УДК 54.055+546.302+546.786+546.05

DOI: 10.15372/KhUR2019143

Высокодисперсный вольфрам из механокомпозита W/MgO, полученного восстановлением оксида вольфрама (VI) магнием

Т. А. УДАЛОВА^{1,2}, С. В. ВОСМЕРИКОВ¹, Т. Ф. ГРИГОРЬЕВА¹, Е. Т. ДЕВЯТКИНА¹, Н. З. ЛЯХОВ¹

¹Институт химии твердого тела и механохимии Сибирского отделения РАН, Новосибирск (Россия)

E-mail: udalova@solid.nsc.ru

²Новосибирский государственный технический университет, Новосибирск (Россия)

Аннотация

Методом рентгенофазового анализа исследовано влияние стехиометрических составов и условий механической активации на формирование продуктов восстановления WO_3 магнием. В процессе механической активации смеси оксида вольфрама (VI) с магнием на соответствующих этапах формируются механохимические композиты различных составов, включающие магний, оксиды вольфрама (VI и IV), вольфрамат магния, вольфрам и оксид магния. Восстановление оксида вольфрама (VI) магнием завершается к 8 мин активации с образованием композита W/MgO. Определены условия отделения вольфрама от оксида магния с использованием растворов кислот из механохимических композитов W/MgO. Методом сканирующей электронной микроскопии показано, что вольфрам, отделенный от оксида магния, является высокодисперсным и состоит из первичных частиц, по форме близких к сферической, с размерами 50–100 нм, агрегированных во вторичные частицы с размерами 1–10 мкм. Содержание магния в высокодисперсном порошке вольфрама, определенное методом энергодисперсионного анализа, составляет менее 2 мас. %.

Ключевые слова: механохимическое восстановление, высокодисперсный вольфрам, высокоэнергетические системы

введение

Технология производства изделий на основе вольфрама и его сплавов, обладающих высокой жаропрочностью, тугоплавкостью, химической и коррозионной стойкостью, непосредственно связана с порошковой металлургией. Высокодисперсные порошки вольфрама находят применение в производстве электрических контактов, композитов с медью, никелем и другими металлами, пиротехнических средств направленного действия, а также в качестве наполнителя компаундов для пьезоэлектрических преобразователей, модификаторов полимеров, катализаторов, спеченных полуфабрикатов и других изделий.

Высокодисперсные порошки вольфрама, как правило, получают методами водородного [1] и

металлотермического восстановления его соединений как в режиме самораспространяющегося высокотемпературного синтеза (CBC) [2], так и в расплавах солей [3].

Представленные результаты продолжают исследования механохимического восстановления оксидов металлов активными металлами с формированием композитов $(M/(Me_{aкr})_x O_y)$ – порошковых смесей высокодисперсных частиц восстановленных металлов и оксида активного металла – с целью извлечения из композитов высокодисперсных металлов кислотным отделением от оксида активного металла [4, 5]. В сравнении с другими методами получения высокодисперсных порошковых материалов механохимический синтез (МХС) выделяется короткими временами реакций и, одновременно, устранением ряда проблем загрязнения окружающей среды. Реакции восстановления оксидов металлов с E_{298}^0 (M^{n+}/M) > 0 В активными металлами с E_{298}^0 (Me_{akr}^{n+}/Me_{akr}) < -0.7 В, протекающие с высоким экзотермическим эффектом, могут быть реализованы в процессе одной только механической активации (МА) [6-8], которая способствует увеличению площади контактной поверхности, ускорению массопереноса, и, как следствие, активации механохимического взаимодействия с формированием высокодисперсных композитов $(M/(Me_{akt})_rO_y)$. Извлечение из таких композитов восстановленного металла без нарушения его высокодисперсного состояния определяется выбором растворителя оксида активного металла, инертного по отношению к восстановленному металлу. Из активных металлов наиболее эффективно применяется магний, поскольку в процессе механохимической окислительно-восстановительной, как правило, высокоэкзотермической реакции формируется фаза оксида магния, препятствующая существенному спеканию продуктов механической активации. При взаимодействии с водными растворами HCl или H₂SO₄ оксид магния образует хорошо растворимые соединения [9]. В растворах соляной кислоты в присутствии кислорода вольфрам может окисляться до W⁵⁺ с соответствующим синим цветом растворов [10]. В разбавленных растворах серной кислоты при 298 К вольфрам не растворяется и его можно отделять из композита W/MgO без нарушения высокодисперсного состояния. Известно применение восстановления оксидов металлов магнием методом механической активации для синтеза катализаторов M/MgO [11, 12].

