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Основной целью работы является моделирование теплопереноса в элементах конструкции летатель-
ного аппарата в условиях случайных перепадов температуры на внешней поверхности из-за быстрых
изменений параметров окружающей среды. При этом для моделирования теплообмена берётся одно-
мерная краевая задача третьего рода для уравнения теплопроводности. На границе, соответствующей
внешней поверхности, задаются случайные возмущения. Численное решение основано на применении
метода Галёркина. Моделирование случайных возмущений внешней среды осуществляется с помощью
винеровского интеграла в системе дифференциальных уравнений, записанных в интегральной форме.
Расчёты на задаче с известным точным решением показали, что при удалении от границы со случайны-
ми возмущениями численное решение краевой задачи с возмущениями сходится к известному точному
решению невозмущённой краевой задачи. На основе разложения краевой задачи по тригонометриче-
ским функциям в работе получены теоретические оценки влияния возмущения на внешней поверхности
в зависимости от толщины стенки и уровня возмущений.

DOI: 10.15372/SJNM20240203
EDN: TCAUCA
Ключевые слова: теплоперенос, краевая задача, случайные возмущения, математическое моде-

лирование.

Gusev S.A., Nikolaev V.N. On the influence of random environmental factors on heat
transfer processes in aircrafts // Siberian J. Num. Math. / Sib. Branch of Russ. Acad. of
Sci. –– Novosibirsk, 2024. –– Vol. 27, N◦-- 2.–– P. 165–172.

The main goal of the work is to simulate heat transfer in structural elements of an aircraft under random
temperature changes on its outer surface due to rapid changes in environmental parameters. In this case, to
model the heat transfer a one-dimensional boundary value problem of the third kind is taken for the heat
conduction equation. Random disturbances are specified at the boundary corresponding to the outer surface.
The numerical solution is based on an application of the Galerkin method. Modeling the random disturbances
of the external environment is carried out using a Wiener integral in a system of differential equations written
in integral form. Calculations for a problem with a known exact solution show that when moving away from the
boundary with random disturbances, the numerical solution of the boundary value problem with disturbances
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converges to the known exact solution of the unperturbed boundary value problem. Based on an expansion
of the solution to the boundary value problem in trigonometric functions, theoretical estimates are obtained
for the influence of a disturbance on the outer surface as a function of the wall thickness and the disturbance
magnitude.

Keywords: heat transfer, boundary value problem, random disturbances, mathematical modeling.

1. Описание проблемы

Движение летательного аппарата в атмосфере с большими скоростями, как прави-
ло, сопровождается быстрой и случайной сменой физических параметров внешней сре-
ды, что может существенно влиять на процессы теплообмена и при этом на показания
приборов, свойства материалов и теплозащиту отсеков [1–3]. Важно отметить, что в эле-
ментах конструкции самолёта материал вблизи наружной поверхности прогревается или
остывает интенсивнее, чем на некотором расстоянии от неё. Такое изменение температу-
ры на различном удалении от наружной поверхности, а также в случае неоднородности
материала конструкции, приводит иногда к возникновению напряжений, что в услови-
ях аэродинамических нагрузок может вызвать образование микротрещин и быстрое, по
сравнению с предполагаемым сроком службы, старение и износ материалов конструкции.

Основной целью работы является моделирование процессов теплообмена в элементах
конструкции летательного аппарата в условиях случайных перепадов температуры на
внешней поверхности из-за быстрых изменений параметров окружающей среды. Пере-
пады температуры зависят от внешних воздействий среды и, в значительной степени,
от теплофизических свойств материалов конструкции. Поскольку в настоящее время
появляется много новых материалов, предлагаемых для использования в авиационной
технике, необходимо всестороннее исследование их пригодности для этой цели, в том
числе изучение возможности их применения в условиях быстрой смены физических па-
раметров окружающей среды.

Для моделирования теплообмена берётся одномерная краевая задача третьего рода
для уравнения теплопроводности. Использование в расчётах одномерной краевой зада-
чи даёт неплохие оценки в тех случаях, когда тепловые потоки преимущественно на-
правлены перпендикулярно внешней поверхности изделия, например, в точках обшивки
фюзеляжа. Также такое моделирование может быть полезным при исследовании харак-
теристик новых материалов в лабораторных условиях.

Решение краевой задачи аппроксимируется методом Галёркина [4,5]. Моделирование
случайных возмущений внешней среды осуществляется с помощью винеровского инте-
грала в системе дифференциальных уравнений, записанных в интегральной форме. Про-
ведённые численные эксперименты на задаче с известным точным решением показали,
что при удалении от границы со случайными возмущениями, решение краевой задачи с
возмущениями сходится к известному точному решению невозмущённой краевой задачи.

