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Введение

Квазиструктурированные параллелепипедальные сетки, рассматриваемые в настоя-
щей работе, строятся путем декомпозиции расчетной области G на непересекающиеся
подобласти равномерной макросеткой. В каждом макроэлементе строится своя структу-
рированная параллелепипедальная подсетка. Подобласти, а также подсетки, могут быть
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как регулярными, т. е. целиком лежащими в G, так и нерегулярными — содержащими
границу Γ. Нерегулярные подсетки, помимо внутренних счетных узлов, содержат внеш-
ние узлы, лежащие вне G, которые не участвуют в вычислениях, а необходимы лишь для
поддержки структурированности. Более подробно построение квазиструктурированных
3D сеток излагается в работе [1].

Метод декомпозиции области, как основной инструмент распараллеливания, рассмат-
ривался в работах многих авторов (см., например, монографии [2–4]). Мы применя-
ем вариант данного метода, основанный на прямой (непосредственной) аппроксимации
уравнения Пуанкаре–Стеклова на интерфейсе, которому посвящены работы [5–9]. Си-
стема линейных алгебраических уравнений, аппроксимирующая уравнение Пуанкаре–
Стеклова, решается внешними итерационными методами в подпространствах Крыло-
ва [10], которые определяют итерационный процесс по подобластям. На каждом его шаге
решаются краевые подзадачи в подобластях с условиями Дирихле на границах подобла-
стей внутренними итерационными методами.

Данный вариант метода декомпозиции был разработан для практически важных це-
лей численного моделирования интенсивных пучков заряженных частиц [11]. Работа с
параллелепипедальными подобластями, в которых построены структурированные сетки,
значительно упрощает расчет траекторий заряженных частиц.

При распараллеливании подсетки группируются в объединения. Каждое объедине-
ние обрабатывается своим процессором. Из-за того, что подсетки содержат различное
число узлов (особенно это различие может быть большим при наличии нерегулярных
подсеток), возникает разбалансировка загрузки процессоров. Проблемы балансировки
процессоров при численном моделировании сложных физических задач рассматрива-
лись, например, в работах [12–14]. Основным отличием настоящей работы является то,
что расчеты проводятся на квазиструктурированных сетках, состоящих преимуществен-
но из регулярных подсеток. Возникает вопрос: должны ли нерегулярные подсетки участ-
вовать в формировании объединений или можно их сосредоточить на одном процессоре?
В настоящей работе с целью ответа на этот вопрос проведены исследования влияния
разбалансировки на время решения задачи в целом. Даны оценки зависимости разба-
лансировки от числа процессоров и числа узлов в подсетках, которые экспериментально
получены на последовательности квазиструктурированных сеток, с числом узлов, изме-
няющимся от нескольких тысяч до нескольких миллионов. Эти оценки подтверждают
теоретические предпосылки.

Работа построена следующим образом: в пункте 1 дается постановка задачи и ос-
новы построения квазиструктурированных сеток, в п. 2 приводится краткое изложение
этапов решения задачи, п. 3 посвящен технологиям распараллеливания и теоретическим
предпосылкам разбалансировки загрузки процессоров, в п. 4 дается описание численных
экспериментов на модельной задаче, в результате которых получены оценки влияния
разбалансировки.

1. Постановка задачи. Квазиструктурированные сетки

Пусть в замкнутой области G = G ∪ Γ требуется решить 3D краевую задачу

Lϕ = f в области G, (1)

lϕ = g на границе Γ, (2)

где L — эллиптический оператор, l — оператор граничных условий, ϕ — искомая, f , g —
заданные функции координат x, y, z. Рассматриваются граничные условия Дирихле и
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Неймана. Предполагается, что исходные данные обеспечивают единственное достаточно
гладкое решение поставленной задачи.

Решение задачи (1), (2) проводится на квазиструктурированных сетках, суть постро-
ения которых заключается в следующем. Опишем вокруг исследуемой области G с гра-
ницей Γ параллелепипед, в котором построим равномерную параллелепипедальную мак-
росетку вида

ΩH =
{
XI = IHx, YJ = JHy, ZK = KHz

}
, I = 0, Nx, J = 0, Ny, K = 0, Nz, (3)

с шагами Hx, Hy, Hz, намного превышающими максимальный шаг подсеток h. Здесь
Nx, Ny, Nz > 0 — заданные целые числа. Тем самым проводится декомпозиция области
на непересекающиеся подобласти. Среди них могут оказаться внешние подобласти, не
содержащие точек G. Такие подобласти исключаются из расчетов, а во всех остальных
подобластях проводятся расчеты. Расчетные подобласти, которые обозначим как Gm,
m = 1,M , где M известно, делятся на внутренние G(1)

m , содержащие только точки G,
и граничные G(2)

m , содержащие точки G и Γ. В каждой подобласти Gm строится своя
равномерная параллелепипедальная подсетка вида