Цель данной работы – исследование механохимического взаимодействия в системе оксида вольфрама (VI) с магнием, определение условий формирования композитов W/MgO и извлечения из них высокодисперсного вольфрама.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе использовали WO₃ (ТУ 6-09-397-75), магниевый порошок (ГОСТ 6001-79, МПФ-2); серная кислота (ГОСТ 14262-78), ацетон (ГОСТ 14262-78).

Смеси магния и оксида вольфрама различных стехиометрических составов обрабатывали в высокоэнергетической шаровой планетарной мельнице АГО-2 (объем барабана 250 см³, диаметр шаров 5 мм, загрузка шаров 200 г, навеска образца 10 г, скорость вращения барабанов вокруг общей оси 600 и 1000 об/мин).

Исследования методом рентгенофазового анализа (РФА) проводили с помощью дифрактометра D8 Advance (Вгикег, Германия) с характеристическим излучением $CuK_{\alpha 1}$ ($\lambda = 1.5406$ Å). Фазовый состав определяли с использованием базы данных PDF-2.

Исследования морфологии полученных образцов выполняли с использованием сканирующих электронных микроскопов (СЭМ) OXSFORD INSTRUMENT (Англия) и Hitachi TM 1000 (Япония). Микроскоп Hitachi TM 1000 укомплектован детектором TM 1000 EDS, предназначенным для определения химического состава образца.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Реакция восстановления оксида вольфрама (VI) магнием является экзотермической с выделением большого количества теплоты:

 $WO_3 + 3Mg \rightarrow 3MgO + W; \Delta_r H_{298}^0 \approx -963 \ \kappa Дж$ (1) В исследованиях восстановления WO, магнием методом термического анализа [13] показано, что взаимодействие между компонентами начинается до плавления магния ($T_{\pi\pi} = 924$ K), протекает с высокой скоростью, сопровождается мощным экзотермическим эффектом с началом при 873 К. Наблюдаемый на дифференциальной кривой интенсивный экзотермический эффект (873-973 К), связанный с химическим взаимодействием между оксидом вольфрама и магнием, свидетельствует о высокой реакционной способности магния по отношению к оксиду вольфрама. При механической активации смеси оксида вольфрама (VI) с магнием параллельно возможно протекание другой экзотермической реакции с формированием вольфрамата магния WO_3 + MgO \rightarrow MgWO₄; $\Delta_\mathrm{r} \mathrm{H}^0_{298} \approx$ -74 кДж (2)

В исследованиях [14] показано, что вольфрамат магния MgWO₄ может быть синтезирован за три цикла спекания – размола при 1273 К. Тепловые эффекты реакций (1) и (2) приведены с учетом стандартных энтальпий образования WO₃, MgO и MgWO₄ [15].

В процессе MA происходит формирование композитов различных составов, включающих вольфрам, оксид магния, оксид вольфрама (IV), магний, вольфрамат магния (MgWO₄), Fe (от материала мельницы), что контролировалось методом РФА (PDF-2). Предварительными исследованиями методом РФА показано, что механо-

Рис. 1. Дифрактограммы образцов: WO₃ до MA (1) и механокомпозитов различных составов при $\tau_s = 0.5$ (2), 1 (3), 2 (4), 4 (5), 8 (6) мин в атмосфере Ar.

химическое восстановление оксида вольфрама магнием за время активации менее 30 мин достигается только при скорости вращения барабанов вокруг общей оси 1000 об/мин и стехиометрических соотношениях компонентов в системе WO_3 / Mg = 1 : 3.6.

Изучение влияния времени MA (τ_{a}) от 0.5 до 8 мин смеси WO₃ + Mg в указанных выше условиях (рис. 1) на степень восстановления оксида вольфрама магнием показало, что за т_а = 0.5 мин интенсивности рефлексов WO₃ и Mg на дифрактограммах образцов снижаются (см. рис. 1, кривая 2). Увеличение т до 1 и 2 мин приводит к дальнейшему снижению интенсивности рефлексов WO₃, Mg; рефлексы MgO и W не наблюдаются, но появляются рефлексы, соответствующие фазе MgWO_4 . С увеличением τ_a до 2 мин (см. рис. 1, кривые 3, 4) их интенсивность возрастает. При τ = 4 мин на дифрактограммах появляются рефлексы W и MgO слабой интенсивности с одновременным снижением интенсивности рефлексов $MgWO_4$ (см. рис. 1, кривая 5). Увеличение времени активации до 8 мин приводит к формированию механокомпозита W/MgO - на дифрактограммах образцов регистрируются только уширенные рефлексы W и MgO, рефлексы других фаз отсутствуют (см. рис. 1, кривая 6). В исследованиях [13, 14] показана возможность магниетермического восстановления вольфрамата магния в экзотермической реакции с выделением большого количества теплоты:

$$\begin{array}{l} \mathrm{MgWO}_{4} + 3\mathrm{Mg} \to \mathrm{W} + 4\mathrm{MgO};\\ \Delta_{r} H^{0}_{\underline{298}} \approx -874.8 \ \kappa \mathrm{Дж} \end{array} \tag{3}$$

