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Работа посвящена численным моделям, связанным с переносом излучения в ледяных облаках. Рас-
смотрена математическая модель кристаллических частиц нерегулярной формы и алгоритм моделиро-
вания таких частиц на основе построения выпуклой оболочки набора случайных точек. Исследованы
два подхода к моделированию переноса излучения в оптически анизотропной облачности. В первом под-
ходе используются предварительно вычисленные индикатрисы рассеяния для кристаллов различных
форм и ориентаций. Во втором подходе не требуется знания индикатрис рассеяния, угол рассеяния из-
лучения моделируется непосредственно при взаимодействии фотона с гранями кристалла. Такой подход
позволяет достаточно просто настраивать входные параметры задачи при изменении микрофизических
характеристик среды, включая форму, ориентацию, прозрачность частиц и шероховатость их границ, и
не требует предварительных трудоемких вычислений. Изучено влияние флаттера на пропускание излу-
чения облачным слоем и угловые распределения отраженного и пропущенного излучения.
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The paper deals with numerical models related to radiation transfer in ice clouds. A mathematical model
of crystal particles of irregular shape and an algorithm for modeling such particles based on constructing
a convex hull of a set of random points are considered. Two approaches to simulating radiation transfer
in optically anisotropic clouds are studied. One approach uses pre-calculated scattering phase functions for
crystals of various shapes and orientations. In the other approach, no knowledge of the phase functions
is required; the radiation scattering angle is modeled directly in the interaction of a photon with crystal
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faces. This approach makes it possible to simply adjust the input parameters of the problem to changing
microphysical characteristics of the environment, including shape, orientation, transparency of particles and
roughness of their boundaries, and does not require time-consuming preliminary calculations. The impact of
flutter on radiation transfer by a cloud layer and angular distributions of reflected and transmitted radiation
are studied.

Keywords: radiation transfer, Monte Carlo method, cirrus clouds, geometrical optics.

Введение

Ледяные кристаллические облака (перистые, перисто-слоистые и перисто-кучевые)
регулярно покрывают около 20–30% поверхности Земли и оказывают существенное вли-
яние на радиационный теплообмен в атмосфере, изменяя альбедо климатической си-
стемы и поток уходящего из атмосферы теплового излучения [1–3]. Эти обстоятельства
обуславливают неослабевающий интерес метеорологов, климатологов и разработчиков
моделей общей циркуляции атмосферы к проблеме построения радиационной модели
перистой облачности. Для разработки такой численной модели, очевидно, необходимо
прежде всего знание таких оптических характеристик кристаллических облаков, как ин-
дикатрисы рассеяния и сечения ослабления излучения частицами, содержащимися в об-
лаках. Для расчета этих характеристик, в свою очередь, нужна детальная информация о
структуре микрофизических параметров облачности: концентрации и распределения по
составу, размерам и пространственной ориентации частиц несферических форм. В силу
чрезвычайной изменчивости этих характеристик во времени и пространстве микрофи-
зическая и оптическая модели кристаллических облаков могут быть адекватно описаны
только в терминах случайных функций, что, в свою очередь, позволяет строить не толь-
ко статистически усредненные радиационные модели, но и оценивать пространственно-
временные вариации параметров радиационных полей. Решение этой непростой задачи
возможно только методом Монте-Карло.

Согласно экспериментальным данным большая часть ледяных облачных частиц име-
ет неправильную и сильно изменчивую форму [4]. В частности, в [5] показано, что толь-
ко 3 % ледяных кристаллов арктических облаков имеют идеально правильную форму
(в виде гексагональных призм, пластинок, игл, дендритов), и до 90 % частиц атмосфер-
ного льда в слоистых облаках могут иметь неправильную форму во всех температур-
ных интервалах [6]. Эти исследования объясняют, почему при наблюдении перистых
облаков гало и другие оптические явления, характерные для правильных многогранных
кристаллов льда, наблюдаются довольно редко. Большинство численных расчетов опти-
ческих характеристик ледяных кристаллов выполнены для частиц правильной формы
[4, 7–9], но в [10] приведены результаты вычисления индикатрис рассеяния для частиц
с шероховатой поверхностью и частиц случайной формы со случайно варьирующимся
углом между гранями. В работе [11] представлены индикатрисы рассеяния для моделей
кристаллов, полученных из частиц правильной формы путем отсекания от них частей
случайно наклоненными плоскостями.

