2015. Том 56, № 4

Июль

C. 689 – 697

УДК 548.33:538.911:546.02

СТРУКТУРНЫЕ ОСОБЕННОСТИ ФЕРРИТ-ХРОМИТОВ МЕДИ

Л.М. Плясова¹, В.И. Зайковский^{1,2}, Г.Н. Кустова¹, Т.П. Минюкова¹, И.Ю. Молина¹, Н.В. Штерцер^{1,2}, Т.М. Юрьева¹

¹Институт катализа им. Г.К. Борескова СО РАН, Новосибирск, Россия E-mail: pls@catalysis.ru ²Новосибирский национальный исследовательский государственный университет, Россия

Статья поступила 27 июня 2014 г.

Комплексом физико-химических методов проведено исследование структурных особенностей и распределения катионов в кристаллографических позициях хромита, феррита меди и совместных хромит-ферритов со структурой шпинели, полученных терморазложением при 600 и 900 °C совместных гидроксосоединений меди, железа и хрома состава $Cu^{2+}/(Fe^{3+}+Cr^{3+}) = 1/2$ и различным соотношением Fe^{3+}/Cr^{3+} . Показано, что образующиеся фазы шпинельной структуры существуют в двух модификациях — кубической и тетрагональной в зависимости от соотношения Fe^{3+}/Cr^{3} . Проанализирована кристаллографическая связь между кубической и тетрагонально-искаженной фазами шпинели. Распределение катионов по кристаллографическим позициям, характер и степень тетрагонального искажения шпинели Cu—Fe—Cr зависит от отношения Fe^{3+}/Cr^{3+} : при соотношении $Fe^{3+}/Cr^{3+} > 1$ отношение параметров элементарной ячейки $c^*/a^* > 1$, при $Fe^{3+}/Cr^{3+} < 1$ отношение $c^*/a^* < 1$, при $Fe^{3+}/Cr^{3+} = 1$ шпинель является кубической независимо от температуры термообработки. Координация ионов меди кислородом в структуре шпинели существенно влияет на каталитические свойства образцов в реакции низкотемпературной паровой конверсии CO.

DOI: 10.15372/JSC20150405

Ключевые слова: Cu—Fe—Cr шпинель, распределение катионов в структуре шпинели, структурный переход в шпинели, паровая конверсия CO.

введение

Совместные оксиды Cu—Fe—Cr привлекают внимание не только своими магнитными свойствами, но также разнообразными окислительно-восстановительными, в том числе каталитическими свойствами [1]. Разнообразие свойств оксидов является следствием сочетания в пределах одной структуры (шпинели) ионов Cu^{2+} , Fe³⁺ и Cr³⁺, проявляющих явно выраженные конкурирующие предпочтения к различным конфигурациям ближайшего окружения ионами кислорода.

Известно, что хромит меди является нормальной шпинелью, для которой характерно размещение ионов меди в тетраэдрических кристаллографических позициях шпинели независимо от полиморфной модификации [2, 3]. Полиморфный переход тетрагональной структуры шпинели (пр. гр. $I4_1/amd$, a = 6,0336 Å, c = 7,782 Å [4]) в кубическую (пр. гр. Fd3m, a = 8,344 Å [5]) происходит при ~560 °C вследствие разориентации тетраэдров [CuO₄] за счет теплового движения [6]. В работе [7] дифрактограмма хромита меди проиндицирована в рамках тетрагонально-

[©] Плясова Л.М., Зайковский В.И., Кустова Г.Н., Минюкова Т.П., Молина И.Ю., Штерцер Н.В., Юрьева Т.М., 2015

искаженной кубической структуры шпинели с параметрами ячейки $a^* = 8,537$ Å, $c^* = 7,782$ Å. Феррит меди также существует в двух модификациях — кубической [8] и тетрагонально-искаженной [9] структуры шпинели. Температура полиморфного перехода по литературным данным составляет ~ 460 [10] и 480 °C [11]. Для феррита меди методом прецизионной нейтронографии [10] показано, что CuFe₂O₄ — обращенная шпинель независимо от полиморфной модификации.

