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1. Введение

В последние годы теория интегральных и интегро-дифференциальных уравнений
Вольтерра (Фредгольма) стала интересной и популярной областью исследований бла-
годаря ее приложениям во многих инженерных и научных дисциплинах, таких как ме-
ханические явления, технология управления, электротехника, гидродинамика, модели
роста населения. Подробнее см. [1–7].

Это послужило причиной появления большого числа работ по изучению различных
видов интегральных уравнений. Приведем некоторые типы этих уравнений (только две
ссылки для каждого из них): линейные и нелинейные уравнения Вольтерра и Фред-
гольма [8, 9]; интегро-дифференциальные уравнения [10, 11]; интегральные уравнения в
комплексной плоскости [12, 13]; уравнения со слабосингулярными ядрами [14, 15]; урав-
нения с ядрами Теплица плюс Ганкеля [16, 17]; интегральные уравнения с постоянной
задержкой [18, 19]; уравнения в двумерном пространстве [20, 21]; интегральное уравне-
ние Чандрасекара [22,23]; интегральное уравнение Абеля [24,25]; нечеткие интегральные
уравнения [26,27]; дробные интегральные уравнения [28,29] и т. д.

В данном исследовании нас интересует новый тип уравнения Вольтерра, имеющий
нелинейное ядро типа свертки, включающее первую и вторую производные решения.
Это уравнение можно представить в следующем виде:

u(t) =

∫ t

a
g(t− s)ϕ

(
t, s, u(s), u′(s), u′′(s)

)
ds+ f(t) ∀t ∈ I = [a, b],

где f ∈ C2(I), g ∈ C2(I2), g(0) = 0, ∂tg(0) = λ ∈ R и ϕ ∈ C2(I2 × R3) — заданные
функции, u — неизвестная, которую необходимо найти в пространстве C2(I).

С другой стороны, отметим, что неизвестная функция u и ее производные нелинейны
под знаком интегрального оператора. Поэтому, чтобы управлять решением предложен-
ного уравнения и его производными, нам необходимо дважды продифференцировать
обе части уравнения. Это позволит нам преобразовать наше уравнение после некоторых
простых вычислений в следующую систему:

u(t) =

∫ t

a
g(t− s)ϕ

(
t, s, u(s), u′(s), u′′(s)

)
ds+ f(t) ∀t ∈ I, (1)

u′(t) =

∫ t

a

(
∂tg(t− s)ϕ

(
t, s, u(s), u′(s), u′′(s)

)
+ g(t− s)∂tϕ

(
t, s, u(s), u′(s), u′′(s)

))
ds+

f ′(t) ∀t ∈ I, (2)

u′′(t) = λϕ
(
t, t, u(t), u′(t), u′′(t)

)
+

∫ t

a

(
2∂tg(t− s)∂tϕ

(
t, s, u(s), u′(s), u′′(s)

)
+

∂2t g(t− s)ϕ
(
t, s, u(s), u′(s), u′′(s)

)
+ g(t− s)∂2t ϕ

(
t, s, u(s), u′(s), u′′(s)

))
ds+

f ′′(t) ∀t ∈ I. (3)

Уравнения (1)–(3) этой системы будут играть важную роль на протяжении всего иссле-
дования.

Статья построена следующим образом: в пункте 2 мы доказываем существование
решения предлагаемой задачи с использованием теоремы Шаудера о неподвижной точ-
ке. В п. 3 приведены результаты относительно единственности решения задачи. В п. 4
мы обсуждаем метод Нистрема, позволяющий получить приближенное решение нашего
уравнения. В последнем пункте приводим несколько наглядных примеров.
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2. Доказательство существования с использованием
теоремы Шаудера о неподвижной точке

В данном пункте представим доказательство существования решения предлагаемого
уравнения (1) с использованием теоремы Шаудера о неподвижной точке. До получения
основного результата нам необходимо сделать следующие предположения:
(A1): пусть ϕ (t, s, x, y, z) — функция, принадлежащая C2(I2 × R3), и существует посто-

янная M1 > 0 такая, что ∀t, s ∈ I, ∀x, y, z ∈ R

max
(
|ϕ(t, s, x, y, z)|, |∂tϕ(t, s, x, y, z)|, |∂2t ϕ(t, s, x, y, z)|

)
≤M1;

(A2): пусть g (t, s) — функция, принадлежащая C2(I2), которая удовлетворяет g(0) = 0,
∂tg(0) = λ, и существует постоянная M2 > 0 такая, что ∀t, s ∈ I

max
(
|g(t− s)|, |∂tg(t− s)|, |∂2t g(t− s)|

)
≤M2.

Теорема 1. Пусть условия (A1), (A2) выполнены. Тогда уравнение Вольтерра (1) име-
ет по крайней мере одно решение в пространстве C2(I).

Доказательство. Пусть Φ : C2(I) → C2(I) — интегральный оператор, определяемый
следующим образом: ∀ξ ∈ C2(I), ∀t ∈ I

Φ (ξ) (t) =

∫ t

a
g(t− s)ϕ

(
t, s, ξ (s) , ξ′ (s) , ξ′′ (s)

)
ds+ f(t).

Ясно, что уравнение (1) имеет по крайней мере одно решение в пространстве C2(I), если
и только если оператор Φ имеет неподвижную точку. Докажем это, используя теорему
Шаудера о неподвижной точке.