По-видимому, процесс механохимического восстановления оксида вольфрама (VI) магнием происходит и через формирование вольфрамата магния, а при увеличении времени активации – последующего восстановления MgWO₄ магнием.

Исследования полученных образцов композита W/MgO методом сканирующей электронной микроскопии показали, что первичные частицы механохимических композитов, сформированных за $\tau_a = 8$ мин, имеют форму, близкую к сферической, с размерами 50–100 нм и агрегированы в более крупные частицы 1–20 мкм (см. рис. 2, г). Стабильность композитов W/MgO при хранении в обычных условиях в течение нескольких месяцев подтверждена результатами РФА.

Композиты W/MgO, полученные при MA в течение 8 мин, при стехиометрическом соотношении компонентов WO_3 / Mg = 1 : 3.6 и скорости вращения барабанов вокруг общей оси 1000 об/мин, исследованы на предмет отделе-

ТМ-1000_4629 L D2.0 ×1.0k 100 мкм

Рис. 2. Электронные микрофотографии WO₃ (1), Mg (2) и механокомпозита W/MgO, активированного в течение 8 мин в атмосфере Ar (3). Приведены номера карточек соединений базы данных PDF-2.

ния вольфрама от побочных продуктов восстановления (рис. 3), таких как оксид магния и оксиды вольфрама. Наиболее эффективно оксид магния растворяется в растворах HCl и H_2SO_4 [9]. Для отделения частиц вольфрама от оксида магния исследована обработка механохимических композитов W/MgO разбавленными растворами этих кислот. Сравнение результатов обработки W/MgO разбавленными растворами кислот показало преимущество применения H_2SO_4 , поскольку в растворах HCl появлялась синяя либо голубоватая окраска водной фазы, что, по-видимому, связано с возможностью частичного окисления высокодисперсного вольфрама до W^{5+} [10].

Определены оптимальные условия отделения вольфрама от основного побочного продукта (оксида магния) из композита обработкой раствором 1 М H₂SO₄ (298 К; 30 мин) и дистиллированной водой, вольфрам при этом остается в виде порошка. После обработки серной кислотой механохимических композитов W/MgO, в составе которых возможно присутствие остаточных количеств оксидов вольфрама, дополнительно проводили обработку композитов 4 % раствором плавиковой кислоты.

Методом РФА зарегистрировано, что на стадии удаления остаточных количеств влаги (при высушивании образцов на воздухе при ~343 К) порошок вольфрама начинает окисляться (см. рис. 3, кривая 3). Для устранения электрохимической коррозии вольфрама проводили удаление влаги с поверхности его частиц промывкой ацетоном. На дифрактограммах образцов, полученных последовательной обработкой композитов W/MgO раствором 1 М H₂SO₄, водой, 4 % раствором HF, водой и ацетоном, присутствуют только рефлексы вольфрама.

Определение размера частиц порошка вольфрама, отделенного от побочных компонентов

Рис. 3. Дифрактограммы образцов: WO_3 до MA (1); механокомпозит W/MgO (2), механокомпозит W/MgO после отделения MgO раствором 1 M H₂SO₄ и водой (3), вольфрам после обработки W/MgO последовательно раствором 1 M H₂SO₄, водой, 4 % раствором HF, водой и ацетоном (4).

из механокомпозита W/MgO, выполнено методом сканирующей электронной микроскопии. Показано, что частицы высокодисперсных порошков вольфрама являются вторичными агрегатами с размерами 1–10 мкм, состоящими из первичных частиц с размерами 50–100 нм (см. рис. 4). Методом энергодисперсионной рентгеновской спектроскопии (EDS-анализ), опреде-

Рис. 4. Электронная микрофотография высокодисперсного вольфрама.

лено, что содержание Mg в порошках вольфрама составляет менее 2 мас. %.

Стабильность получаемого высокодисперсного вольфрама при хранении образцов в течение 10 сут в обычных условиях подтверждается результатами РФА.