В данной работе кратко описан новый алгоритм компьютерного построения случай-
ных реализаций трехмерных выпуклых тел, для которых геометрические параметры
подчиняются заданным законам распределения вероятности. Такие модели имитируют
ледяные облачные частицы случайных размеров и нерегулярных форм. Более подробно
этот алгоритм изложен в [12]. В оптике перистых облаков наиболее часто используются
гексагональные призмы в качестве моделей ледяных кристаллов. Предложенный класс
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моделей частиц дополняет разнообразие уже исследованных регулярных [7, 13] и слу-
чайных [10, 11] моделей кристаллических частиц.

В пункте 2 кратко описан алгоритм метода Монте-Карло оценки индикатрис рассея-
ния и сечений ослабления для кристаллических частиц.

Из-за большого многообразия микрофизических свойств реальных кристаллических
частиц задача рассеяния света кристаллами неидеальных форм оказывается весьма
сложной. Для ее решения требуются огромные массивы начальных данных, учитыва-
ющих форму, размеры и ориентацию частиц.

В п. 3 представлен новый алгоритм метода Монте-Карло моделирования переноса
оптической радиации в кристаллической облачности, в котором не требуется предвари-
тельный расчет анизотропных распределений рассеяния. В данном алгоритме непосред-
ственно при столкновении фотона с частицей выбирается форма и ориентация данной
частицы, и моделирование угла рассеяния производится по законам отражения и прелом-
ления геометрической оптики. В четвертом пункте представлены результаты численных
тестовых расчетов для задачи переноса излучения в ледяных облаках.

1. Модели кристаллических частиц случайной формы

В качестве моделей кристаллических частиц неправильной формы строятся выпук-
лые многогранники со случайным положением вершин, т. е. выпуклые оболочки слу-
чайного набора точек, расположенных в некотором ограниченном трехмерном подпро-
странстве [14]. Вершины многогранника могут определяться детерминировано или мо-
делироваться случайно по заданному закону распределения так, чтобы в среднем вос-
производились характерные для частиц отношения длины, ширины и высоты. Так же
количество вершин многогранника либо задается пользователем, либо моделируется слу-
чайно по некоторому закону распределения с заданным математическим ожиданием и
дисперсией.

Для построения выпуклой оболочки применяется инкрементальный алгоритм [15].
Задается ограниченная область пространства, в которой происходит моделирование. На-
чальная фигура является тетраэдром с вершинами, координаты которых моделируются
в заданном объеме по некоторому закону распределения. Дальнейшее построение мно-
гогранника происходит путем моделирования следующей случайной точки и проверки,
является ли эта точка внутренней для построенного многогранника. Если точка лежит
за пределами построенной фигуры, она становится новой его вершиной. Моделирование
происходит до тех пор, пока число вершин не достигнет требуемого числа.

На основе алгоритма, описанного в [12, 15], разработана программа “Convex
Hull”, которая в качестве результата выдает заданное или случайное число граней постро-
енного выпуклого многогранника, координаты его вершин, а также для каждой грани
фиксируются упорядоченные наборы вершин. Они упорядочиваются таким образом, что-
бы векторное произведение полученных векторов-ребер соответствовало правилу правой
руки и определяло направление внешней нормали к грани. Такие упорядоченные оче-
реди удобны при вычислении матриц рассеяния излучения методом трассировки лучей.
Программа написана на языке C++, в ней реализована функция визуализации много-
гранников с помощью библиотека OpenGL.
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На рисунке 1 приведены примеры построенных выпуклых многогранников, для кото-
рых случайные точки, используемые в построении многогранников, моделируются рав-
номерно в кубе.

Рис. 1. Модели кристаллических частиц случайной формы

2. Вычисление методом Монте-Карло индикатрис
и сечений рассеяния световых волн
ориентированными кристаллами

Для решения задачи переноса излучения через плоский слой кристаллического об-
лака необходимо рассчитать индикатрисы рассеяния G(ω′, ω, r), зависящие от направ-
ления входящего ω′ и выходящего ω излучений, а также сечения ослабления Σe(ω, r) и
рассеяния Σs(ω, r) излучения кристаллическими частицами. В случае, когда размер кри-
сталла значительно превышает длину волны излучения, т. е. отношение D/λ > 100, где
λ — длина волны, а D — характерный диаметр частицы, для определения макрофи-
зических параметров рассеяния (сечений ослабления и рассеяния, а также индикатрис
рассеяния) достаточно точными и наименее трудоемкими являются приближение гео-
метрической оптики и алгоритм трассировки лучей. В данном алгоритме траектория
оптического излучения представляется в виде ломаной линии, вершины которой — это
точки столкновения с гранями кристалла или с неоднородностями внутри кристалла.
Описание взаимодействия излучения и плоской грани кристалла соответствует модели,
в которой отражение и преломление света на грани кристалла происходят по законам
Снеллиуса и Френеля.