Прежде всего, легко можно убедиться в том, что Φ является непрерывным из C2(I)
в себя. Рассмотрим подмножество F ⊂ C2(I), определяемое следующим образом:

F :=



ξ (a) = f(a), ξ′(a) = f ′(a),

|ξ(t)− f(t)| ≤M1M2 (b− a) ,

|ξ′(t)− f ′(t)| ≤ 2M1M2 (b− a) ,
∀ξ ∈ C2(I), таких что

|ξ′′(t)− f ′′(t)| ≤M1M2

(
4(b− a) +

|λ|
M2

)
,

∀ε > 0, ∃ δε > 0, ∀t1, t2 ∈ I, |t1 − t2| < δε,

тогда |ξ′′(t1)− ξ′′(t2)| < ε


.

Для использования теоремы Шаудера о неподвижной точке подмножество F должно
быть непустым, выпуклым и замкнутым. Очевидно, что F является непустым и вы-
пуклым, просто докажем, что оно замкнуто. Пусть (ξn)n∈N — последовательность в F .
Предположим, что она сходится к некоторому ξ̃ ∈ C2(I) в норме пространства C2(I):

‖ξn − ξ̃‖ =
(
‖ξn − ξ̃‖∞ + ‖ξ′n − ξ̃′‖∞ + ‖ξ′′n − ξ̃′′‖∞

)
→ 0, где ‖ξ‖∞ = sup

t∈I
|ξ(t)|.

Теперь необходимо убедиться в том, что ξ̃ ∈ F , чтобы подтвердить замкнутость F .
Ясно, что сходимость в пространстве C2(I) также означает равномерную сходимость

функций, их производных и вторых производных, что позволяет нам записать следую-
щее:
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∀n ∈ N ξn(a) = f(a)⇒ lim
n→∞

ξn(a) = f(a)⇒ ξ̃(a) = f(a),

∀n ∈ N ξ′n(a) = f ′(a)⇒ lim
n→∞

ξ′n(a) = f ′(a)⇒ ξ̃′(a) = f ′(a).

Кроме того,

∀n ∈ N |ξn(t)− f(t)| ≤M1M2 (b− a)⇒ lim
n→∞

|ξn(t)− f(t)| ≤M1M2 (b− a)

⇒
∣∣∣ lim
n→∞

ξn(t)− f(t)
∣∣∣ ≤M1M2 (b− a)

⇒
∣∣ξ̃(t)− f(t)

∣∣ ≤M1M2 (b− a) .

Аналогичным образом получим∣∣ξ̃′(t)− f ′(t)∣∣ ≤ 2M1M2 (b− a) и
∣∣ξ̃′′(t)− f ′′(t)∣∣ ≤M1M2

(
4(b− a) +

|λ|
M2

)
.

Теперь из последнего условия для F ясно, что ∀ε > 0, ∃ δε > 0, ∀t1, t2 ∈ I, |t1 − t2| < δε∣∣ξ′′n(t1)− ξ′′n(t2)
∣∣ < ε

3
∀n ∈ N.

С другой стороны, имеем∣∣ξ̃′′(t1)− ξ̃′′(t2)∣∣ =
∣∣ξ̃′′(t1)− ξ′′n(t1) + ξ′′n(t1)− ξ′′n(t2) + ξ′′n(t2)− ξ̃′′(t2)

∣∣
≤
∣∣ξ̃′′(t1)− ξ′′n(t1)

∣∣+
∣∣ξ′′n(t1)− ξ′′n(t2)

∣∣+
∣∣ξ′′n(t2)− ξ̃′′(t2)

∣∣.
Кроме того, поскольку ξ′′n равномерно сходится к ξ̃′′, то можно записать, что если

∀ε > 0, ∃Nε ∈ N, ∀t ∈ I, ∀n ≥ Nε, тогда
∣∣ξ′′n(t)− ξ̃′′(t)

∣∣ < ε

3
.

При переходе к пределу в бесконечности (т. е. n ≥ Nε) предыдущее неравенство дает нам∣∣ξ̃′′(t1)− ξ̃′′(t2)∣∣ < ε

3
+
ε

3
+
ε

3
= ε.

Таким образом ξ̃ удовлетворяет всем условиям подмножества F . Это означает, что F
замкнуто.

Теперь докажем, что Φ вполне непрерывен на подмножестве F .
Сначала из (1) и (2) мы прямо получим Φ(ξ)(a) = f(a) и Φ(ξ)′(a) = f ′(a). Теперь для

всех ξ ∈ F и всех t ∈ I имеем

|Φ(ξ)(t)− f(t)| =
∣∣∣∣ ∫ t

a
g(t− s)ϕ

(
t, s, ξ (s) , ξ′ (s) , ξ′′ (s)

)
ds

∣∣∣∣ ≤M1M2 (b− a) .

Кроме того,

|Φ(ξ)′(t)− f ′(t)| ≤
∣∣∣∣ ∫ t

a
∂tg(t− s)ϕ

(
t, s, ξ(s), ξ′(s), ξ′′(s)

)
ds

∣∣∣∣+∣∣∣∣ ∫ t

a
g(t− s)∂tϕ

(
t, s, ξ(s), ξ′(s), ξ′′(s)

)
ds

∣∣∣∣ ≤ 2M1M2 (b− a) .