ЗАКЛЮЧЕНИЕ

Механохимическое восстановление оксида вольфрама (VI) магнием при стехиометрическом соотношении компонентов WO₃ / Mg = 1 : 3.6 и скорости вращения барабанов вокруг общей оси 1000 об/мин завершается к 8 мин активации с формированием композита W/MgO.

Последовательная обработка механохимического композита W/MgO раствором 1 M H₂SO₄ и дистиллированной водой эффективно отделяет порошок вольфрама от оксида магния.

Удаление незначительных количеств оксидов вольфрама (VI-VI), образующихся в присутствии воды и кислорода воздуха при температуре выше 343 К, достигается при последовательной обработке образцов 4 % раствором HF, водой и ацетоном. Методом сканирующей электронной микроскопии показано, что порошок вольфрама является высокодисперсным, состоит из первичных частиц с размерами 50–100 нм, агрегированных во вторичные частицы с размерами 1–10 мкм.

Стабильность механохимических композитов W/MgO сохраняется на протяжении 1 мес, а высокодисперсного вольфрама, извлекаемого из композитов, – не менее 10 сут, что подтверждают результаты РФА.

Содержание Mg в высокодисперсных порошках вольфрама определено методом энергодисперсионной рентгеновской спектроскопии и составляет менее 2 мас. %.

Работа выполнена в рамках государственного задания ИХТТМ СО РАН (проект 0301-2019-0022).

СПИСОК ЛИТЕРАТУРЫ

- 1 Каламазов Р. У., Цветков Ю. В, Кальков А. А. Высокодисперсные порошки вольфрама и молибдена. М.: Металлургия, 1988. 257 с.
- 2 Won C. W., Nersisyan H. H., Won H. I., Lee J. H. // Curr. Opinion Solid State and Materials Sci. 2010. Vol. 14, No. 3/4. P. 53-68.
- 3 Zhong S., Wen Y., Zhong H. // Powder Technol. 2014. Vol. 253. P. 128-132.

- 4 Pavlov E. A., Udalova T. A., Grigoreva T. F., Vosmerikov S. V., Vorsina I. A., Devyatkina E. T., Lyakhov N. Z. // Bull. RAS: Physics. 2018. Vol. 82, No. 5. P. 574–577.
- 5 Удалова Т. А., Григорьева Т. Ф., Девяткина Е. Т., Восмериков С. В., Ляхов Н. З. // Хим. уст. разв. 2018. Т. 26, № 5. С. 537–543.
- 6 Schaffer G. B., McCormic P. G. // Metall. Trans. A. 1990. Vol. 21. P. 2789-2794.
- 7 Шевченко В. С. Исследование экзотермических механически стимулированных реакций в оксидно-сульфидных системах: дис. ...канд. хим. наук. Новосибирск, 2003.
- 8 Григорьева Т. Ф., Баринова А. П., Ляхов Н. З. Механохимический синтез в металлических системах. Новосибирск: Параллель, 2008. 310 с.
- 9 Raschman P., Fedoro¢ková A. // Hydrometallurgy. 2004 Vol. 71. P. 403-412.
- 10 Бусев А. И., Иванов В. М., Соколова Т. А. Аналитическая химия вольфрама. М.: Наука, 1976. 240 с.
- 11 Urakaev F. H., Shevchenko V. S., Boldyrev V. V. // Doklady RAN. 2001.Vol. 377. No. 1. P. 69-71.
- 12 Vagra M., Molár Á., Mulas G., Mohai M., Bertoti I., Cocco G. // Journal of Catalysis. 2002. Vol. 206, No. 1. P. 71–81.
- 13 Орлов В. М., Колосов В. Н. // Доклады РАН. 2016. Т. 468, № 3. С. 288–292.
- 14 Мирошниченко М. Н., Колосов В. Н., Макарова Т. И, Орлов В. М. // Известия СПбГТИ (ТУ). 2017. Т. 38. С. 44-47.
- 15 Термодинамические свойства индивидуальных веществ. Справ. изд. в 4 т. Изд. 3-е, перераб. и расшир. / Под ред. Глушко В. П. Том IV. Элементы Сг, Мо, W, V, Nb, Та, Ті, Zr, Hf, Sc, Y, La, Th, U, Pu, Li, Na, K, Rb, Cs и их соединения. Книга 1. Вычисление термодинамических свойств. М.: "Наука". 1982. С. 1–622; Книга 2. Таблицы термодинамических свойств. М.: "Наука". 1982. С. 1–557.