Пусть n — вектор внешней нормали к поверхности грани кристалла в точке падения
светового кванта на эту грань, выраженный в глобальной системе координат. В таком
случае при падении луча с направлением ω на поверхность грани с вероятностью R(ω,n)
происходит зеркальное отражение в направлении ωrefl = ω − 2(ω,n)n, а с вероятностью
1−R(ω,n) происходит преломление в направлении ωrefr = νω−Dn. Здесь R(ω,n) — ко-
эффициент отражения Френеля, который для удобства вычислений можно представить
в следующей форме [16]:

R(ω,n) =
(|A| −B)2(A2B2 + C2)

(|A|+B)2(|A|B + C)2
, (1)

A = (ω,n), B =
√

1/ν2 − 1 +A2, C = 1−A2, D = A− sign(A)B,

ν =

{
1/nice, (ω,n) ≤ 0,

nice, (ω,n) >
√

1− 1/n2
ice.

Через nice обозначена действительная часть комплексного показателя преломления льда
относительно воздуха νice = nice + iκice. При 0 ≤ A ≤

√
1− 1/n2

ice в силу закона полного
внутреннего отражения полагаем R(ω,n) = 1. Действительная часть показателя прелом-
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ления отвечает за отражение и преломления света на гранях кристалла, а мнимая κice

часть отвечает за ослабление пучка в результате поглощения внутри кристалла.
При нормальном падении света на грань кристалла, т. е. для ω = −n,

R =

(
nice − 1

nice + 1

)2

. (2)

Для вычисления индикатрис рассеяния G(ω′, ω, r) фиксируется набор направлений
входящего излучения ω′ij = (cosϕ′i sin θ′j , sinϕ

′
i sin θ′j , cos θ′j), заданных в полярной систе-

ме координат, где θ′j и ϕ
′
i — зенитный и азимутальный углы вектора ω′ij , θ

′
j ∈ [0, π], ϕ′i ∈

[0, 2π], j = 1, . . . , Nθ′ , i = 1, . . . , Nϕ′ . Для каждого ω′ij методом Монте-Карло оцениваются
вероятности рассеяния Gijkl в элемент телесного угла Ωkl = {ω = (cosϕ sin θ, sinϕ sin θ,
cos θ) : θ ∈ [θk, θk+1], ϕ ∈ [ϕl, ϕl+1]}. Здесь k = 1, . . . , Nθ, l = 1, . . . , Nϕ. Таким образом
4-х мерные “матрицы” Gijkl являются аппроксимацией индикатрисы рассеяния
G(ω′, ω, r) [17].

Вследствие отсутствия круговой симметрии кристаллов среда, состоящая из кристал-
лических частиц с заданной ориентацией, является анизотропной, поэтому сечение ослаб-
ления Σe(ω, r) = Σs(ω, r) + Σa(ω, r); сечения рассеяния Σs(ω, r) и поглощения Σa(ω, r)
зависят от вектора направления движения светового кванта ω. Зависимость Σe(ω, r) и
Σs(ω, r) от радиуса-вектора r в глобальной системе координат означает, что среда может
быть неоднородной по пространственным координатам. Для прозрачных частиц (кри-
сталлы чистого льда для излучения видимого диапазона) мнимая часть коэффициента
преломления κ = 0, поглощение отсутствует, и Σe(ω, r) = Σs(ω, r). Если κ 6= 0, то часть
излучения поглощается внутри кристалла. В отличие от модели поглощения фотонов
частицами аэрозолей или каплями воды, в которой поглощение происходит при столкно-
вении, в данном случае пучок излучения ослабляется на всей траектории фотона внутри
частицы. Для фиксированного направления входящего излучения ω′ сечение поглощения
при столкновении с частицей оценивается методом Монте-Карло:

Σa(ω′) = σa,crL(ω′).