Таким же образом
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∣∣Φ(ξ)′′(t)− f ′′(t)
∣∣ ≤ ∣∣∣∣λϕ(t, t, ξ(t), ξ′(t), ξ′′(t))+

∫ t

a
2∂tg(t− s)∂tϕ

(
t, s, ξ(s), ξ′(s), ξ′′(s)

)
ds

∣∣∣∣+∣∣∣∣ ∫ t

a
∂2t g(t− s)ϕ

(
t, s, ξ(s), ξ′(s), ξ′′(s)

)
ds

∣∣∣∣+∣∣∣∣ ∫ t

a
g(t− s)∂2t ϕ

(
t, s, ξ(s), ξ′(s), ξ′′(s)

)
ds

∣∣∣∣
≤M1M24(b− a) + |λ|M1 ≤M1M2

(
4(b− a) +

|λ|
M2

)
.

Теперь мы хотим убедиться в том, что если ∀ε > 0, ∃δε > 0, ∀t1, t2 ∈ I при |t1 − t2| < δε,
тогда |Φ(ξ)′′(t1)− Φ(ξ)′′(t2)| < ε. Для t1, t2 ∈ I при t1 ≤ t2 имеем∣∣Φ(ξ)′′ (t1)−Φ(ξ)′′(t2)

∣∣
≤
∣∣∣λϕ(t1, t1, ξ(t1), ξ′(t1), ξ′′(t1))− λϕ(t2, t2, ξ(t2), ξ′(t2), ξ′′(t2))∣∣∣+ |f ′′(t1)− f ′′(t2)|+

2

∣∣∣∣∫ t1

a
∂tg(t1−s)∂tϕ

(
t1, s, ξ(s), ξ

′(s), ξ′′(s)
)
ds−

∫ t2

a
∂tg(t2−s)∂tϕ

(
t2, s, ξ(s), ξ

′(s), ξ′′(s)
)
ds

∣∣∣∣+∣∣∣∣∫ t1

a
∂2t g(t1−s)ϕ

(
t1, s, ξ(s), ξ

′(s), ξ′′(s)
)
ds−

∫ t2

a
∂2t g(t2−s)ϕ

(
t2, s, ξ(s), ξ

′(s), ξ′′(s)
)
ds

∣∣∣∣+∣∣∣∣∫ t1

a
g(t1 − s)∂2t ϕ

(
t1, s, ξ(s), ξ

′(s), ξ′′(s)
)
ds−

∫ t2

a
g(t2−s)∂2t ϕ

(
t2, s, ξ(s), ξ

′(s), ξ′′(s)
)
ds

∣∣∣∣.
Разделив интервал интегрирования, получим∣∣Φ(ξ)′′ (t1)− Φ(ξ)′′(t2)

∣∣
≤

∣∣λϕ(t1, t1, ξ(t1), ξ′(t1), ξ′′(t1))− λϕ(t2, t2, ξ(t2), ξ′(t2), ξ′′(t2))∣∣+
∣∣f ′′(t1)− f ′′(t2)∣∣+

2

∣∣∣∣ ∫ t1

a
∂tg(t1 − s)

(
∂tϕ
(
t1, s, ξ(s), ξ

′(s), ξ′′(s)
)
− ∂tϕ

(
t2, s, ξ(s), ξ

′(s), ξ′′(s)
))
ds

∣∣∣∣+

2

∣∣∣∣ ∫ t1

a
∂tϕ
(
t2, s, ξ(s), ξ

′(s), ξ′′(s)
)(
∂tg(t1 − s)− ∂tg(t2 − s)

)
ds

∣∣∣∣+

2

∣∣∣∣ ∫ t2

t1

∂tg(t2 − s)∂tϕ
(
t2, s, ξ(s), ξ

′(s), ξ′′(s)
)
ds

∣∣∣∣+∣∣∣∣ ∫ t1

a
∂2t g(t1 − s)

(
ϕ
(
t1, s, ξ(s), ξ

′(s), ξ′′(s)
)
− ϕ

(
t2, s, ξ(s), ξ

′(s), ξ′′(s)
))
ds

∣∣∣∣+∣∣∣∣ ∫ t1

a
ϕ
(
t2, s, ξ(s), ξ

′(s), ξ′′(s)
)(
∂2t g(t1 − s)− ∂2t g(t2 − s)

)
ds

∣∣∣∣+∣∣∣∣ ∫ t2

t1

∂2t g(t2 − s)ϕ
(
t2, s, ξ(s), ξ

′(s), ξ′′(s)
)
ds

∣∣∣∣+∣∣∣∣ ∫ t1

a
g(t1 − s)

(
∂2t ϕ

(
t1, s, ξ(s), ξ

′(s), ξ′′(s)
)
− ∂2t ϕ

(
t2, s, ξ(s), ξ

′(s), ξ′′(s)
))
ds

∣∣∣∣+∣∣∣∣ ∫ t1

a
∂2t ϕ

(
t2, s, ξ(s), ξ

′(s), ξ′′(s)
)(
g(t1 − s)− g(t2 − s)