В литературе отсутствуют данные о влиянии соотношения Fe³⁺/Cr³⁺ на степень обращенности феррит-хромитов меди со структурой шпинели и характер искажения структуры.

В настоящей работе исследуются структурные особенности оксидов Cu—Fe—Cr шпинельной структуры с различным отношением Fe³⁺/Cr³⁺, полученных терморазложением совместных гидроксосоединений. Продемонстрирована зависимость каталитических свойств в отношении реакции паровой конверсии монооксида углерода от структурных параметров. Результаты исследования каталитических свойств более детально изложены в отдельной статье.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Образцы получали термообработкой совместных гидроксосоединений, приготовленных методом соосаждения компонентов из 10%-х водных растворов азотнокислых солей при постоянных значениях pH и температуры. В случае хромита меди для обеспечения полноты взаимодействия ионов меди с ионами хрома содержание хрома увеличено на ~5%. Термообработку проводили на воздухе при 600—650 °C и при 900 °C в течение 4 ч. Охлаждение до комнатной температуры проходило со скоростью 2—3 град./мин. Химический анализ состава полученных образцов выполнен методом атомно-эмиссионной спектроскопии (АЭС). В табл. 1 приведены шифры и химический состав образцов. Прокаленные образцы представляли собой нанодисперсные порошки.

Дифференциальный термический анализ (ДТА) дегидратации образцов проводили на установке термического анализа Netzsch STA-409 в токе аргона при скорости повышения температуры 10 К/мин.

Рентгенодифракционные исследования выполнены на дифрактометре D-8 (Bruker) в Си K_{α} -излучении (графитовый монохроматор на отраженном пучке). Съемки проведены методом сканирования по точкам, с шагом 0,02—0,05° 20 и временем накопления 5 с в точке. Точность измерения углов $\Delta \theta = 0,01$ —0,02°, межплоскостных расстояний – $\Delta d \sim 10^{-3}$ Å.

Электронно-микроскопическое исследование высокого разрешения (ЭМВР) образцов проводили на просвечивающем электронном микроскопе JEM-2010 (JEOL) (разрешение 0,14 нм, ускоряющее напряжение 200 кВ). Для определения концентрации соответствующих элементов и их соотношения использовали локальный энерго-дисперсионный рентгеновский микроанализ (EDX-анализ). Образцы для исследований были нанесены на Al сетку.

Инфракрасные спектры поглощения записаны на Фурье-спектрометре Bomem MB-102 в области 250—4000 см⁻¹, на спектрометре Bruker — в области 100—300 см⁻¹. Образцы для съемки готовили методом прессования в CsI и полиэтилене соответственно.

Таблица 1

Образец		иичес тав, а	кий т.%	Область эндотермического	Область экзотермического
_	Cu	Fe	Cr	эффекта, °С	эффекта, °С
CuCr ₂	30	0	70	95—300	600—660
Cu Fe _{0,25} Cr _{1,75}	34	8	58	95—430	540—670
$CuFe_{1,0}Cr_{1,0}$	34	33	33	100—400	500—590
CuFe _{1,75} Cr _{0,25}	34	58	8	95—330	480—540
CuFe ₂	33	67	0	100—300	420—480

