УДК 665.7.032.57:665.6.033.28 DOI: 10.15372/KhUR20190105

Влияние радикалобразующих добавок на состав продуктов инициированного крекинга битума месторождения Баян-Эрхэт

Е. Б. КРИВЦОВ, А. К. ГОЛОВКО

Институт химии нефти Сибирского отделения РАН, Томск (Россия) E-mail: john@ipc.tsc.ru

Аннотация

Исследован состав продуктов крекинга битума месторождения Баян-Эрхэт (Монголия) при различных продолжительности процесса, температурах, а также в присутствии радикалобразующих добавок (стирола, пероксида бензоила и ди-*mpem*-бутилпероксида). Показаны характерные особенности изменения вещественного и фракционного составов продуктов крекинга в зависимости от условий. Исследован характер трансформации смолисто-асфальтеновых компонентов.

Ключевые слова: природный битум, крекинг, смолы, асфальтены, радикалобразующие добавки

введение

В последние годы в мире широко ведутся исследования, связанные с созданием новых высокоэффективных технологий переработки тяжелого углеводородного сырья (ТУС), такого как тяжелые и сверхтяжелые нефти, природные битумы и битумонасыщенные породы, асфальтиты и др. [1-3]. Это обусловлено неуклонным сокращением доли добываемых легких нефтей и ежегодным приростом количества тяжелых нефтей, вовлекаемых в переработку [4, 5]. Ранее подобное сырье практически не использовалось в нефтехимической промышленности. Перспективным направлением считается разработка способов переработки тяжелых нефтяных остатков и природных битумов. Реально существующие процессы переработки ТУС дорогостоящие и не позволяют достигать высокой конверсии компонентов природных битумов в товарные нефтепродукты (бензины, дизельное топливо и др. продукты).

Немалая часть исследований связана с изучением методов, которые могли бы обеспечить получение из тяжелого сырья более легкой, так

© Кривцов Е. Б., Головко А. К., 2019

называемой "синтетической" нефти (СН), которая в дальнейшем может перерабатываться по существующим схемам без значительных изменений технологических процессов на нефтеперерабатывающих заводах [6-9]. Одним из перспективных способов получения СН является инициированный крекинг ТУС в присутствии органических веществ (пероксиды и др. [10-12]), способных генерировать свободные радикалы непосредственно внутри реакционной системы при невысоких температурах. Благодаря образованию последних активируется протекание радикально-цепных реакций крекинга углеводородов и смолисто-асфальтеновых компонентов. Особенность крекинга в присутствии РОД заключается в интенсивном образовании радикалов уже на стадиях нагрева сырья, что в значительной степени облегчает инициирование процесса, влияет на направление протекающих реакций и, соответственно, состав продуктов крекинга ТУС. Как следствие, возможность применения различных классов органических соединений в качестве РОД для получения СН с низким содержанием высокомолекулярных и гетероатомных соединений и высоким - легкокипящих фракций позволит получать продукты оптимального химического состава.

Цель данной работы – установление влияния РОД (пероксида бензоила, ди-*mpem*-бутилпероксида, стирола) на процесс инициированного крекинга компонентов высокосмолистого природного битума.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Объект исследования

В качестве объекта исследования выбран образец битума с месторождения Баян-Эрхэт (Монголия) (табл. 1). Битуминозные породы этого месторождения отличаются большим содержанием органического вещества (17-19 % мас.). Данный битум характеризуется экстремально высоким содержанием смолисто-асфальтеновых веществ (почти 55 %, в том числе смол более 52 % мас.), имеет высокое атомное отношение H/C (1.85). Следует отметить относительно низкое содержание гетероатомов - суммарно их количество не превышает 2 % мас. Содержание дистиллятных фракций составляет 15 % мас. Бензиновая – практически отсутствует (1.4 % мас.), вследствие чего температура начала кипения (н. к.) битума превышает 170 °С.