)
ds

∣∣∣∣+∣∣∣∣ ∫ t2

t1

g(t2 − s)∂2t ϕ
(
t2, s, ξ(s), ξ

′(s), ξ′′(s)
)
ds

∣∣∣∣.
Использование теоремы о среднем значении для функций ϕ, ∂tϕ, g и ∂tg дает нам
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∣∣Φ(ξ)′′(t1)− Φ(ξ)′′(t2)
∣∣ ≤ (|λ|M1 + 4M1M2 + 6M1M2(b− a))|t1 − t2|+∣∣f ′′(t1)− f ′′(t2)∣∣+M1

∫ t1

a

∣∣∂2t g(t1 − s)− ∂2t g(t2 − s)
∣∣ds+

M2

∫ t1

a

∣∣∂2t ϕ(t1, s, ξ(s), ξ′(s), ξ′′(s))− ∂2t ϕ(t2, s, ξ(s), ξ′(s), ξ′′(s))∣∣ds.
Пусть ε > 0, если возьмем |t1 − t2| < δ1ε , где δ1ε =

ε

4(|λ|M1 + 4M1M2 + 6M1M2(b− a))
, то,

очевидно, получим∣∣Φ(ξ)′′(t1)− Φ(ξ)′′(t2)
∣∣ < ε

4
+
∣∣f ′′(t1)− f ′′(t2)∣∣+M1

∫ t1

a

∣∣∂2t g(t1 − s)− ∂2t g(t2 − s)
∣∣ds+

M2

∫ t1

a

∣∣∂2t ϕ(t1, s, ξ(s), ξ′(s), ξ′′(s))−∂2t ϕ(t2, s, ξ(s), ξ′(s), ξ′′(s))∣∣ds.
Более того, поскольку f ′′, ∂2t g и ∂2t ϕ равномерно непрерывны как функции t на интер-
вале I, то существуют δ2ε > 0, δ3ε > 0 и δ4ε > 0 соответственно, где ∀t1, t2 ∈ I при
|t1 − t2| < δ2ε , |t1 − t2| < δ3ε и |t1 − t2| < δ4ε . Имеем∣∣f ′′(t1)− f ′′(t2)∣∣ < ε

4
,∣∣∂2t g(t1 − s)− ∂2t g(t2 − s)

∣∣ < ε

4M1(b− a)
,∣∣∂2t ϕ(t1, s, ξ(s), ξ′(s), ξ′′(s))− ∂2t ϕ(t2, s, ξ(s), ξ′(s), ξ′′(s))∣∣ < ε

4M2(b− a)
.

Взяв δε = min{δ1ε , δ2ε , δ3ε , δ4ε }, мы получим ∀t1, t2 ∈ I при |t1 − t2| < δε∣∣Φ(ξ)′′(t1)− Φ(ξ)′′(t2)
∣∣ < ε

4
+
ε

4
+M1

∫ t1

a

ε

4M1(b− a)
ds+M2

∫ t1

a

ε

4M2(b− a)
ds

=
ε

4
+
ε

4
+
ε

4
+
ε

4
= ε.

Итак, мы приходим к выводу, что Φ(F ) ⊂ F . Теперь, чтобы доказать компактность
оператора Φ, достаточно доказать, что F — компактное подмножество. Чтобы показать,
что F компактно, необходимо доказать, что F равномерно ограничено и равностепенно
непрерывно. Равномерная ограниченность очевидна исходя из вида подмножества F , что
дает нам

|ξ(t)| ≤M1M2 (b− a) + max
s∈I
|f(s)|,

|ξ′(t)| ≤ 2M1M2 (b− a) + max
s∈I
|f ′(s)| = %1,

|ξ′′(t)| ≤M1M2

(
4(b− a) +

|λ|
M2

)
+ max

s∈I
|f ′′(s)| = %2.

Проверим теперь равномерную непрерывность. С учетом последнего свойства подмно-
жества F , ограниченности ξ′ и ξ′′, описанных выше, и используя теорему о среднем
значении, мы непосредственно получим ∀ξ ∈ F , ∀ε > 0, ∃ δ̃ε = min

{
ε

%1
,
ε

%2
, δε

}
> 0,

∀t1, t2 ∈ I при |t1 − t2| < δ̃ε

|ξ(t1)− ξ(t2)| < ε, |ξ′(t1)− ξ′(t2)| < ε, |ξ′′(t1)− ξ′′(t2)| < ε.
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Это означает, что F равномерно непрерывно. Таким образом, с теоремой Арцела–Асколи
[9] мы подтверждаем компактность подмножества F . Мы заключаем, что Φ вполне непре-
рывен. Наконец, применение теоремы Шаудера показывает, что Φ имеет неподвижную
точку ξ = Φ(ξ) в F , которая является решением уравнения Вольтерра (1), и его произ-
водные удовлетворяют уравнениям (2) и (3).

3. Доказательство единственности

Очевидно, что при использовании теоремы Шаудера о неподвижной точке гарантиру-
ется только существование решения предыдущего уравнения (1). Итак, для доказатель-
ства единственности этого решения нам необходима следующая вспомогательная лемма.

Лемма. Пусть γ(t) — непрерывная и положительная функция на [a, b], которая удо-
влетворяет следующим соотношениям:

∃L > 0, γ(t) ≤ L
∫ t

a
γ(s)ds,

тогда γ(t) = 0 ∀t ∈ [a, b].

Доказательство. См. [30].