Шифры, химический состав образцов и положения эффектов по данным ДТА

690

Каталитические свойства в отношении реакции паровой конверсии CO исследовали на катализаторах CuFeCr, прокаленных при T = 600 °C, в проточной лабораторной установке с газохроматографическим анализом реагентов. Реакцию проводили при давлении 1 атм, используя исходную рабочую смесь состава CO:H₂O:H₂ = 8:42:50. Константы скорости реакции определяли для катализаторов, достигших стационарной активности (после 25 ч непрерывной работы). Значения кажущейся энергии активации реакции получены в области температур 150—210 °C.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Исследование гидроксосоединений. Типичный вид термических кривых дифференциальной термогравиметрии (ДТГ) и дифференциальной сканирующей калориметрии (ДСК) представлен на рис. 1 для сухого образца CuFe_{1,0}Cr_{1,0}. В табл. 1 приведены области температур, в которых происходят превращения гидроксосоединений. В области 95—430 °C на кривых ДСК наблюдаются эндотермические эффекты, характеризующие удаление слабосвязанной и адсорбированной воды, потеря массы по кривым ДТГ составляет 15—25 %. В области 420—670 °C на кривых ДСК наблюдаются слабые экзотермические эффекты, сопровождающиеся потерей массы 1—5 мас.%. Положения эффектов ДСК и данные РФА дают основание полагать, что разложение гидроксосоединений сопровождается кристаллизацией оксидов шпинельной структуры.

Все сухие образцы независимо от соотношения компонентов имеют схожие дифракционные картины. Для примера на рис. 2 приведены дифрактограмма (1), на рис. 3 — микрография образца CuFe_{1,0}Cr_{1,0}. На дифрактограмме сухих образцов имеется два гало с максимумами в области ~ 35,0—35,2 и 62,1—62,3° 20, которые, согласно [12, 13], можно отнести к двум рефлексам — 002 ($d_{cp} = 2,540$ Å) и 110 ($d_{cp} = 1,483$ Å), характеризующим двухслойную гексагональную плотнейшую упаковку анионов (ГПУ), в которой катионы распределены в октаэдрических и тетраэдрических междоузлиях случайным образом. Определенные из этих рефлексов параметры гексагональной ячейки составляют a = 3,006 и c = 5,08 Å Отношение c/a = 1,69, что существенно отличается от такового для идеальной ГПУ (c/a = 1,63 [14]). Это может быть следствием разупорядочения плотнейшей упаковки за счет наличия разных анионов (O²⁻, OH⁻, CO²⁻₃, NO⁻₃). На рис. 2 (2) приведена теоретически рассчитанная [15] модельная дифрактограмма. Как видно, экспериментальная дифрактограмма хорошо совпадает с расчетной.

Методом ЭМВР для сухих образцов наблюдаются частицы размером 10—20 нм (см. рис. 3, a), состоящие из разупорядоченных наноразмерных слоистых блоков (размером <2 нм), которые видны при высоком разрешении (см. рис. 3, δ). В межблочные границы могут

Рис. 1. Термические кривые сухого образца $CuFe_{1,0}Cr_{1,0}$. Съемка в аргоне, скорость подъема температуры 10°/мин

Рис. 2. Дифрактограмма образца СиFe_{1,0}Cr_{1,0}O₄ сухого (1) и результат моделирования (пр. гр. № 194, *P*6₃/*mmc*, *a* = 3,00 Å, *c* = 5,10 Å) (2)

Рис. 3. Микрографии образца CuFe_{1.0}Cr_{1.0}O₄ сухого (a, b) и результаты EDX-анализа (e)

входить H_2O и группы CO_3^{2-} и OH⁻. Средний элементный состав, по данным EDX (см. рис. 3, *в*), соответствует заложенному катионному составу.

Из полученных данных следует, что сухие образцы представляют собой совместные гидроксосоединения, имеющие двухслойную гексагональную упаковку анионов со случайным распределением катионов. Разложение гидроксосоединений с образованием совместных оксидов происходит при температуре 400—630 °C и сопровождается кристаллизаций фазы шпинели.

Исследование оксидных фаз со структурой шпинели. Методом ИК спектроскопии исследовали образцы, прокаленные на воздухе при температурах 600 и 900 °С (выше температуры кристаллизации шпинельной фазы). На рис. 4 приведены спектры образцов CuFe₂ (1), CuFeCr (2) и CuCr₂ (3), прокаленных при 600 °С (*a*) и 900 °С (*б*). Согласно данным [16, 17], полученные ИК спектры соответствуют соединениям со структурой шпинели.