Здесь L(ω′) — средняя длина траекторий фотонов внутри кристалла для направления
ω′ входящего излучения и фиксированной ориентации кристалла, σa,cr = 4πκ/λ — коэф-
фициент поглощения кристаллического вещества для длины волны излучения λ (см. [18,
с. 99–100]).

Процедура трассировки лучей позволяет оценивать матрицы Σij(r), которые явля-
ются приближениями для Σs(ω, r) в случае, если ω = (cosϕ sin θ, sinϕ sin θ, cos θ), θ ∈
[θi, θi+1], ϕ ∈ [ϕj , ϕj+1], одновременно с расчетом элементов матрицы Gijkl. С этой целью
для каждого кристалла и направления ω′ij оценивается лучевая составляющая рассея-
ния, равная средней площади Sij проекции кристалла на плоскость, перпендикулярную
направлению ω′ij . Пусть кристалл содержится внутри шара радиуса R, и плоскость, пер-
пендикулярная вектору ω′ij , пересекает шар по кругу Cij . Тогда

Sij = πR2N r
ij

/
Nij ,

где Nij — число смоделированных точек, равномерно распределенных внутри круга Cij ,
а N r

ij — число точек, которые оказались внутри кристалла. Для некоторых частиц регу-
лярной формы значения Sij известны для различных направлений ω′ij . Например, пло-
щадь проекции правильной шестиугольной призмы с диаметром основания d и высотой
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бокового ребра h на плоскость, перпендикулярную вектору (cos ν sin θ, sin ν sin θ, cos θ)
вычисляется по формуле [7]

S(θ, ν) =
3
√

3d2

8
sin θ + dh cos θ cos(π/6− ν).

Для хаотически ориентированных гексагональных призм, с учетом интегрирования по
всем входящим направлениям, среднее значение площади проекции

Smean =
3

8

(√
3d2/4 + dh

)
.

Согласно теореме оптической экстинкции [7], дифракционная составляющая рассе-
яния равна лучевой составляющей Sij . Поэтому, учитывая дифракционную составляю-
щую, сечение рассеяния Σij = 2Sij в направлении ωij .

Предположим, что в единичном объеме среды присутствует набор кристаллов из m
массивов частиц, сгруппированных по признаку форм, а общее число частиц в едини-
це объема равно M =

∑m
ν=1mν , где mν — счетная концентрация частиц ν-го типа. Все

частицы каждой группы могут иметь разные размеры, которые являются случайными
величинами, распределенными с плотностью Pν(ρ), ν = 1,m. В качестве размера частиц
несферических форм ρ будем рассматривать величину форм-фактора — отношение дли-
ны выделенной главной оси частицы к выделенному эффективному диаметру основания.
Для описания случайных ориентаций кристаллов в трехмерном пространстве, заданных
плотностями распределения вероятностей PΘ,ν(α, β, γ), используется система угловых
координат Эйлера α, β, γ, определяющих вращение частиц относительно глобальной де-
картовой системы координат [20] (см. рис. 2).

Рис. 2. Определение угловых координат Эйлера: система координат XY Z получена вращением
глобальной системы координат xyz на углы α, β, γ

Тогда сечение рассеяния Σs(ω, r), сечение ослабления Σa(ω, r) и индикатриса рассея-
ния G(ω′, ω, r), осредненные по распределениям размеров, форм и ориентаций кристал-
лов, вычисляются по формулам:

Σs(ω
′, r)=

m∑
ν=1

mν

∫ 2π

0

∫ π

0

∫ 2π

0

∫ ρmax

ρmin

PΘ,ν(α, β, γ)Pν(ρν)Σs,ν(ω′(α, β, γ), r, ρν) dρν dα dβ dγ,

Σa(ω′, r)=
m∑
ν=1

mν

∫ 2π

0

∫ π

0

∫ 2π

0

∫ ρmax

ρmin

PΘ,ν(α, β, γ)Pν(ρν)Σa,ν(ω′(α, β, γ), r, ρν) dρν dα dβ dγ, (3)

G(ω′, ω, r)=
m∑
ν=1

mν

∫ ρmax

ρmin

Pν(ρν)

∫ 2π

0

∫ π

0

∫ 2π

0
PΘ,ν(α, β, γ)Gν(ω′(α, β, γ), ω, r, ρν) dα dβ dγ dρν .
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Для частиц, изображенных на рис. 3, методом трассировки лучей были рассчитаны
элементы матрицы Gijkl анизотропных распределений рассеяния и сечения рассеяния
Σs(ω

′). Для таких моделей частиц из-за их вращения вокруг горизонтальной оси инди-
катриса рассеяния G(ω′, ω) и сечение ослабления не зависят от азимутального угла вхо-
дящего излучения, для этих функций будем использовать те же обозначения G(θ′, θ, ϕ)
и Σs(θ

′).