ωh = {xi = ihx, yj = jhy, zk = khz}, i = 0, nx, j = 0, ny, k = 0, nz. (4)

Будем предполагать, что nx, ny, nz суть 2 в целой степени. Подчеркнем, что подсетки
могут быть несогласованными. Так как подсетки ωh структурированные, то в них могут
входить узлы разных типов. Во внутренние подсетки входят только внутренние узлы, а
в граничных подсетках могут быть, помимо внутренних расчетных узлов, еще и внешние
узлы, в которых не проводятся расчеты, они необходимы лишь для поддержки струк-
турированности. Подсетки во внутренних подобластях будем называть регулярными, а
подсетки в граничных подобластях — нерегулярными.

Граница сопряжения подобластей (интерфейс) γ может быть представлена в виде

γ = f
⋃
e
⋃
b,

где f — грани, e — ребра, b — макроузлы сетки ΩH .
Введем подсетки ωf на гранях и ωe на ребрах. Данные подсетки строятся из совпа-

дающих узлов смежных подсеток (4). Для единообразия через ωb обозначим макроузлы
(ωb = b).

Объединение рассмотренных выше подсеток образует результирующую квазиструк-
турированную сетку, на которой ищется решение исходной задачи.

На рисунке изображена расчетная область G, покрытая квазиструктурированной
сеткой, которая участвует в численных экспериментах, приведенных ниже. Данная об-
ласть представляет собой единичный куб R = {0 6 x 6 1, 0 6 y 6 1, 0 6 z 6 1} с вырезом
V = {sx 6 x 6 1, sy 6 y 6 1, sy 6 z 6 1}, т. е. G = R \ V , где sx, sy, sz — заданные числа,
определяющие границу Γ в районе выреза, который изображен в правом верхнем углу.
Толстыми линиями показаны координатные линии макросетки, а тонкими — координат-
ные линии микросеток. В подобластях, попадающих в вырез и являющихся внешними,
подсетки не строятся.
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Рис. Расчетная область и квазиструктурированная сетка

2. Основные этапы решения задачи

Введем на гранях f уравнение Пуанкаре–Стеклова(
∂ϕ

∂~n

)+

f

−
(
∂ϕ

∂~n

)−

f

= 0, (5)

которое обеспечивает “сшивку” решений в подобластях. Здесь ~n — нормаль к f , а знаки
+, − означают принадлежность объекта смежным подобластям. Производные, входящие
в уравнение (5), аппроксимируются конечно-разностными соотношениями, что приводит
к приближенному уравнению

(dhu(υ))+ − (dhu(υ))− = 0 (6)

относительно функции υ, которая является следом функции u на гранях f :

υ = u |f . (7)

Здесь u— приближенное значение функции ϕ, dh — конечно-разностный оператор. Функ-
ция υ должна быть найдена такой, что на решении u в подобластях с граничными усло-
виями (2), (7) должно выполняться уравнение (6). Уравнение (6) можно записать в виде
системы линейных алгебраических уравнений

Sν + q = 0, (8)

где S — квадратная матрица, q — вектор. Элементы матрицы S не вычисляются, так как
система (8) решается каким-либо итерационным методом в подпространствах Крылова
вида

νk+1 = Λ
(
νk, Srk

)
, k = 0, 1, . . . , (9)

который требует знания лишь действия матрицы на вектор. Здесь функция Λ опреде-
ляет конкретный алгоритм, r — вспомогательный вектор. В настоящей работе для этих
целей используется метод сопряженных невязок [10]. Привлекательной стороной такого
выбора служит то, что данный метод обладает сравнительно быстрой сходимостью и да-
ет монотонное приближение к решению. Действие матрицы на вектор вычисляется как
разность производных, входящих в уравнение (6).
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На каждом шаге итерационного процесса (9) методом конечных разностей или мето-
дом конечных объемов [15] решаются следующие краевые подзадачи: в подобластях (на
подсетках ωh), на гранях (на подсетках ωf ), на ребрах (на подсетках ωe) и в макроузлах
(на подсетках ωb).