ИК спектр образца CuCr₂, прокаленного при 600 °C, соответствует тетрагонально-искаженной медно-хромовой шпинели [18]. Полосы поглощения (п.п.) 621, 607, 557, 523 см⁻¹ относятся к колебаниям октаэдрической группы CrO₆; п.п. 371 см⁻¹ связана со смешанными колебаниями октаэдрической CrO₆ и тетраэдрической CuO₄ групп. Полосы поглощения 191, 125 см⁻¹ характеризуют колебания тетраэдрической группы CuO₄ [19].

Для образца CuFe₂, прокаленного при 600 °C (см. рис. 4, *a*, *1*) и 900 °C (см. рис. 4, *б*, *1*), согласно [17], п.п. в области 582 см⁻¹ в спектре образцов CuFe₂ относится к валентным модам октаэдрических и тетраэдрических положений катионов; п.п. в области 400 см⁻¹ — к валентным

Рис. 4. ИК спектры образцов, прогретых при 600 °С (*a*) и 900 °С (*б*): CuFe₂ (*1*), CuFe_{1.0}Cr_{1.0} (*2*), CuCr₂ (*3*)

модам октаэдрических положений. Полоса поглощения октаэдра расщеплена: 403, 369 см⁻¹ (см. рис. 4, *a*, *l* и 4, *б*, *l*), следовательно, в этой позиции находятся катионы разных сортов [20] — в нашем случае катионы меди и железа. В области 200 см⁻¹, где должно наблюдаться поглощение, связанное с колебаниями тетраэдрической группы, полосы поглощения отсутствуют. В ИК спектре образца CuFe₂, прокаленного при 900° (см. рис. 4, *б*, *l*), наблюдается: п.п. 590 см⁻¹, относящаяся, как отмечалось выше, к колебаниям октаэдрической и тетраэдрической групп, расщепленная п.п. октаэдрической группы 412 см⁻¹ свидетельствует о присутствии разных катионов в октаэдрической позиции, и п.п. 197, 178 см⁻¹, связанные с колебаниями тетраэдрической группы. Следовательно, образец CuFe₂, прогретый при 600 °C и 900 °C представляет собой феррит меди со структурой обращенной шпинели. Проявление после 900 °C полос, связанных с колебаниями катионов в тетраэдрических позициях, свидетельствует о том, что повышение температуры термообработки обеспечивает более высокую организованность структуры.

ИК спектры образца CuFe_{1,0}Cr_{1,0} (см. рис. 4, 2) характеризуют совместную шпинель, в октаэдрической позиции которой находятся разные катионы, поскольку п.п. октаэдра расщеплена (519, 504, 458 см⁻¹). В спектре в области 100—200 см⁻¹ присутствуют широкие п.п. 191, 125 см⁻¹, характеризующие колебания тетраэдрической группы CuO₄, которые были явно выражены в спектре CuCr₂O₄ (см. рис. 4, 3). Уширение этих полос в спектре образца CuFe_{1,0}Cr_{1,0} может указывать на понижение содержания тетраэдрических групп CuO₄, т.е. на размещение части ионов меди в октаэдрических позициях. В ИК спектрах CuFe_{1,0}Cr_{1,0} (см. рис. 4, 2) расщепленная п.п. октаэдрической группы 412 см⁻¹ свидетельствует о присутствии разных катионов в октаэдрических позициях.

Таким образом, по данным ИКС исследованные образцы после прогрева при 900 °С и охлаждения до комнатной температуры имеют следующие структуры: $CuCr_2O_4$ — нормальная тетрагонально-искаженная шпинель; $CuFe_2O_4$ — обращенная тетрагонально-искаженная шпинель; $CuFe_1O_4$ — частично обращенная шпинель.

Рентгенодифракционные исследования проводили для образцов, прокаленных при 600 и 900 °С. Результаты представлены на рис. 5 и в табл. 2.