Термокрекинг битума

Крекинг в стационарных условиях проводили в автоклаве вместимостью 12 см³ при темпе-

ТАБЛИЦА 1

Характеристика битума месторождения Баян-Эрхэт

Показатели	Значение				
Средняя молекулярная масса, а. е. м.	578				
Вещественный состав, % мас.:					
масла	45.2				
СМОЛЫ	52.5				
асфальтены	2.3				
Содержание, % мас.:					
серы	0.45				
углерода	85.26				
водорода	13.13				
азота	0.98				
кислорода	0.18				
Атомное отношение Н/С	1.85				
Φ ракционный состав, $\%$ мас., при t °C:					
н. к.	172.1				
н. к.—200	1.4				
200-360	13.6				
>360	85.0				

ратуре 350, 400, 450 °С, продолжительность 30– 120 мин. Масса битума, загружаемого в реактор, составляла 7 г. Перед проведением крекинга фиксировалась масса реактора без образца и с ним. После термической обработки природного битума газообразные продукты удаляли из автоклава и определяли их выход по потере массы реактора. Затем его промывали хлороформом и взвешивали. Массы твердых, образующихся в ходе реакции продуктов определяли как разницы масс реактора до и после эксперимента.

Для увеличения глубины деструкции смолисто-асфальтеновых компонентов термокрекинг битума проводили в присутствии РОД. В качестве таковых использовали реактивы фирмы Sigma-Aldrich: пероксид бензоила (ПБ) (CAS number 94-36-0, концентрация 76.0 % мас., стабилизатор – вода), ди-*трет*-бутилпероксид (ДТБП) (CAS number 110-05-4, концентрация 99.4 % мас., стабилизатор – вода), которые распадаются при температурах выше 106 и 110 °С соответственно, и стирол (CAS number 100-42-5, концентрация 99.9 % мас., стабилизатор – 4-*трет*-бутилкатехол), способный при температурах выше 350 °С генерировать бирадикалы [12]. Количество добавок составляло от 1 до 5 % мас. от массы битума.

Определение фракционного состава

Фракционный состав жидких продуктов термической деструкции битума определяли с помощью термогравиметрического анализа. Измерения проводили в воздушной среде на дериватографе Q-1000 фирмы МОМ (Венгрия), который позволяет фиксировать потерю массы образца аналитической пробы с повышением температуры до 1000 °С со скоростью нагрева 10 °С/мин.

Определение вещественного состава

Вещественный состав исходного битума и продуктов крекинга устанавливали по общепринятой схеме. Сначала определяли содержание асфальтенов в образце "холодным" методом Гольде. Затем концентрацию смол в полученных мальтенах определяли адсорбционным способом: наносили анализируемый продукт на активированный силикагель АСК, помещали в экстрактор Сокслета и последовательно вымывали углеводородные компоненты (масла) *н*-гексаном, а смолы – этанол-бензольной смесью 1 : 1.

Структурно-групповой анализ смол и асфальтенов

Смолы и асфальтены, выделенные из исходных и термолизованных битумов, исследовали методом структурно-группового анализа (СГА) по методике, разработанной в ИХН СО РАН [13]. Она основана на совместном использовании результатов определения элементного состава, средних молекулярных масс и данных ПМРспектрометрии и позволяет рассчитать среднее распределение атомов между структурными элементами молекул высокомолекулярных соединений природного битума. Данное распределение дает информацию о величине и строении молекул, составе и количестве различных структурных групп.

Элементный анализ смол и асфальтенов исходных битумов и продуктов крекинга проводили на CHNS-анализаторе Vario EL Cube. Молекулярные массы веществ определяли с помощью криоскопии в нафталине на приборе "Крион", разработанном в ИХН СО РАН. Спектры ПМР снимали на Фурье-спектрометре AVANCE-AV-300 (растворитель – дейтерохлороформ, внутренний стандарт – гексаметилдисилоксан) при 1 %-й концентрации смол и асфальтенов.