Рис. 3. Положение и форма ледяных частиц: горизонтальный столбик (слева), столбик с пре-
имущественно горизонтальной ориентацией и углом флаттера ϕ (справа)

На рис. 4 приведена зависимость коэффициента рассеяния излучения Σs(µ
′) ледяны-

ми гексагональными столбиками, ориентированными горизонтально, и гексагональными
столбиками, ось которых случайно наклонена относительно горизонтальной плоскости
на угол в промежутке [0, π/12], от косинуса угла µ′ между направлением входящего из-
лучения и осью z.

Рис. 4. Зависимость коэффициента рассеяния Σs(µ
′) от косинуса µ′ зенитного угла входящего

излучения для преимущественно горизонтально ориентированных столбиков со случайным уг-
лом флаттера, лежащем в пределах [0, 15◦] (сплошная линия) и горизонтально ориентированных
столбиков (штриховая линия)

3. Два способа моделирования переноса излучения
в кристаллической среде

Рассмотрим задачу прохождения оптического излучения через плоский слой
0 ≤ z ≤ H рассеивающего и поглощающего вещества. Взаимодействие фотонов с веще-
ством будем характеризовать коэффициентами ослабления Σe(ω

′, r), рассеяния Σs(ω
′, r)
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и поглощения Σa(ω′, r), а также индикатрисой рассеяния G(ω′, ω, r′), нормированной сле-
дующим образом: ∫

Ω
G(ω′, ω, r′) dω = 1.

Здесь ω′ и ω — единичные векторы направлений движения фотона до и после рассеяния
соответственно. Граница z = 0 плоского слоя 0 < z < H, заполненного кристалличе-
скими частицами, освещена бесконечно широким световым потоком в направлении ω0.
Требуется вычислить поглощение, пропускание и интегральное альбедо излучения об-
лачным слоем.

Процесс распространения фотонов можно описать интегральным уравнением пере-
носа для плотности столкновений f(ω, r) [16]:

f(ω, r) =

∫
X
k(ω′, r′, ω, r)f(ω′, r′) dω′dr′ + ψ(ω, r), (4)

где ψ(ω, r) — плотность начальных столкновений в точке r в направлении ω. Ядро урав-
нения (4) имеет вид

k(ω′, r′, ω, r) =
Σs(ω

′, r′)

Σe(ω′, r′)
G(ω′, ω, r′)

Σe(ω, r)e
−τ(r′,r)

|r − r′|2
δ

(
ω − r − r′

|r − r′|

)
(5)

и является плотностью вероятности перехода из точки (ω′, r′) в точку (ω, r), определя-
ющей марковскую цепь столкновений фотонов с элементами вещества. В (5) τ(r′, r) —
оптическая длина пути от точки r′ до точки r, δ(ω) — дельта-функция Дирака. Для
случая однородного оптически анизотропного рассеивающего слоя Σe(ω, r) = Σe(ω) оп-
тическая длина τ(r′, r) = Σe

(
r − r′

|r − r′|

)
|r − r′| зависит не только от расстояния между

точками r и r′, но и от направления ω =
r − r′

|r − r′| .
Требуется оценить линейные функционалы от решения уравнения (4) вида Jχ =(

f(ω, r), χ(ω, r)
)
, где χ(ω, r) ≥ 0 — некоторая неотрицательная функция. Для постав-

ленной задачи в уравнении (4) функция источника определяется выражением ψ(ω, r) =
δ(z)δ(ω−ω0), где r = (x, y, z), а функции, определяющие альбедо χa(ω, r) и пропускание
χtr(ω, r) кристаллического слоя, равны

χtr(ω, r) =

{
1 при z ≥ H,
0 иначе,

χa(ω, r) =

{
1 при z < 0,

0 иначе.