Данный итерационный процесс состоит из следующих этапов, которые выполняются
параллельно:

1. Задается начальное приближение v0 на гранях.
2. Рассчитываются значения искомой функции uke , ukb на ребрах и в макроузлах (k —

номер итерации) соответственно.
3. Рассчитываются значения искомой функции uk в подобластях путем решения кра-

евых задач с условием (7).
4. Рассчитываются разностные производные, входящие в (6).
5. Выполняется очередной (k + 1)-й шаг итерационного процесса (9).
6. Выполняется проверка на сходимость путем анализа нормы ‖νk+1 − νk‖ < ε, где
ε — заданная малая величина.

7. Если приведенное неравенство выполняется, то итерации (9) сошлись и после окон-
чательного вычисления искомой функции на ребрах и в макроузлах расчеты пре-
кращаются, а если это не так, то расчеты продолжаются, начиная с этапа 2.

Особое внимание уделяется этапу 3, так как он занимает преимущественное время
вычислений.

Решение в подобластях находится также итерационными методами. Для регулярных
подобластей используется трехмерный аналог метода Писмана–Речфорда [16], обладаю-
щий рекордно высокой скоростью сходимости, а в нерегулярных подобластях — метод
последовательной верхней релаксации, хорошо себя зарекомендовавший на сетках с ма-
лым числом узлов [17].

3. Технологии балансировки загрузки процессоров

Наибольшую часть времени решения всей задачи занимает решение краевых под-
задач в подобластях на подсетках ωh. В целях сокращения времени оно выполняется
параллельно. Число узлов в подсетках ωh, которое обозначим как Nm, может существен-
но разниться в зависимости от подобласти. Так, в нерегулярных подсетках может быть
Nm ∼ 10, а в регулярных ∼ 100000. Отсюда следует, что обычно применяемое отоб-
ражение “одна подобласть – один процессор” неприменимо из-за возможно громадной
разбалансировки загрузки процессоров. Действительно, процессор, отвечающий за нере-
гулярную подсетку с десятками узлов, будет простаивать, ожидая завершения работы
процессора для регулярной подсетки с сотнями тысяч узлов, что увеличивает время
решения задачи. Это подтверждается результатами численных экспериментов, приве-
денных ниже.

Для балансировки загрузки процессоров подобласти (подсетки) группируются в объ-
единения Ψp, p = 1, 2, . . . , P , где P — известное число. Пусть N =

[
N∑/P ] — среднее

число счетных узлов в квазиструктурированной сетке (N∑ — суммарное число счет-
ных узлов; квадратные скобки означают целую часть числа). В каждое объединение Ψp

включаются такие подсетки, которые давали бы в сумме число счетных узлов

Np ≈ N. (10)
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Для этого перебираются подобласти Gm в том порядке, в котором они занумерованы
в макросетке (3). Если Nm ≥ N , то формирование текущего p-го объединения считает-
ся завершенным. Если это не так, то для достижения критерия (10) в p-е объединение,
помимо Gm, включаются подобласти, содержащие другие подсетки. При этом в первую
очередь анализируются непросмотренные подсетки в соседних подобластях, имеющих с
Gm общие границы. Это делается для того, чтобы исключить по возможности межпро-
цессорные обмены, которые неизбежны при вычислении разностей, входящих в (6), на
границе подобластей, лежащих в разных объединениях.

Проведем анализ разбалансировки в предположении, что время решения на подсет-
ках пропорционально числу узлов. Пусть все нерегулярные подсетки сгруппированы в
одно объединение, обрабатываемое одним процессором, например с номером 0, а все ре-
гулярные подсетки — процессорами с номерами 1, 2, . . . , P − 1. Обозначим через T0 —
время работы процессора 0, а через Tp — время работы каждого из (P − 1) остальных
процессоров. Время T∑ решения на одном процессоре всей задачи без распараллелива-
ния равно

T∑ = T0 + (P − 1)Tp. (11)

Время T− решения всей задачи с распараллеливанием, но без балансировки, равно

T− = Tp, (12)

а время T+ решения всей задачи с идеальной балансировкой равно

T+ = T∑/P. (13)

Введем отношение
Q = T−/T+, (14)

характеризующее влияние разбалансировки процессоров на время расчета, которое на-
зовем коэффициентом разбалансировки. Тогда из (11)–(13) следует, что

Q =
P

P − 1 + T0/Tp
. (15)

Из (12) следует справедливость неравенства T0 ≤ Tp, что соответствует малому числу
нерегулярных подсеток в квазиструктурированной сетке по сравнению с регулярными.
Такая ситуация часто встречается при расчете интенсивных пучков заряженных частиц.
Приведенное неравенство ограничивает число процессоров. Ясно, что при P →∞ будет
преимущественно работать процессор 0. Но при этом значительно увеличивается вре-
мя межпроцессорных обменов и падает эффективность распараллеливания. Поэтому в
данной статье рассматривается конечное число P , при котором справедливо указанное
неравенство. Из (15) видно, что Q ≥ 1, и влияние разбалансировки падает с увеличением
числа процессоров P , а при малом числе процессоров оно велико (достигает Q ≈ 2 при
P = 2).