Хроматографический анализ газов

Газообразные углеводороды, образующиеся при крекинге битума, анализировали методом газовой хроматографии на хроматографе "Кристалл-5000" согласно ГОСТ 31371.3-2008. Водород, кислород, азот определяли на колонке, наполненной молекулярными ситами NaX (фракция 80-100 меш, длина колонки 1 м, внутренний диаметр 2 мм). Скорость газа-носителя (аргон) 30 см³/мин. Углеводороды С₁-С₆ разделяли на колонке, наполненной полимерным сорбентом НауеЅер К (фракция 80-100 меш, длина колонки 3 м, внутренний диаметр 2 мм). Скорость газа-носителя (гелий) 30 см³/мин. Анализ проводился в режиме программирования температуры параллельно на двух колонках от 35 до 170 °С, скорость нагрева 5 °С/мин.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Для определения термической стабильности компонентов высокосмолистого природного битума месторождения Баян-Эрхэт (Монголия) проведен крекинг при температурах 350, 400 и 450 °C. Продолжительность процесса составляла 30, 60, 90 и 120 мин (табл. 2).

Установлено, что при температурах крекинга 350-400 °C конденсация компонентов масел с образованием смол происходит быстрее, чем уплотнение смол по маршруту смолы \rightarrow асфальтены \rightarrow кокс. Процессы газо- и коксообразования протекают незначительно, увеличивается температура начала кипения жидких продуктов крекинга (сумма масел, смол и асфальтенов), фракционный состав ухудшается (по сравнению с исходным битумом).

Повышение температуры крекинга до 450 °С приводит к изменению баланса протекающих реакций: значительно ускоряются реакции крекинга смол с образованием дополнительных количеств масел и асфальтенов, температура начала кипения жидких продуктов крекинга снижается более чем на 50 °С. Увеличение продолжительности крекинга с 30 до 120 мин при этой температуре приводит к снижению выхода жидких продуктов вследствие развития процессов газо- и коксообразования. Следует отметить значительное снижение количества смол в составе продуктов крекинга. Известно, что смолы природных битумов склонны к образованию неустойчивых промежуточных продуктов, способных к дальнейшему уплотнению с образованием асфальтенов [14]. Образование максимального количества масел (до 44 % мас.), а также компонентов дистиллятных фракций происходит при продолжительности крекинга 120 мин, но количество побочных продуктов (газа и кокса) достигает практически половины от массы исходного битума.

Исходя из полученных данных (фракционного состава, глубины деструкции смол, материально-

ТАБЛИЦА 2

Состав продуктов крекинга битума в различных условиях

Условия крекинга	<i>Т</i> _{н. к.} , °С	Фракционный состав при <i>T</i> , °С (% мас.)			Состав продуктов, % мас.				
		<200	~200-360	>360	Газ	Масла	Смолы	Асфальтены	Кокс
Битум исх.	172.1	1.4	13.6	85.0	0	45.2	52.5	2.3	0
350 °C, 60 мин	240.3	0	6.3	89.6	2.0	32.3	61.2	2.4	2.1
400 °C, 60 мин	229.2	0	6.5	89.1	2.4	36.1	56.7	2.8	2.0
450 °C, 30 мин	120.3	1.0	4.7	90.4	2.6	37.9	52.1	6.1	1.3
450 °C, 60 мин	98.9	1.1	4.8	64.3	9.1	39.0	24.9	13.3	13.7
450 °C, 90 мин	97.6	4.0	11.3	55.7	9.6	40.0	23.0	8.0	19.4
450 °C, 120 мин	74.5	7.2	10.3	35.9	11.2	44.0	2.9	6.5	35.4

Условия крекинга	Т _{н. к.} , °С	Фракционный состав (°С), % мас. при <i>T</i> , °С:			Состав продуктов, % мас.				
		<200	200-360	>360	Газ	Масла	Смолы	Асфальтены	Кокс
Битум исх.	172.1	1.4	13.6	85.0	0	45.2	52.5	2.3	0
Крекинг битума	98.9	1.1	4.8	64.3	9.1	39.0	24.9	13.3	13.7
+ ДТБП, 1 %	117.8	1.6	11.9	79.5	1.4	47.4	36.3	8.3	6.6
+ ДТБП, 3 %	85.9	4.8	12.6	63.1	5.6	50.1	15.5	19.0	9.8
+ ДТБП, 5 %	71.0	8.0	13.7	55.5	8.0	45.0	13.9	17.2	15.9
+ ПБ, 1 %	137.3	1.0	8.2	74.2	4.7	35.6	39.8	8.0	11.9
+ ПБ, 3 %	110.6	2.6	7.2	75.7	4.8	44.7	23.4	17.4	9.7
+ пБ, 5 %	43.1	20.6	7.1	63.5	4.1	43.4	37.4	10.4	4.7
+ Стирол, 1 %	180.1	0.1	9.0	86.4	3.8	42.5	49.7	3.3	0.7
+ Стирол, 3 %	172.0	1.1	12.9	83.7	1.5	45.1	49.4	3.2	0.8
+ Стирол, 5 %	50.3	18.8	15.9	63.3	1.3	49.8	45.2	3.0	0.7