Стандартные алгоритмы Монте-Карло решения уравнения (4) в рассеивающих сре-
дах требуют предварительного вычисления функций Σe(ω, r) и G(ω′, ω, r). Для оцен-
ки функционалов Jχ моделируются траектории движения фотонов в виде ломаных ли-
ний со случайными длинами прямолинейных участков и случайными углами изменения
направления движения в точках рассеяния [16, 19]. Длина свободного пробега |r − r′|
моделируется согласно плотности вероятности Σe(ω, r(t)) exp

(
−
∫ t

0 Σe

(
ω, r(t1)

)
dt1

)
,

где r(t) = r′ + t
r − r′

|r − r′| . Если фотон вылетел из среды, то траектория обрывается и моде-
лируется новая траектория. Если фотон вылетел в полупространства z > H или z < 0,
то в соответствующие счетчики для функционалов Jχtr или Jχa заносится случайная
величина

W =
M∏
m=1

Σs(ω
′
m, rm)

Σe(ω′m, rm)
,
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где rM — координатыM -й точки столкновения непосредственно перед вылетом, ω′m — на-
правление движения фотона до m-го столкновения. Моделирование нового направления
движения ω при столкновении с частицей при условии, что предыдущее направление
движения равно ω′ = (cosϕ′ sin θ′, sinϕ′ sin θ′, cos θ′), производится согласно плотности
распределения, являющейся линейной или кусочно-постоянной аппроксимацией функ-
ций Gij(ψ, ν), Gi+1j(ψ, ν), Gij+1(ψ, ν), Gi+1,j+1(ψ, ν), где θ′ ∈ (θi, θi+1), ϕ′ ∈ (ϕj , ϕj+1).
Подробное описание этого шага алгоритма представлено в [21]. Алгоритм моделирования
направления движения фотона после рассеяния в случае, если индикатриса G(ω′, ω, r)
не зависит от азимутального угла излучения до рассеяния, приведен в [19].

Алгоритм, в котором угол рассеяния моделируется по индикатрисе, имеет ряд огра-
ничений. Первое из них — необходимость обширных предварительных расчетов функций
G(ω′, ω, r) и Σe(ω, r), требующих значительных вычислительных ресурсов и последую-
щего хранения большого банка данных в памяти компьютера. Второе ограничение свя-
зано с тем, что каждое изменение микрофизических параметров рассеивающей среды
(например, изменение концентраций частиц разного типа или учет разных форм, ше-
роховатости граней кристаллов, изменение длины волны излучения) требует пересчета
этих функций.

Рассмотрим альтернативный алгоритм, основанный на сочетании прямого модели-
рования методом Монте-Карло траекторий фотонов и метода трассировки лучей при
моделировании угла рассеяния. В этом алгоритме процедура предварительного расче-
та индикатрисы рассеяния G(ω′, ω, r) не требуется. Заранее определяется зависимость
коэффициентов ослабления Σe(ω, r) и рассеяния Σs(ω, r) от направления входящего из-
лучения ω для заданных микрофизических параметров рассеивающей среды (концентра-
ция и ориентация кристаллов различных форм) согласно формулам (3). Моделирование
длины свободного пробега производится согласно значениям Σe(ω, r). В очередной точке
столкновения rm по значению Σs(ω

′
m, rm)/Σe(ω

′
m, rm) определяется произошло поглоще-

ние или рассеяние фотона. Если произошло рассеяние, фотон, имеющий направление
движения ω′m(θm, ηm), попадает на поверхность кристалла. Его форма и пространствен-
ная ориентация моделируются по соответствующим распределениям Pν(ρν), PΘ,ν(α, β, γ).
Для определения координат точки пересечения траектории фотона и грани кристалла
можно использовать следующий алгоритм. В опорную сферу с центром в точке rm поме-
щается выбранная частица. Радиус опорной сферы R выбирается таким образом, чтобы
кристалл полностью помещался внутри нее. В плоскости z = zm моделируется случай-
ная точка

(
x′ς , y

′
ς , z
′
ς

)
, равномерно распределенная в круге (x− xm)2 + (y − ym)2 ≤ R2, до

тех пор, пока она не попадет в кристалл. Затем производится поворот плоскости z = zm
на угол θm относительно оси Ox и на угол ηm относительно оси Oz таким образом, что-
бы вектор ω′m был параллелен вектору нормали преобразованной плоскости. И новые
координаты (xς , yς , zς) смоделированной точки определяются согласно формулеxςyς

zς

 =

cos ηm −sin ηm 0

sin ηm cos ηm 0

0 0 1


 cos θm 0 sin θm

0 1 0

−sin θm 0 cos θm


x
′
ς

y′ς
z′ς

 . (6)