С другой стороны, нам также необходимо ввести следующее предположение:
(A3): существуют постоянные A, B, C, A, B, C, Ã, B̃, C̃ > 0 такие, что ∀t, s ∈ I,

∀x, y, z, x, y, z ∈ R

|ϕ(t, s, x, y, z)− ϕ(t, s, x, y, z)| ≤ A|x− x|+B|y − y|+ C|z − z|,

|∂tϕ(t, s, x, y, z)− ∂tϕ(t, s, x, y, z)| ≤ A|x− x|+B|y − y|+ C|z − z|,

|∂2t ϕ(t, s, x, y, z)− ∂2t ϕ(t, s, x, y, z)| ≤ Ã|x− x|+ B̃|y − y|+ C̃|z − z|.

Теорема 2. Пусть условия (A1)–(A3) выполнены. Кроме того, предположим, что

|λ|C < 1,

тогда уравнение Вольтерра (1) имеет единственное решение в пространстве C2(I).

Доказательство. Предположим, что u(t), v(t) ∈ C2(I) — два решения уравнения (1).
Пусть γ(t) — положительная функция:

γ (t) = |u(t)− v(t)|+ |u′(t)− v′(t)|+ |u′′(t)− v′′(t)|.

Теперь докажем, что γ (t) = 0 на основании леммы. Это означает, что u(t) = v(t),
u′(t) = v′(t) и u′′(t) = v′′(t).

Сначала положим

θ = M2 max(A,B,C), θ = M2 max(A,B,C), θ̃ = M2 max(Ã, B̃, C̃).

Для всех t ∈ I имеем
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|u(t)− v(t)| =
∣∣∣∣ ∫ t

a
g(t− s)

(
ϕ(t, s, u(s), u′(s), u′′(s))− ϕ(t, s, v(s), v′(s), v′′(s))

)
ds

∣∣∣∣
≤M2

∫ t

a

(
A|u(s)− v(s)|+B|u′(s)− v′(s)|+ C|u′′(s)− v′′(s)|

)
ds

≤M2 max(A,B,C)

∫ t

a

(
|u(s)− v(s)|+ |u′(s)− v′(s)|+ |u′′(s)− v′′(s)|

)
ds

= θ

∫ t

a
γ(s)ds. (4)

Таким же образом получим

|u′(t)− v′(t)| ≤
∣∣∣∣ ∫ t

a
∂tg(t− s)

(
ϕ
(
t, s, u(s), u′(s), u′′(s)

)
− ϕ

(
t, s, v(s), v′(s), v′′(s)

))
ds

∣∣∣∣+∣∣∣∣ ∫ t

a
g(t− s)

(
∂tϕ
(
t, s, u(s), u′(s), u′′(s)

)
− ∂tϕ

(
t, s, v(s), v′(s), v′′(s)

))
ds

∣∣∣∣
≤M2

∫ t

a

(
A|u(s)− v(s)|+B|u′(s)− v′(s)|+ C|u′′(s)− v′′(s)|

)
ds+

M2

∫ t

a

(
A|u(s)− v(s)|+B|u′(s)− v′(s)|+ C|u′′(s)− v′′(s)|

)
ds

≤M2 max(A,B,C)

∫ t

a
(|u(s)− v(s)|+ |u′(s)− v′(s)|+ |u′′(s)− v′′(s)|)ds+

M2 max(A,B,C)

∫ t

a

(
|u(s)− v(s)|+ |u′(s)− v′(s)|+ |u′′(s)− v′′(s)|

)
ds

=
(
θ + θ

) ∫ t

a
γ(s)ds. (5)

Тогда, аналогично предыдущему, получим∣∣u′′(t)− v′′(t)∣∣ ≤ |λ|∣∣ (ϕ(t, t, u(t), u′(t), u′′(t)
)
− ϕ

(
t, t, v(t), v′(t), v′′(t)

)) ∣∣+∣∣∣∣∫ t

a
2∂tg(t−s)

(
∂tϕ
(
t, s, u(s), u′(s), u′′(s)

)
−∂tϕ

(
t, s, v(s), v′(s), v′′(s)

))
ds

∣∣∣∣+∣∣∣∣∫ t

a
∂2t g(t− s)

(
ϕ
(
t, s, u(s), u′(s), u′′(s)

)
− ϕ

(
t, s, v(s), v′(s), v′′(s)

))
ds

∣∣∣∣+∣∣∣∣∫ t

a
g(t− s)

(
∂2t ϕ

(
t, s, u(s), u′(s), u′′(s)

)
− ∂2t ϕ

(
t, s, v(s), v′(s), v′′(s)

))
ds

∣∣∣∣
≤ |λ|

(
A|u(t)− v(t)|+B|u′(t)− v′(t)|+ C|u′′(t)− v′′(t)|

)
+

2M2

∫ t

a

(
A|u(s)− v(s)|+B|u′(s)− v′(s)|+ C|u′′(s)− v′′(s)|

)
ds+

M2

∫ t

a

(
A|u(s)− v(s)|+B|u′(s)− v′(s)|+ C|u′′(s)− v′′(s)|

)
ds+

M2

∫ t

a

(
Ã|u(s)− v(s)|+ B̃|u′(s)− v′(s)|+ C̃|u′′(s)− v′′(s)|

)
ds.
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Таким образом

|u′′(t)− v′′(t)| ≤ |λ|A|u(t)− v(t)|+ |λ|B|u′(t)− v′(t)|+ |λ|C|u′′(t)− v′′(t)|+

2M2 max(A,B,C)