ТАБЛИЦА 3 Состав продуктов крекинга битума (450 °C, 60 мин) с радикалобразующими добавками

го баланса продуктов крекинга) оптимальными условиями для дальнейших экспериментов по термообработке битума месторождения Баян-Эрхет в присутствии РОД выбраны температура 450 °C и продолжительность процесса 1 ч.

Исследования, проведенные ранее, показали эффективность применения РОД для переработки ТУС [15]. Предполагается, что при невысокой температуре добавки распадаются с образованием радикалов, которые существенно изменяют направления радикально-цепных реакций крекинга компонентов ТУС. В данной работе РОД использовались для замедления процессов конденсации смол в асфальтены и, далее, в кокс и ускорения реакций деструкции компонентов битума.

Для увеличения глубины крекинга смол битума Баян-Эрхет подобрано оптимальное количество добавок. Материальный баланс, вещественный и фракционный состав жидких продуктов крекинга битума в присутствии РОД представлен в табл. 3.

Установлено, что добавка ДТБП (1 % мас.) существенно замедляет реакцию крекинга смол (по сравнению с продуктами крекинга битума), что приводит к уменьшению газо- и коксообразования, увеличению содержание масел. При этом фракционный состав жидких продуктов крекинга меняется незначительно. Увеличение количества ДТБП до 3 % мас. приводит к инициированию процессов глубокой деструкции смол (остаточное содержание составляет 26 % от исходного). Низкомолекулярные фрагменты продуктов инициированного крекинга смол попадают в состав масел. Вероятно, нафтеновое и алкильное обрамление молекул смол [16] крекируется с образованием компонентов масел, ароматические фрагменты активно участвуют в реакциях конденсации с образованием вторичных асфальтенов и кокса. При увеличении количества добавки ДТБП до 5 % мас. ускоряется вся совокупность реакций крекинга. Из компонентов масел при этом образуются газы (до 8.0 % мас.) и дополнительное количество дистиллятных фракций. Большая часть молекул смол, активированных *трет*-бутилоксильными радикалами, конденсируется с образованием значительных количеств вторичных асфальтенов и кокса.

Добавка ПБ в количестве 1% мас. благоприятствует протеканию реакций конденсации компонентов битума. Снижается содержание масел и смол (по сравнению с составом исходного битума). Количество новообразованных дистиллятных фракций невелико. Образуются значительные количества асфальтенов и кокса (8 и 12 % мас. соответственно). Увеличение массы ПБ в три раза инициирует, в первую очередь, реакции с участием смол (их содержание уменьшается на 29 % мас.). Повышается содержание асфальтенов (продуктов конденсации смол) и масел (продуктов деструкции смол). Скорость конденсации асфальтенов в кокс замедляется. Добавка 5 % мас. ПБ приводит к значительному замедлению реакций конденсации компонентов битума (по маршруту смолы \rightarrow асфальтены \rightarrow кокс). Интенсивно протекают реакции крекинга масел с образованием компонентов дистиллятных фракций.

При использовании в качестве РОД стирола отличительной особенностью процесса является низкий выход газообразных продуктов крекинга, который уменьшается при увеличении количества добавки. Коксообразование минимально и не зависит от массы стирола. Вторичные асфальтены практически не образуются, а с увеличением количества добавки их содержание снижается. Перечисленные факты указывают на то, что среди использованных добавок стирол обладает максимальной способностью к ингибированию реакций конденсации компонентов битума. Реакциям крекинга в присутствии стирола частично подвергаются смолы (их содержание уменьшилось на 7 % по сравнению с составом исходного битума) с образованием небольшого количества масел (4.6 % мас.). Крекинг масел протекает достаточно интенсивно с образованием значительных количеств низкомолекулярных компонентов, попадающих в состав дистиллятных фракций.