Из рис. 5 и табл. 2 видны структурные изменения, которые происходят в образцах по мере изменения соотношения Fe^{3+}/Cr^{3+} . При соотношении $Fe^{3+}/Cr^{3+} = 1$ образуется кубическая шпинель с параметром $a^* = 8,342$ Å, а при отклонении соотношения Fe^{3+}/Cr^{3+} от 1 шпинель становится тетрагонально-искаженной. Можно ожидать, что в образцах, в которых $Fe^{3+}/Cr^{3+} \neq 1$, про-

Рис. 5. Дифрактограммы образцов, прокаленных при 900 °C, × — α-Cr₂O₃

Образец	600 °C	900 °C
CuCr ₂	$CuCr_{2}O_{4}$ (TeTp.) + $Cr_{2}O_{3}$ (~5%)	$CuCr_2O_4$ (TeTP.) + Cr_2O_3 (~5%)
	$F4_1/ddm$	$F4_1/ddm$
	<i>a</i> * = 8,532, <i>c</i> * = 7,786, <i>c</i> */ <i>a</i> * = 0,913	$a^* = 8,452, c^* = 7,787, c^*/a^* = 0,921$
	D > 1000	D > 1000
CuCr _{1,75} Fe _{0,25}	Шпинель (тетр.)	Шпинель (тетр.)
	$F4_1/ddm$	$F4_1/ddm$
	<i>a</i> * = 8,516, <i>c</i> * = 7,884, <i>c</i> */ <i>a</i> * = 0,926	<i>a</i> * = 8,501, <i>c</i> * = 7,884, <i>c</i> */ <i>a</i> * = 0,927
	D ~ 550	D > 1000
$CuCr_1Fe_1$	Шпинель (куб.)	Шпинель (куб.)
	<i>Fd</i> 3 <i>m</i> (227)	Fd3m (227)
	<i>a</i> * = 8,340, <i>c</i> */ <i>a</i> * = 1	<i>a</i> * = 8,342, <i>c</i> */ <i>a</i> * = 1
	D ~ 290	D > 1000
CuCr _{0,25} Fe _{1,75}	Шпинель (куб.) + сл. CuO	Шпинель (куб.) (80,0 %)
	Fd3m (227)	Fd3m (227),
	<i>a</i> * = 8,397, <i>c</i> */ <i>a</i> * = 1	<i>а</i> * (куб.) = 8,394,
	D ~ 180	D (куб.) > 1000 Å
		+ Шпинель (тетр.) (20 %) + сл. CuO
		$F4_1/ddm$
		$a^{*}(\text{тетр.}) = 8,289, c^{*}(\text{тетр.}) = 8,610, c^{*}/a^{*} = 1,039$
		D(тетр.) ~ 580
CuFe ₂	CuFe ₂ O ₄ (куб.) + сл.СuO	$CuFe_2O_4$ (тетр.)
	Fd3m (227)	$F4_1/ddm$
	<i>a</i> * = 8,384	<i>a</i> * = 8,280, <i>c</i> * = 8,610, <i>c</i> */ <i>a</i> * = 1,04
	D ~ 90	D ~ 900

Фазовый состав, пространственная группа (пр. гр.), параметры решетки шпинели (а и с, Å), дисперсность образцов (D, Å), прокаленных при 600 и 900 °C

каленных при 600 °C и охлажденных до комнатной температуры, методом РФА будут наблюдаться шпинели тетрагонально-искаженные с $c^*/a^* \neq 1$. Однако, как видно из табл. 2, тетрагонально искажены структуры только шпинелей с Fe³⁺/Cr³⁺ < 1, а шпинели с Fe³⁺/Cr³⁺ > 1 имеют кубическую структуру, т.е. находятся в метастабильном состоянии. Отметим, что эти шпинели, охлажденные после прогревания при 900 °C, тетрагонально искажены.