∫ t

a

(
|u(s)− v(s)|+ |u′(s)− v′(s)|+ |u′′(s)− v′′(s)|

)
ds+

M2 max(A,B,C)

∫ t

a

(
|u(s)− v(s)|+ |u′(s)− v′(s)|+ |u′′(s)− v′′(s)|

)
ds+

M2 max(Ã, B̃, C̃)

∫ t

a

(
|u(s)− v(s)|+ |u′(s)− v′(s)|+ |u′′(s)− v′′(s)|

)
ds

= |λ|A|u(t)−v(t)|+|λ|B|u′(t)−v′(t)|+|λ|C|u′′(t)−v′′(t)|+(2θ+θ+θ̃)

∫ t

a
γ(s)ds.

Из неравенств (4) и (5) следует, что

∣∣u′′(t)− v′′(t)∣∣ ≤ |λ|C∣∣u′′(t)− v′′(t)∣∣+
(
|λ|Aθ + |λ|B(θ + θ) + 2θ + θ + θ̃

)∫ t

a
γ (s) ds.

Используя свойство |λ|C < 1, находим

∣∣u′′(t)− v′′(t)∣∣ ≤ (θ(|λ|A+ |λ|B + 1) + θ(|λ|B + 2) + θ̃

1− |λ|C

)∫ t

a
γ (s) ds. (6)

Кроме того, в соответствии с неравенствами (4), (5) и (6), мы можем подтвердить, что
существует положительный параметр L, который удовлетворяет следующему неравен-
ству:

γ (t) ≤ L
∫ t

a
γ (s) ds,

где L задается следующим образом:

L =

(
2θ + θ +

θ(|λ|A+ |λ|B + 1) + θ(|λ|B + 2) + θ̃

1− |λ|C

)
.

Исходя из леммы получим γ(t) = 0. Это означает, что уравнение (1) имеет единственное
решение в пространстве C2(I).

4. Численное исследование

В предыдущих пунктах, при предположениях (A1)–(A3) мы показали, что уравне-
ние (1) имеет единственное решение в C2(I). В действительности это решение не мо-
жет быть найдено точно. По этой причине для этого решения необходимо рассмотреть
некоторые численные методы. В данном пункте мы будем использовать метод Нистрема,
описанный в [9], который позволит нам получить приближенное решение нашего уравне-
ния (1). Прежде всего вспомним метод Нистрема. Для N ∈ N и с использованием шага
дискретизации h =

b− a
N

, определим равноудаленное деление интервала I следующим
образом:

sj = a+ jh, 0 ≤ j ≤ N.
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Метод Нистрема — это метод поиска приближенного решения интегрального уравнения
путем замены интеграла выбранной квадратурной формулой, например∫ b

a
ξ(s)ds ' h

N∑
j=0

ωjξ(sj),

где ωi — реальные веса такие, что max0≤j≤N |ωj | ≤ $ <∞.
Теперь, используя коллокацию уравнений (1), (2) и (3) в точках сетки ti = a + ih,

0 ≤ i ≤ N , а затем метод Нистрема, мы получим следующую алгебраическую систему:
для i = 0: (начальные значения)

U0 = f(a), V0 = f ′(a), W0 = f ′′(a) + λϕ(a, a, U0, V0,W0); (7)

для 1 ≤ i ≤ N :

Ui = f(ti) + h

i∑
j=0

ωjg(ti − tj)ϕ(ti, tj , Uj , Vj ,Wj), (8)

Vi = f ′(ti) + h
i∑

j=0

ωj
(
∂tg(ti − tj)ϕ(ti, tj , Uj , Vj ,Wj) + g(ti − tj)∂tϕ(ti, tj , Uj , Vj ,Wj)

)
, (9)

Wi = f ′′(ti) + λϕ(ti, ti, Ui, Vi,Wi) + h
i∑

j=0

2ωj∂tg(ti − tj)∂tϕ(ti, tj , Uj , Vj ,Wj) +

h
i∑

j=0

ωj
(
∂2t g(ti − tj)ϕ(ti, tj , Uj , Vj ,Wj) + g(ti − tj)∂2t ϕ(ti, tj , Uj , Vj ,Wj)

)
, (10)

где Ui, Vi и Wi — приближенные значения в точках сетки для u(ti), u
′(ti) и u′′(ti) соот-

ветственно.
Мы видим, что полученная система является нелинейной. Итак, на практике мы ис-

пользовали вычислительную среду, такую как программное обеспечение
MATLAB, чтобы получить корни этой системы. Это означает, что мы нашли прибли-
женное решение нашего уравнения (1).

С другой стороны, остается важный вопрос: являются ли предыдущие предположе-
ния (A1)–(A3) достаточными для существования и единственности решения системы
(7)–(10)? Об этом мы узнаем в следующем подпункте.

4.1. Исследование системы

Вообще говоря, гипотезы, подтверждающие существование и единственность реше-
ния уравнения в бесконечномерном пространстве, не являются теми же гипотезами в
конечномерном пространстве. Поэтому в следующей теореме мы добавим необходимые
условия для того, чтобы система (7)–(10) имела единственное решение.