4. Численные эксперименты

Цель численных экспериментов — исследование влияния разбалансировки загрузки
процессоров при распараллеливании решения 3D краевых задач на квазиструктуриро-
ванных сетках, содержащих нерегулярные подсетки. Рассматривалась модельная крае-
вая задача для уравнения Лапласа
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4ϕ = 0 в области G, (16)

ϕ = 1 на границе Γ. (17)

Расчетная область G изображена на рисунке. Задача (16), (17) решалась на квази-
структурированных сетках, в которых макросетка имела параметры Nx = Ny = Nz = 8,
т. е. проводилась декомпозиция G на 512 подобластей. В каждой подобласти строились
согласованные кубические подсетки с параметрами nx = ny = nz = 8, 16, 32, при этом
общее число узлов Nh в каждой квазиструктурированной сетке было соответственно
равно

Nh = 262144, 2097152, 16777216. (18)

В вырезе V было 53 = 125 подобластей, из них 64 внешних и 61 нерегулярных, т. е.
содержащих помимо внутренних узлов внешние узлы. Разрез, образующий V , проходил
через середины подобластей. Число регулярных подобластей 512− 125 = 387.

Уравнение (16) аппроксимировалось на подсетках квазиструктурированной сетки
обычной семиточечной схемой [15]. Так как граница выреза проходила по координатным
плоскостям, граничное условие (17) учитывалось непосредственно путем подстановки
его в разностное уравнение.

Расчеты проводились для числа процессоров P = 2, 4, 8 в двух режимах загрузки:
1) разбалансировка, 2) балансировка. В первом режиме все нерегулярные подсетки, ко-
торые по сумме узлов эквивалентны 30-и регулярным подсеткам, обрабатывались одним
процессором, например процессором с номером 0, а все регулярные подсетки равномерно
распределялись между оставшимися (P − 1) процессорами. Во втором режиме, обеспе-
чивая выполнения условия (10), вся нагрузка распределялась между P процессорами.

Для этого при P = 2 загрузка процессора 0 дополнялась 194-я подобластями, а на
процессор 1 приходилось 224 регулярные подобласти. При P = 4 дополнение на процес-
сор 0 составило 75 подобластей, на каждый последующий процессор приходилось по 104
подобласти, а при P = 8 эти числа были равны 23, 52 соответственно.

В таблице приведены экспериментальные значения коэффициента разбалансировки
процессоров Q, рассчитанные на сетках, с числом узлов (18), при различном числе про-
цессоров.

Таблица. Значения коэффициента разбалансировки Q
HH

HHHP
ωh 83 163 323

2 2.368 1.721 1.595

4 1.137 1.126 1.092

8 1.014 1.118 1.090

Из таблицы видно, что, во-первых, коэффициент разбалансировки с увеличением чис-
ла процессоров уменьшается, стремясь к своему предельному значению 1, при котором
нет влияния разбалансировки, и, во-вторых, при малом числе процессоров данный ко-
эффициент уменьшается с ростом числа узлов в подсетках, что особенно заметно при
P = 2. Последняя особенность поведения Q объясняется следующим образом: регуляр-
ные и нерегулярные подсетки рассчитываются итерационными методами с различной
скоростью сходимости, что влияет на отношение T0/TP в формуле (15).

Результаты расчетов говорят о том, что при выбранной загрузке даже при небольшом
числе процессоров (P = 8) разбалансировка существенно не влияет на время решения
задачи.
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5. Заключение

Проведены исследования разбалансировки процессоров при распараллеливании ре-
шения 3D краевых задач на квазиструктурированных сетках. Предполагается примене-
ние таких сеток в условиях, когда регулярных подобластей, лежащих внутри расчет-
ной области, намного больше, чем нерегулярных, лежащих вблизи границы. На практи-
ке — это, например, численное моделирование интенсивных пучков заряженных частиц,
движущихся в областях со сложной конфигурацией границы. Показано, что при малом
числе процессоров влияние разбалансировки существенно (например, при P = 2 время
расчета увеличивается более чем вдвое), а при возрастании P влияние разбалансировки
уменьшается (уже при P = 8 прирост времени не превышает 12 %), т. е. при сделанных
предположениях и при достаточно большом числе процессоров влияние разбалансировки
несущественно.
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