Исследован фракционный состав продуктов крекинга битума в присутствии РОД (см. табл. 3). Установлено, что содержание дистиллятных фракций в составе жидких продуктов термокрекинга битума при 450 °C снижается (содержание фракции н. к.-360 °С падает на 9 % мас.), вероятно, вследствие частичного крекинга низкомолекулярных компонентов с образованием газообразных продуктов. Крекинг с добавками ДТБП позволяет получить дополнительно не более 6 % мас. фракций н. к.-360 °С, преимущественно за счет образования фракции н. к.-200 °С. Введение БП приводит к изменению баланса протекающих реакций конденсации и деструкции компонентов битума в сторону последних. Значительно замедляется асфальтено- и коксообразование, протекает крекинг смол и масел с образованием компонентов дистиллятных фракций. Происходит перераспределение фракционного состава продуктов крекинга - снижается содержание дизельных фракций (на 1 %) и существенно увеличивается выход бензиновых дистиллятов (на 18 % мас.), температура начала кипения жидких продуктов крекинга уменьшается на 129 °С.

Добавка стирола в количестве 1–3 % мас. не приводит к значительным изменениям в выходах фракций н. к.–360 °С. Увеличение количества добавки до 5 % мас. приводит к появлению в составе жидких продуктов значительных количеств светлых фракций: увеличивается выход бензиновых (более чем на 17 %) и дизельных дистиллятов. Учитывая минимальное образование газа и кокса, а также небольшое (на 7 % мас. по сравнению с исходным значением) снижение содержания смол, можно предположить, что в этих условиях крекингу подвергаются преимущественно высокомолекулярные компоненты масел, вследствие достижения необходимой концентрации радикалов в реакционной среде.

Разница в количестве РОД, необходимых для получения наибольших количеств дистиллятных фракций, вероятно, связана с различным строением и временем жизни радикалов, получаемых в процессе их распада. Использование инициирующих добавок приводит к увеличению степени деструкции высокомолекулярных компонентов. За счет повышения концентрации радикалов удается снизить содержание смол и асфальтенов в продуктах термокрекинга битума Баян-Эрхет, а также зачастую позволяет уменьшить выход образующегося кокса.

Анализ газообразных продуктов показал, что крекинг битума без добавок приводит преимущественно к образованию углеводородных газов $C_1 - C_4$ (табл. 4), среди которых присутствуют изо- и *н*-пентаны, следы гексанов, отсутствует углекислый газ. Основные газообразные продукты крекинга с добавкой ДТБП – изо-бутан и бутены (~50 % от суммы всех газов). Вероятно, они представляют собой конечные продукты термических превращений ДТБП. Также присутствуют углеводороды $C_1 - C_3$, являющиеся продуктами крекинга компонентов битума. Следует отметить отсутствие *н*-бутана. Состав газо-

ТАБЛИЦА 4

Состав газообразных продуктов крекинга битума (450 °C, 60 мин) с радикалобразующими добавками

Газы	Содержание, % мас.							
	Крекинг	Крекинг + ДТБП 5 % мас.	Крекинг + ПБ 5 % мас.	Крекинг + стирол 5 % мас.				
H_2	0.38	0.02	0.01	0.01				
CH_4	1.80	1.43	0.42	0.45				
C_2H_6	1.32	0.50	0.91	0.30				
$C_{_3}H_{_8}$	2.19	0.37	1.51	0.35				
$C_{3}H_{6}$	0.03	0.17	0.26	0.01				
изо- C_4H_{10}	Отс.	1.29	0.33	0.07				
μ -C ₄ H ₁₀	1.10	0.02	0.03	0.03				
$\Sigma C_4 H_8$	1.41	3.06	0.14	0.06				
$u30-C_5H_{12}$	0.13	0.40	0.28	0.02				
μ -C ₅ H ₁₂	Отс.	0.11	0.20	Отс.				
$\Sigma C_5 H_{10}$	0.61	0.51	Отс.	Отс.				
$\Sigma C_6 H_{14}$	0.13	0.12	Отс.	Отс.				
∑Газов	9.10	8.00	4.10	1.30				