Теорема 3. Пусть условия (A1)–(A3) выполнены. Предположим, что

|λ|C < 1, |λ|A < 1, |λ|B < 1

для всех достаточно малых h, тогда система (7)–(10) имеет единственное решение.
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Доказательство. Очевидно, что уравнение (7) имеет единственное решение W0 вслед-
ствие условия |λ|C < 1.

Теперь рассмотрим евклидово пространство R3, имеющее следующую стандартную
норму:

∀

XY
Z

 ∈ R3,

∥∥∥∥∥∥
XY
Z

∥∥∥∥∥∥
1

= |X|+ |Y |+ |Z|.

Для простоты выкладок определим преобразование Ψi : R3 → R3 для всех 1 ≤ i ≤ N
следующим образом:

Ψi

XY
Z

 =

Υ1(X,Y, Z)

Υ2(X,Y, Z)

Υ3(X,Y, Z)

 ,

где

Υ1(X,Y, Z) = f(ti) + hωig(ti − ti)ϕ(ti, ti, X, Y, Z) + h
i−1∑
j=0

ωjg(ti − tj)ϕ(ti, tj , Uj , VJ ,Wj)

= f(ti) + h
i−1∑
j=0

ωjg(ti − tj)ϕ(ti, tj , Uj , Vj ,Wj) = ϑ1i ,

Υ2(X,Y, Z) = f ′(ti) + hωi∂tg(ti − ti)ϕ(ti, ti, X, Y, Z) + hωig(ti − ti)∂tϕ(ti, ti, X, Y, Z) +

h
i−1∑
j=0

ωj (∂tg(ti − tj)ϕ(ti, tj , Uj , Vj ,Wj) + g(ti − tj)∂tϕ(ti, tj , Uj , Vj ,Wj))

= f ′(ti) + λωihϕ(ti, ti, X, Y, Z) + ϑ2i
при

ϑ2i = h
i−1∑
j=0

ωj (∂tg(ti − tj)ϕ(ti, tj , Uj , Vj ,Wj) + g(ti − tj)∂tϕ(ti, tj , Uj , Vj ,Wj))

и
Υ3(X,Y, Z) = f ′′(ti) + λϕ(ti, ti, X, Y, Z) + 2hωi∂tg(ti − ti)∂tϕ(ti, ti, X, Y, Z) +

hωi∂
2
t g(ti − ti)ϕ(ti, ti, X, Y, Z) + hωig(ti − ti)∂2t ϕ(ti, ti, X, Y, Z) + ϑ3i

= f ′′(ti) + λϕ(ti, ti, X, Y, Z) + 2hλωi∂tϕ(ti, ti, X, Y, Z) +

hωi∂
2
t g(0)ϕ(ti, ti, X, Y, Z) + ϑ3i ,

где

ϑ3i = h

i−1∑
j=0

ωj
(
∂2t g(ti − tj)ϕ(ti, tj , Uj , Vj ,Wj) + g(ti − tj)∂2t ϕ(ti, tj , Uj , Vj ,Wj)

)
+

h

i−1∑
j=0

2ωj∂tg(ti − tj)∂tϕ(ti, tj , Uj , Vj ,Wj).

Поэтому мы видим, что

Ψi

X1

Y1

Z1

−Ψi

X2

Y2

Z2

 =

β1β2
β3

 ,

где β1, β2 и β3 задаются следующим образом:
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β1 = 0,

β2 = hλωi (ϕ(ti, ti, X1, Y1, Z1)− ϕ(ti, ti, X2, Y2, Z2)) ,

β3 = λ (ϕ(ti, ti, X1, Y1, Z1)− ϕ(ti, ti, X2, Y2, Z2)) +

2λhωi (∂tϕ(ti, ti, X1, Y1, Z1)− ∂tϕ(ti, ti, X2, Y2, Z2)) +

hωi∂
2
t g(0) (ϕ(ti, ti, X1, Y1, Z1)− ϕ(ti, ti, X2, Y2, Z2)) .

В результате, используя предположение (A3) и взяв % = |∂2t g(0)|, получим

|β2| ≤ h|λ|$ (A|X1 −X2|+B|Y1 − Y2|+ C|Z1 − Z2|) ,

|β3| ≤ |λ| (A|X1 −X2|+B|Y1 − Y2|+ C|Z1 − Z2|) +

2|λ|h$
(
A|X1 −X2|+B|Y1 − Y2|+ C|Z1 − Z2|

)
+

h$% (A|X1 −X2|+B|Y1 − Y2|+ C|Z1 − Z2|) .

Таким образом,

|β1|+ |β2|+ |β3| ≤ η1|X1 −X2|+ η2|Y1 − Y2|+ η3|Z1 − Z2|,

где

η1 = h|λ|$A+ |λ|A+ 2|λ|h$A+ h$%A,

η2 = h|λ|$B + |λ|B + 2|λ|h$B + h$%B,

η3 = h|λ|$C + |λ|C + 2|λ|h$C + h$%C.

Используя обозначение η = max (η1, η2, η3), найдем∥∥∥∥∥∥∥Ψi

X1

Y1

Z1

−Ψi

X2

Y2

Z2


∥∥∥∥∥∥∥
1

≤ η

∥∥∥∥∥∥∥
X1

Y1

Z1

−
X2

Y2

Z2


∥∥∥∥∥∥∥
1

.