Необычный результат получен для образца состава CuCr_{0,25}Fe_{1,75}O₄ (см. табл. 2), прогретого при 900 °C: наблюдаются шпинели в двух модификациях — в кубической с $a^* = 8,394$ Å и тетрагонально-искаженной с $c^*/a^* = 1,039$. Результаты повторного приготовления и исследования образцов состава CuFe_{1,0}Cr_{1,0}O₄ и CuFe_{1,75}Cr_{0,25}O₄, прогретых при 600 °C, подтвердили данные, представленные в табл. 2. Полученные результаты свидетельствуют о влиянии режима охлаждения на наблюдаемую модификацию шпинели: охлаждение в настоящей работе в выбранном режиме обеспечивает структурную перестройку для шпинелей с Fe³⁺/Cr³⁺ < 1, а для образцов с отношением Fe³⁺/Cr³⁺ > 1 необходимо уменьшить скорость охлаждения, чтобы обеспечить переход в равновесное состояние. При Fe³⁺/Cr³⁺ = 1 шпинель имеет кубическую структуру независимо от температуры и скорости охлаждения.

Рассмотрение структуры остальных образцов, прокаленных при 600 и 900 °С, необходимо проводить в рамках кубической тетрагонально-искаженной шпинели, как сделано в работе [10] для феррита меди. На рис. 6 показана связь стандартной элементарной тетрагональной ячейки пространственной группы №141 — $I4_1/amd$, нестандартной $F4_1/ddm$ и кубической Fd3m.

Рис. 6. Связь элементарных ячеек кубической шпинели (*Fd*3*m*) с параметром э.я. *a**, тетрагонально искаженной (*F*4₁*ddm*) с параметрами э.я. *a** и *c** и тетрагональной шпинели в кристаллографически правильной установке *I*4₁/*amd* с параметрами э.я. *a* и *c*

Как известно [14], кубическая шпинель имеет в основе 32 аниона, формирующих гранецентрированный куб, в котором катионы занимают 16 октаэдрических позиций (16*d*) и 8 тетраэдрических позиций (8*a*). Кубические шпинели характеризуются пространственной группой № 227 —

Fd3m и параметром решетки *a**, одинаковым по всем трем осям *x*, *y*, *z*. При тетрагональном искажении один из параметров становится отличным от *a**, решетка становится тетрагональноискаженной с параметрами решетки *a** и *c** и описывается нестандартной пр. гр. *F*4₁/*ddm* тетрагональной сингонии, где *a** = *a* · $\sqrt{2}$ и *c** = *c* (см. рис. 6). Отношение *c**/*a** = γ характеризует степень тетрагонального искажения. Такая ячейка нестандартная, так как можно выбрать элементарную ячейку с меньшим объемом и обычно для описания тетрагональной фазы используют пространственную группу № 141 — *I*4₁/*amd*.

Отношение параметров решетки тетрагонально-искаженных шпинелей изменяется от 1,04 для CuFe₂O₄ до 0,92 для CuCr₂O₄. Согласно [10], отношение $c^*/a^* > 1$ считается надежным признаком присутствия ионов меди преимущественно в октаэдрических позициях, $c^*/a^* < 1$ — в тетраэдрических позициях. Для прокаленных при 900 °C и охлажденных до комнатной температуры образцов совместных шпинелей при частичной замене ионов железа ионами хрома и ионов хрома ионами железа тетрагональное искажение уменьшается, и для состава CuFe_{1,0}Cr_{1,0}O₄ отношение c^*/a^* становится равным 1. Следовательно, в совместных шпинелях по мере замены ионов железа ионами хрома уменьшается количество ионов меди в октаэдрических позициях. Надо полагать, что в CuFe_{1,0}Cr_{1,0}O₄ имеет место равное размещение ионов меди в тетраэдрических и октаэдрических позициях. В табл. 3 приведены расчетные данные о распределении катионов Cu, Fe, Cr по октаэдрическим и тетраэдрическим позициям.