Е. Б. КРИВЦОВ, А. К. ГОЛОВКО

ТАБЛИЦА 5

Структурно-групповые параметры молекул смол продуктов крекинга битума с радикалобразующими добавками

		Смолы						
гасчетные параметры		Исходные	Крекинг	Крекинг + 3 % мас. ДТБП	Крекинг + 5 % мас. ПБ			
Молекулярная масса		581	616	589	739			
Число атомов в средней	С	41.73	44.79	41.70	51.39			
молекуле	Η	65.88	64.66	57.09	79.18			
	Ν	0.46	0.40	0.64	0.43			
	S	0.08	0.08	0.06	0.08			
	Ο	0.31	0.33	1.27	2.12			
Число блоков в молекуле	$m_{_{ m a}}$	1.02	1.68	1.60	1.48			
Число углеродных атомов разного типа в молекуле	C_{ap}	8.53	16.74	15.26	13.15			
	C _H	15.72	5.94	11.54	10.92			
	C _n	17.48	22.11	14.90	27.31			
	C _a	4.18	3.51	6.25	5.14			
	Cγ	4.82	3.43	2.67	4.15			
Кольцевой состав	К	5.54	5.08	6.26	5.63			
	K_a	1.80	3.60	3.45	2.96			
	${ m K}_{_{ m Hac}}$	3.74	1.48	2.81	2.67			
Степень замещенности								
ароматических ядер	$\boldsymbol{\sigma}_{_{a}}$	0.55	0.27	0.52	0.49			
Фактор ароматичности	$f_{\rm a}$	20.43	37.38	36.60	25.60			

образных продуктов термолиза битума в присутствии ПБ и стирола в значительной мере схож с составом газов термокрекинга. В обоих случаях на долю углеводородных газов $C_1 - C_3$ приходится до 70 % от суммы газов, углеводороды C_{6^+} практически отсутствуют. Также наблюдается схожее распределение газов C_4 .

Структурно-групповой анализ молекул смол битума Баян-Эрхет показал (табл. 5), что в их составе преимущественно содержатся алифатические фрагменты и нафтеновые кольца. Фактор ароматичности относительно невысок. Известно, что подобные структуры в условиях термического воздействия легко подвергаются реакциям циклизации, дегидрирования с образованием конденсированных полиароматических структур, при этом происходит отрыв низкомолекулярных фрагментов, образующих компоненты фракций н. к.-360 °С. Так как механизм реакций крекинга радикальный, введение в реакционную среду веществ, способных генерировать радикалы, приводит к смещению равновесия в сторону образования низкомолекулярных продуктов.

Установлено, что при оптимальном количестве добавки ДТБП (3 % мас.) молекулярная масса смол остается практически неизменной. Фактор ароматичности, число структурных блоков m_a и их размер увеличиваются. Это объясняется протеканием реакций уплотнения смолы \rightarrow асфальтены \rightarrow кокс, вследствие глубокой деструкции алкильных фрагментов (доля алкильных атомов углерода C_n уменьшается). Снижается средняя

длина (C_{γ}) алкильных заместителей при ароматических фрагментах. Увеличивается количество ароматических колец и уменьшается содержание нафтеновых циклов, что свидетельствует о протекании реакций дегидрирования, которые приводят к образованию более ароматизированных молекул.

Структурно-групповой анализ продуктов крекинга битума Баян-Эрхет с добавкой ПБ 5 мас. % (оптимальное количество) показал, что молекулярная масса смол максимальна среди всех проанализированных образцов. Увеличивается число ароматических колец в молекуле смол и уменьшается число нафтеновых циклов, что связано с процессами их ароматизации. Фактор ароматичности смол выше, чем у исходных молекул. Число структурных блоков m_a молекул смол осталось неизменным, а их средний размер уменьшился.