Для всех достаточно малых h и при условиях |λ|C < 1, |λ|A < 1 и |λ|B < 1 мы получим
0 < η < 1. Таким образом, мы заключаем, что Ψi — сжатие R3 в себя. Следовательно,
теорема Банаха о неподвижной точке подтверждает, что система (8)–(10) имеет един-
ственное решение.

5. Иллюстративные примеры

В данном пункте мы обсудим два основных примера, чтобы проверить точность и
практичность результатов, полученных в данной работе.

Пример 1. Рассмотрим первое уравнение

u(t) =

∫ t

0
ln(1 + t− s) t((s+ 1)4 + 2s2 + 4s+ 2)

(1 + u(s) + u′(s) + u′′(s))2
ds+ f(t), t ∈ [0, 1],

если мы возьмем f(t) = 2t2 − (t2 + t) ln(t+ 1), то получим точное решение u(t) = t2.
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Пример 2. Рассмотрим второе уравнение

u(t) =

∫ t

0

(
t− s

5

)
cos
(
s+ t− 12 cos(4s)es + 13 sin(4s)es + u(s) + u′(s) + u′′(s)

)
ds+ f(t),

если мы возьмем

f(t) = sin(4t) exp(t)− 0.2(cos(t)− 2 cos2(t)− t sin(t) + 1), t ∈ [0, 1],

то получим точное решение u(t) = sin(4t) exp(t).

Во-первых, мы видим, что ядра g(t, s) и ϕ(t, s, x, y, z) примера 1 удовлетворяют пред-
положениям (A1)–(A3). Кроме того, g(t − s) = ln(1 + t − s), поэтому g(0) = ln(1) = 0
и ∂tg(0) = λ = 1, а также постоянные Липшица A,B и C ядра ϕ удовлетворяют
A = B = C =

1

4
. Тогда мы приходим к выводу, что предложенные выше необходи-

мые условия |λ|A < 1, |λ|B < 1 и |λ|C < 1 также выполняются. Что касается второго
примера, то ядра g(t, s), ϕ(t, s, x, y, z) также удовлетворяют предположениям (A1)–(A3).
Функция g(t − s) =

t− s
5

дает g(0) = 0 и ∂tg(0) =
1

5
, а постоянные Липшица A,B и C

удовлетворяют A = B = C = 1, они подтверждают, что условия |λ|A < 1, |λ|B < 1 и
|λ|C < 1 выполняются. Следовательно, каждый из этих двух примеров имеет единствен-
ное решение. Теперь подойдем к их решению, рассмотрев систему (7)–(10). Заметим,
что для всех моделирований мы выбрали метод трапеций в качестве правила квадра-
тур и использовали метод Пикара в качестве итерационной схемы. Для сравнения нам
необходимо ввести следующие функции ошибок:

E1 = max
0≤i≤N

|u(ti)− Ui|, E2 = max
0≤i≤N

|u′(ti)− Vi|, E3 = max
0≤i≤N

|u′′(ti)−Wi|.

Используя различные значения N , представим полученные результаты в таблицах и
графических иллюстрациях.

Таблица 1. Анализ ошибок настоящего метода для примера 1

Ошибка N=10 N=100 N=250 N=500 N=1000

E1 4.37E–4 4.38E–6 7.01E–7 1.75E–7 4.38E–8
E2 1.87E–4 1.86E–6 2.99E–7 7.47E–8 1.87E–8
E3 3.27E–4 3.26E–6 5.22E–7 1.30E–7 3.33E–8

Таблица 2. Анализ ошибок настоящего метода для примера 2

Ошибка N=10 N=100 N=250 N=500 N=1000

E1 2.90E–4 2.90E–6 4.64E–7 1.16E–7 2.90E–8
E2 7.51E–5 7.51E–7 1.20E–7 3.00E–8 7.51E–9
E3 2.95E–5 2.97E–7 4.81E–8 1.26E–8 3.76E–9

На рисунках 1–6 показаны точные и приближенные решения для примеров 1 и 2,
а также их производные, которые являются почти идентичными только при N = 20.
Кроме того, в таблицах 1 и 2 показано, что функции ошибок E1, E2 и E3 близки к
нулю при увеличении N , а это означает, что приближенные решения и их производные
сходятся к точным решениям и их производным соответственно.

Таким образом, результаты моделирования подтверждают точность и эффективность
нашей работы.
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Рис. 1. График точного и численного ре-
шения примера 1

Рис. 2. График точной и численной про-
изводной примера 1

Рис. 3. График точной и численной вто-
рой производной решения примера 1

Рис. 4. График точного и численного ре-
шения примера 2

Рис. 5. График точной и численной произ-
водной решения примера 2

Рис. 6. График точной и численной вто-
рой производной решения примера 2
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Выводы

В данной статье мы предложили класс нелинейных интегро-дифференциальных
уравнений Вольтерра с ядром типа свертки. Сначала мы обсудили необходимые и до-
статочные условия, гарантирующие существование и единственность решения предло-
женного уравнения. Затем мы построили численный процесс на основе метода Нистрема
для получения приближенного решения этого уравнения. Мы также подтвердили наши
результаты некоторыми наглядными примерами.
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