Анализ межатомных расстояний в полиэдрах, проведенный в [10], показал, что если в кубической фазе межатомные расстояния в тетраэдрах (AO)₄ и октаэдрах (BO)₆ одинаковы, то в тетрагональной фазе происходит некоторое сжатие кислородных тетраэдров, а октаэдры вытягиваются вдоль тетрагональной оси и сжимаются в перпендикулярной плоскости. Вследствие этого происходит тетрагональное искажение структуры.

таолица з	Т	а	б	л	И	Ц	а	- 3
-----------	---	---	---	---	---	---	---	-----

для шпинелей Си—Fe—Cr (150—210 °C)					
Образец	Тетраэдры (8 <i>b</i>)	Октаэдры (16 <i>d</i>)	<i>E</i> _a , ккал/моль		
CuCr ₂	8Cu	16Cr + 0Cu	8		
CuCr _{1,75} Fe _{0,25}	7Cu + 1Fe	14Cr + 1Fe + 1Cu	9		
CuCr ₁ Fe ₁	4Cu + 4Fe	8Cr + 4Fe +4Cu	10		
CuCr _{0,75} Fe _{1,25}	3Cu + 5Fe	6Cr + 5Fe + 5Cu	12		
CuCr _{0,25} Fe _{1,75}	1Cu + 7Fe	2Cr + 7Fe + 7Cu	19		
CuFe ₂	0Cu + 8Fe	8Fe + 8Cu	24		

Распределение катионов по структурным позициям шпинели и величина энергии активации реакции паровой конверсии CO для шпинелей Cu—Fe—Cr (150—210 °C)

Аналогично, можно рассмотреть степень тетрагональности в ряду образцов при изменении соотношения Fe^{3+}/Cr^{3+} . В табл. 2 приведены параметры ячейки феррит-хромитов в нестандартной $F4_1/ddm$ установке и степень тетрагонального искажения $c^*/a^* = \gamma$. Для образца $CuFe_{1,0}Cr_{1,0}O_4 \gamma = 1$, т.е. при данном химическом составе шпинель кубическая. В ней из 16*d* октаэдрических мест 8 занято ионами Cr^{3+} , имеющими высокую энергию предпочтения к октаэдрической координации ионами кислорода, а 8*a* мест — ионами (Cu^{2+} и Fe^{3+}), т.е., по-видимому, при данном соотношении катионов все ионы меди не могут перейти в октаэдрические позиции, а только их часть (но не более половины). В табл. 3 показано расчетное распределение катионов при изменении соотношения Fe^{3+}/Cr^{3+} . Необходимо отметить, что эти рассмотрения находятся в согласии с результатами ИКС исследования.

Сопоставление распределения катионов меди с величиной энергии активации реакции паровой конверсии СО показывает, что координация катионов меди в хромит-феррите меди оказывает существенное влияние на энергетические характеристики активной формы меди. В области активности медных центров (при температуре 150—210 °C [1]) кажущаяся энергия активации реакции возрастает с 8 до 24 ккал/моль по мере увеличения содержания ионов меди в октаэдрической кислородной координации в структуре шпинели.

выводы

Комплексом физико-химических методов проведено исследование структурных особенностей и распределения катионов в кристаллографических позициях хромита, феррита меди и совместных хромит-ферритов со структурой шпинели, полученных терморазложением при 600 и 900 °C совместных гидроксосоединений меди, железа и хрома состава Cu^{2+} : $(Fe^{3+}+Cr^{3+}) = 1:2$ и различным соотношением Fe^{3+}/Cr^{3+} . Показано, что образующиеся фазы шпинельной структуры существуют в двух модификациях — кубической и тетрагональной. Распределение катионов по кристаллографическим позициям, характер и степень тетрагонального искажения шпинели CuFeCr зависит от состава образцов: при соотношении $Fe^{3+}/Cr^{3+} > 1$ отношение параметров элементарной ячейка $c^*/a^* > 1$, при $Fe^{3+}/Cr^{3+} < 1$ отношение $c^*/a^* < 1$, при $Fe^{3+}/Cr^{3+} = 1$ шпинель является кубической независимо от температуры термообработки. Проанализирована кристаллографическая связь между кубической и тетрагонально-искаженной фазами шпинели. Проведен кристаллохимический анализ распределения катионов Cu^{2+} по тетраэдрическим и октаэдрическим позициям в зависимости от соотношения Fe^{3+}/Cr^{3+} . Координация ионов меди кислородом в структуре шпинели существенно влияет на каталитические свойства образцов в реакции низкотемпературной паровой конверсии CO.

