\lambda=750$ нм) дали следующие результаты:

- ullet диапазон периода индукции начальных стадий при пиролизе этилена, бензола и нафталина составляет $12\div 160$ мкс, для каждого углеводорода значения периода индукции уменьшаются с ростом температуры в диапазоне $1920\div 2\,560$ К. Установлена прямая связь измеряемых времен задержки излучения от длины волны, на которой проводятся измерения;
- период индукции начальных стадий при пиролизе вышеназванных углеводородов уменьшается с ростом числа атомов углерода в молекуле исходного углеводорода. Кривая, полученная при $T\approx 2\,100$ K, описывается экспоненциальной зависимостью типа $t_{ind}\approx 187\mathrm{e}^{-0.17n};$

• оценка экспериментальных данных по индукционным периодам показывает, что энергии активации зарождения наноразмерных углеродных частиц из углеводородов разного строения при пиролизе составляют \approx 44, 65, 204 кДж/моль для нафталина, бензола и этилена. Экспериментальные данные удовлетворительно описываются уравнением вида $t_{ind}\rho_5 \sim \exp(E_a/RT_5)$, где ρ_5 и T_5 — плотность и температура (К) газовой реакционной смеси за фронтом отраженной ударной волны, E_a — кажущаяся энергия активации, кДж/моль, R — газовая постоянная.

ЛИТЕРАТУРА

- Donnet J.-B., Bansal R. C., Wang M.-J. Carbon black. — Science and Technology. Sec. ed. — New York: Dekker, 1993.
- Lafleur A. L., Taghizadeh K., Howard J. B., et al. Characterization of flame-generated C₁₀ to C₁₆₀ polycyclic aromatic hydrocarbons by atmospheric pressure chemical ionization mass spectrometry with liquid introduction via heated nebulizer interface // J. Amer. Soc. Mass-Spectrom. 1996. V. 7. P. 276–286.
- 3. **Яндер Х.**, **Вагнер Г.** Дж. Образование ионов, кластеров, нанотрубок и частиц сажи в углеводородном пламени // Физика горения и взрыва. 2006. Т. 42, № 6. С. 82–88.
- 4. **Гейдон А. Г., Вольфгард Х. Г.** Пламя его структура, излучение и температура. М.: Гос. науч.-техн. изд-во лит. по черн. и цв. металлургии, 1959.
- Gosling A. J., Lampard D., Fussey D. E. A shock tube study of formation of carbons particles during the pyrolysis of hydrocarbons // Combust. Inst. European Symp., 1973. — London; New York: Academic Press, 1973. — P. 388–393.
- Суровикин В. Ф., Шайтанов А. Г. Образование и рост частиц дисперсного углерода при пиролизе этилена, бензола и нафталина в отраженной ударной волне // Физика горения и взрыва. 2007. Т. 43. № 4. С. 82–89.
- взрыва. 2007. Т. 43, № 4. С. 82–89.
 7. Gardiner W. C, Jr. Walker B. F., Wakefield C. B. Mathematical methods for modeling chemical reactions in shock waves // Shock Waves in Chemistry, A. Lifshits (Ed.), Marcel Dekker, 1981. Р. 352–354.

- 8. **Ландау Л. Д., Лифшиц Е. М.** Механика сплошных сред. 2-е изд. М.: Гостехиздат, 1954. С. 407, 599.
- 9. **Солоухин Р. И.** Ударные волны и детонация в газах. М.: Гос. изд-во физ.-мат. лит., 1963. С. 18.
- 10. Starke R., Roth P. Soot particles Sizing by LII during shock tube pyrolysis of C_6H_6 // Combust. Flame. 2002. V. 127. P. 2278–2285.
- 11. Basile G., Rolando A., D, Alessio A., D, Anna A., Minutolo P. Coagulation and carbonization processes in slightly sooting premixed flames // Proc. 29th Symp. on Combustion: Abstr. of Symp. Paper. 2007. P. 104.
- 12. **D' Alessio et al.** Absorption spectroscopy of toluene pyrolysis // Optics and Laser in Engineering. 2002. V. 37. P. 495–508.
- 13. Knorre V. G. et al. Soot formation in the pyrolysis of acetylene/benzene and acytelene/ hydrogen mixtures at high concentrations // Twenty-Sixth Symp. (Intern.) on Combustion. Pittsburgh: The Combustion Inst., 1996. P. 2303–2310.
- 14. **Hidaka Y. et al.** Shock-tube and modeling study of methane pyrolysis and oxidation // Combust. Flame. 1999. V. 118. P. 340–358.
- Homer J. B., KistiakowskyG. B. Oxidation and Pyrolysis of Ethelene in Shock Waves // J. Chem. Phys. 1967. V. 47. P. 5290–5205
- 16. **Hidaka Y. et al.** Shock-tube and modeling study of ethylene pyrolysis and oxidation // Combust. Flame. 1999. V. 117. P. 755–776.
- 17. **Суровикин В. Ф., Теснер П. А.** Образование сажи при разложении углеводородов в высокотемпературном потоке продуктов полного сгорания // Газовая пром-сть. 1965. № 5. С. 44.
- 18. **Tesner P. A., Shurupov S. V.** Soot formation in isothermic pyrolysis of mixtures // Combust. Sci. Technol. 1993. V. 92. P. 61.
- 19. **Теснер П. А., Шурупов С. В.** Кинетика сажеобразования при пиролизе углеводородов и их смесей // Труды Междунар (4-го национального) симпоз. по адсорбции и хроматографии макро-молекул. М.: Изд-во ПАИМС, 1994. С. 133.
- 20. **Суровикин В. Ф.** Пути развития промышленности технического углерода. М.: Изд-во ордена Ленина НИИ шинной пром-сти, 1976. С. 126.