Способом, описанным в [22], определяется точка пересечения вектора −ω′m с гра-
нью кристалла. Дальнейшее моделирование направления движения фотона внутри кри-
сталла подчиняется законам отражения и преломления (1), (2) в приближении геомет-
рической оптики и проводится аналогично алгоритму вычисления индикатрис рассея-
ния [9, 17].
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4. Результаты численного моделирования переноса
солнечного излучения в кристаллических облаках

При тестировании представленных алгоритмов переноса излучения в кристалличе-
ских средах рассматривался следующая смесь частиц: 20 % — гексагональные столбики
с форм-фактором 10; 50 % — пластинки — гексагональные призмы с форм-фактором 0.3;
30 % — сферы. Частицы хаотически ориентированы.

Коэффициент ослабления излучения Σe = 0.03м−1. Проведена серия расчетов, для
каждого из которых оптическая толщина облачного слоя фиксирована и лежит в интер-
вале от 1 до 10, альбедо однократного рассеяния — 0.9. Верхняя граница слоя освещена
равномерным стационарным потоком излучения в вертикальном направлении. Вычис-
ляются вероятности отражения R, пропускания T и поглощения A излучения облачным
слоем, состоящим из ледяных частиц, в предположении, что R + T + A = 1. Расчеты
выполнены двумя описанными выше алгоритмами.

В таблице 1 представлены оценки коэффициентов R, A, T , а также их среднеквадра-
тические отклонения εR, εA, εT для различных значений оптической толщины облачного
слоя τ , рассчитанные по алгоритму моделирования траекторий фотонов с использовани-
ем индикатрисы рассеяния G(ω′, ω). В последнем столбце таблицы приведены значения
трудоемкостей оценки пропускания ST = t

√
VξT . Здесь VξT — дисперсия оценки T ,

t — среднее время моделирования одной траектории.

Таблица 1. Вероятности отражения R, поглощения A и пропускания T излучения слоем оп-
тической толщины τ , рассчитанные по стандартному алгоритму, и их среднеквадратические
отклонения εR, εA, εT

τ R± εR A± εA T ± εT ST × 105

1 0.06432± 0.00008 0.11364± 0.00010 0.822040± 0.00011 1.42
2 0.10822± 0.00009 0.23419± 0.00013 0.657590± 0.00014 4.35
3 0.13624± 0.00010 0.34706± 0.00014 0.516691± 0.00015 7.07
4 0.15345± 0.00011 0.44573± 0.00015 0.400818± 0.00015 8.69
5 0.16365± 0.00012 0.52830± 0.00015 0.308050± 0.00014 9.12
10 0.17721± 0.00012 0.74562± 0.00014 0.077161± 0.00008 4.27

В табл. 2 даны аналогичные результаты, полученные по алгоритму без использова-
ния индикатрисы рассеяния. Число траекторий фотонов для данных расчетов равно 108.
Видно, что трудоемкость второго алгоритма в несколько раз превышает трудоемкость
алгоритма с использованием индикатрисы рассеяния. Но в данном случае не учитывает-
ся тот факт, что для расчета значений индикатрисы рассеяния с приемлемой точностью
требуется значительное время. Кроме того, этот факт затрудняет расчеты особенно в
тех случаях, когда состав рассеивающего слоя неоднороден и зависит от геометрических
координат.
Таблица 2. Вероятности отражения R, поглощения A и пропускания T излучения слоем опти-
ческой толщины τ , рассчитанные по алгоритму без использования индикатрисы рассеяния

τ R± εR A± εA T ± εT ST × 105

1 0.05357± 0.00023 0.11015± 0.00031 0.83628± 0.00037 5.45
2 0.09119± 0.00029 0.22567± 0.00042 0.68314± 0.00047 17.49
3 0.11606± 0.00032 0.33517± 0.00047 0.54878± 0.00050 29.64
4 0.13196± 0.00034 0.43246± 0.00050 0.43558± 0.00050 37.89
5 0.14199± 0.00035 0.51553± 0.00050 0.34247± 0.00047 40.83
10 0.15618± 0.00036 0.74803± 0.00043 0.09578± 0.00029 11.81
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В следующей серии расчетов сравниваются результаты для двух составов рассеива-
ющего слоя.