Работа выполнена при частичной поддержке фонда Российского фонда фундаментальных исследований, грант № 13-03-00469, проекта V.45.3.6 и программы Президиума РАН, проект № V.45.8.11.

Авторы выражают благодарность М.П. Демешкиной и Ю.А. Чесалову за помощь при выполнении работы.

СПИСОК ЛИТЕРАТУРЫ

- 1. Юрьева Т.М., Боресков Г.К., Поповский В.В. и др. // Кинетика и катализ. 1971. 12, № 1. С. 140.
- 2. Kennedy B.J., Zhoy Q. // J. Solid St. Chem. 2008. 181. P. 2227.
- 3. Dollase W.A., O'Neill H.St.C. // Acta Cryst. C. 1997. 53, N 6. P. 657.
- 4. PC-WIN, PDF-2, 00-034-0424.
- 5. PC-WIN, PDF-2, 00-026-0509.
- 6. *Prince E.* // Acta. Crystallogr. 1957. 10. P. 554.
- 7. Устьянцев В.М., Марьевич В.И. // Неорган. материал. 1973. 9, № 2. С. 336.
- 8. PC-WIN, PDF-2, 00-025-0283.
- 9. PC-WIN, PDF-2, 00-034-0425.
- 10. Балагуров А.М., Бобриков И.А., Мащенков М.С. и др. // Кристаллография. 2013. **58**, № 5. С. 696. [Balagurov A.M., Bobrikov B.A., Maschenkov M.S. et al. // Cryst. Rep. 2013. **58**, N 5. P. 710.]

- 11. Gomes J.A., Souse M.H., Tourinhe F.A. et al. // J. Magn. and Magn. Mater. 2005. 289. P. 184.
- 12. Эренбург Б.Г., Фатеева В.П. Миньков А.И. и др. // Изв. СО АН, Сер. хим. наук. 1981. № 2, вып.1. С. 51.
- 13. Эренбург Б.Г., Фатеева В.П., Миньков А.И. и др. // Изв. СО АН, Сер. хим. наук. 1981. № 4, вып.2. С. 54.
- 14. Гинье А. Рентгенография кристаллов: теория и практика. / Н.В. Белова. М.: Физматгиз, 1961. С. 319 320. [Guinier A. Théorie et Technique de la Radiocristallographie. Paris. Dunod, 1956. Р. 736.]
- 15. Яценко Д.А., Цыбуля С.В. // Изв. РАН. Сер. физич. 2012. 76, № 3. С. 433. [Yatsenko D.A., Tsybulya S.V. // Bull. of Rus. Acad. of Sci.: Physics. 2012. 76, N 3. Р. 382.]
- 16. White W.B., DeAngelis B.A. // Spectrochim. Acta. A. 1967. 23, N 4. P. 985.
- 17. Ishii M., Nakahira M. // Solid State Commun. 1972. 11, N1. P. 209.
- 18. Khassin A.A., Kustova G.N., Jobic H. et al. // Phys. Chem. Chem. Phys. 2009. 11. P. 6090.
- 19. Макарова О.В., Юрьева Т.М., Кустова Г.Н. и др. // Кинетика и катализ. 1993. **34**, № 4. С. 681. [*Makarova O.V., Yurieva T.M., Kustova G.N. et al.* // Kinetics and Catalysis. 1993. **34**, N 4. Р. 608.]
- 20. Hafner S.Z. // Zeitschrift für Kristallographie Crystalline Materials. 1961. 115, N 5-6. P. 331.