ЗАКЛЮЧЕНИЕ

В составе высокомолекулярных соединений битума месторождения Баян-Эрхет преобладают смолистые компоненты (52.5 % мас.). Обнаружено, что при температурах термической обработки 350-400 °C преобладают реакции образования высокомолекулярных соединений, а при температурах 450-500 °C (обратные реакции) деструкции смол и асфальтенов с образованием легких углеводородов, а также увеличивается коксообразование. Показано влияние РОД на термические превращения высокомолекулярных соединений битума. Добавки позволяют увеличить степень деструкции смолистых компонентов, что приводит к снижению содержания смолисто-асфальтеновых веществ в продуктах крекинга, увеличению выхода легких углеводородов, а также уменьшению образования кокса. Выявлена зависимость степени превращения компонентов тяжелого сырья от количества и типов инициирующей добавки. Показано, что введение стирола и ПБ в количестве 5 %, ДТБП – 3 мас. % позволяет добиться наибольшего выхода дистиллятных фракций.

Установлены отличительные структурногрупповые параметры молекул смол и асфальтенов исходного битума. Усредненные молекулы смол и асфальтенов практически не содержат гетероатомов. Ароматические и нафтеновые циклы представлены в сопоставимых количествах. Достаточно длинные алкильные заместители присутствуют в значительном количестве. Добавка ДТБП 3 мас. % приводит к снижению числа нафтеновых циклов и общего количества циклических фрагментов за счет увеличения доли ароматических колец. Значительно уменьшается количество и длина алифатических заместителей. Увеличивается содержание кислородсодержащих структур, числа структурных блоков в молекуле. Добавка 5 мас. % ПБ и последующий крекинг приводят к разрушению нафтеновых фрагментов и, частично, алифатических цепочек. Количество средних структурных блоков молекул смол и асфальтенов увеличивается, при этом значительно уменьшается их размер.

СПИСОК ЛИТЕРАТУРЫ

- 1 Оганесян С. А. // Нефть. Газ. Энергетика. 2006, № 3. С. 3-9.
- 2 Okunev A. G., Parkhomchuk E. V., Lysikov A. I., Parunin P. D., Semeikina V. S., Parmon V. N. // Russ. Chem. Rev. 2015. № 9. P. 987-999.
- 3 Joshi B., Pandit A. B. // Ind. Eng. Chem. Res. 2008. Vol. 47, № 23. P. 8960-8988.
- 4 Zhang S., Liu D., Deng W., Que G. // Energy Fuels. 2007. Vol. 21, No. 6. P. 3057-3062.
- 5 Shahandeh H., Li Z. // Energy Fuels. 2016. Vol. 30. P. 5202-5213.
- 6 Xie W., Fang W., Li D., Xing Y., Guo Y., Lin R. // Energy Fuels. 2009. Vol 23. P. 2997-3001.
- 7 Ali F. A., Ghaloum N., Hauser A. // Energy Fuels. 2006. Vol. 20. P. 231–238.
- 8 Trejo F., Ancheyta J., Rana M. S. // Energy Fuels. 2009. Vol. 23. P. 429–439.
- 9 Zhang A., Gao J., Wang G., Xu C., Lan X., Ning G., Yongmei Liang // Energy Fuels. 2011. Vol. 25. P. 3615-3623.
- 10 Matyjaszewski K., Davis T. P. Handbook of Radical Polymerization. West Sussex: Wiley Sons, 2002. 936 p.
- 11 Moad D., Solomon D. H. The Chemistry of Radical Polymerization. Science, 2006. 639 p.
- 12 Matyjaszewski K. Controlled/Living radical polymerization. Progress in ATRP, NMP, and RAFT. Publisher: Amer. Chem. Soc. Washington D. C., 2000. 496 p.
- 13 Камьянов В. Ф., Большаков Г. Ф. // Нефтехимия. 1984. № 4. С. 450–459.
- 14 Murgich J., Abanero J. A., Strausz O. P. // Energy Fuels. 1999. Vol. 13, № 2. P. 278–286.
- 15 Karpov Y., Krivtsov E., Golovko A. // Advanced Materials Research; Advanced Materials, Synthesis, Development and Application. 2015. Vol. 1085. P. 218-223.
- 16 Кривцов Е. Б., Карпов Ю. О., Головко А. К. // Изв. Том. политех. ун-та. 2013. Т. 322, № 3. С. 86-91.