Модель 1. Облако состоит из гексагональных призм-столбиков, горизонтально ориен-
тированных в пространстве. Форм-фактор частиц одинаков и равен 10.

Модель 2. Частицы из модели 1 преимущественно горизонтально ориентированы, но
угол между осью кристалла и горизонтальной плоскостью моделируется случайно по
равномерному распределению из промежутка [0, π/12].

Для таких моделей рассеивающей среды вследствие симметрии в горизонтальной
плоскости индикатриса рассеяния G(ω′, ω) не зависит от азимутального угла входящего
излучения. Предполагается, что поглощение в слое отсутствует, концентрация кристал-
лических частиц в рассеивающем слое такова, что максимум коэффициента ослабления
по всем направлениям входящего излучения равен 0.005м−1, высота слоя 200м и 600м.
На рис. 5 представлены вероятности прохождения излучения через рассеивающий слой
для различных направлений входящего излучения, которые определяются зенитным уг-
лом θ0. Для модели рассеивающей среды с флаттером пропускание всегда немного мень-
ше, чем для модели без флаттера.

Рис. 5. Вероятность прохождения излучения через плоские рассеивающие слои оптической
толщины τ = 1 и τ = 3, состоящие из горизонтально ориентированных столбиков (сплошные
линии) и столбиков со случайным углом флаттера (штриховые линии) для различных зенитных
углов θ0 падающего излучения

На рис. 6 изображены угловые распределения интенсивности излучения, проходяще-
го через слой с оптической толщиной, не превышающей τ = 1. Левый рисунок соответ-
ствует модели 1, правый — модели 2. Направление входящего излучения определяется
зенитным углом θ0 = 80◦. Для тех же моделей ледяных кристаллов на рис. 7 представ-
лены угловые распределения интенсивности излучения, отраженного от облачного слоя.
В данном примере максимальное значение оптической толщины слоя равно 3, зенитный
угол направления на источник θ0 = 80◦. На рисунках 6 и 7 видно, как флаттер приво-
дит к сглаживанию угловых распределений интенсивности проходящего и отраженного
излучений.
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Рис. 6. Угловые распределения интенсивности излучения, проходящего через кристаллический
рассеивающий слой оптической толщины τ = 1. Модель 1 — левый рисунок, модель 2 — правый
рисунок

Рис. 7. Угловые распределения интенсивности излучения, отраженного от кристаллического
рассеивающего слоя оптической толщины τ = 3. Модель 1 — левый рисунок, модель 2 — правый
рисунок

Заключение

В работе описан алгоритм вычисления индикатрис рассеяния и сечений рассеяния
и поглощения для частиц несферической формы, размеры которых значительно превы-
шают длину волны излучения. В этом случае задачу можно решить, используя прибли-
жение геометрической оптики. Так как в составе реальных кристаллических облаков
большой процент частиц имеет неправильную случайную форму, авторами предложена
математическая модель кристаллических частиц случайной формы и алгоритм моде-
лирования таких частиц на основе построения выпуклой оболочки набора случайных
точек, распределенных в некотором объеме. Алгоритм вычисление сечений ослабления
и индикатрис рассеяния работает как для моделей частиц правильной формы, так и для
моделей частиц случайной формы.

Рассмотрены два подхода к моделированию переноса излучения в оптически анизо-
тропной облачности. Первый подход требует предварительного вычисления индикатрис
рассеяния для кристаллов различных форм и ориентаций. Во втором подходе не требу-
ется знания индикатрис рассеяния. В этом случае при построении траектории движения
фотона после моделирования длины свободного пробега определяется тип кристалла и
его ориентация, а рассеяние моделируется непосредственно имитацией взаимодействия
фотона с частицей по законам геометрической оптики. Такой подход позволяет доста-
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точно просто настраивать входные параметры задачи при изменении микрофизических
характеристик среды, включая форму, ориентацию, прозрачность частиц и шерохова-
тость их границ, и не требует предварительных трудоемких вычислений.

Были проведены модельные расчеты интегральных и угловых характеристик поля
излучения, рассеянного слоем ледяных облаков, состоящих из кристаллов, имеющих
форму гексагональных призм с форм-фактором 10. Результаты вычислений продемон-
стрировали влияние флаттера для горизонтально ориентированных частиц на пропуска-
ние излучения облачным слоем и угловые распределения отраженного и пропущенного
излучения.
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