В работе получены оценки влияния возмущения на внешней поверхности в зависимо-
сти от толщины стенки и уровня возмущений. Для этой цели используется разложение
решения краевой задачи в тригонометрический ряд. При этом рассматривается про-
стейший случай, когда возмущение в граничном условии — постоянная величина. Такой
подход может быть оправданным, если рассматривать в качестве отклонения внешней
температуры на границе оценку его максимально возможного значения.
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2. Постановка задачи
численного моделирования теплообмена

при случайных возмущениях на внешней границе

В качестве математической модели для описания процесса теплообмена рассматри-
вается следующая краевая задача:

∂u

∂t
= a

∂2u

∂x2
+ bu, (t, x) ∈ (0, T ]× (0, l) (a > 0), (1)

k
∂u

∂x

∣∣∣
x=0

= α0(u(t, 0)− r0(t)), (2)

−k∂u
∂x

∣∣∣
x=l

= α1(u(t, l)− r1(t)), (3)

u(0, x) = u0(x). (4)

Для решения краевой задачи (1)–(4) используется метод Галёркина с кусочно-линейным
базисом на равномерной сетке S = {x0, x1, . . . , xN}, где x0 = 0, xN = l. При этом аппрок-
симация решения задачи записывается в виде

u(t, x) =
N∑
i=0

yi(t)ϕi(x), (5)

здесь yi — функции, которые надо определить, ϕi — кусочно-линейный базис:

ϕ0(x) =


x1 − x
x1 − x0

, x ∈ [x0, x1],

0, x /∈ [x0, x1],
ϕN (x) =


x− xN

xN − xN−1
, x ∈ [xN−1, xN ],

0, x /∈ [xN−1, xN ],

ϕi(x) =


x− xi−1
xi − xi−1

, x ∈ [xi−1, xi],

xi+1 − x
xi+1 − xi

, x ∈ [xi, xi+1],

0, x /∈ [xi−1, xi+1].

В результате применения метода Галёркина получаем систему обыкновенных дифферен-
циальных уравнений (ОДУ)

Ẏ = aA−1B(t, Y ) + bY, Y (0) = (u0(x0), u0(x1), . . . , u0(xN ))>, (6)

где

A =



x1 − x0
3

x1 − x0
6

0 · · · 0 0 0

x1 − x0
6

x2 − x0
3

x2 − x1
6

· · · 0 0 0

. . . . . . . . . . . . . . . . . .

0 0 0 · · · xN−1 − xN−2
6

xN − xN−2
3

xN − xN−1
6

0 0 0 · · · 0
xN − xN−1

6

xN − xN−1
3


,
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Y =


y0

y1
...
yN

 , B(t, Y ) =



−α0(t) (y0 − r0(t)) + a
y1 − y0
x1 − x0

...

a

(
yk+1 − yk
xk+1 − xk

− yk − yk−1
xk − xk−1

)
...

α1(t) (r1(t)− yN )− a yN − yN−1
xN − xN−1


.

Запишем систему ОДУ (6) в интегральной форме

Yt = Y0 + aA−1
t∫

0

B(s, Ys) ds+ b

t∫
0

Ys ds. (7)

Функции r0(t), r1(t) в краевой задаче (1)–(4) и в правых частях систем ОДУ (6) и
(7) являются детерминированными функциями. Мы моделируем случайные возмущения
внешней среды путём добавления стохастического интеграла Ито к функции r1(t) в (7).
В результате система (7) преобразуется в систему стохастических дифференциальных
уравнений (СДУ)

Yt = Y0 + aA−1

 t∫
0

B(s, Ys) ds+ eNα1(t)

t∫
0

σ dWs

+ b

t∫
0

Ys ds, (8)

где
∫ t
0 σ dWs — стохастический интеграл Ито; σ — уровень случайных возмущений, ко-

торый в общем случае может зависеть от t; eN — (N + 1)-мерный единичный вектор,
у которого (N + 1)-я компонента равна единице, а остальные компоненты равны ну-
лю. Такое преобразование системы (7) равносильно в обобщённом смысле добавлению в

уравнении (3) к функции r1(t) белого шума интенсивностью σ2

2π
[6, 7].

Для численного стохастического моделирования траекторий СДУ (8) применяется
схема Эйлера–Маруямы с постоянным шагом [6]

Yn+1 = Yn + h
(
aA−1B(tn, Yn) + bYn

)
+ h0.5ξnaA

−1eNα1(tn)σ(tn, Yn), (9)

где ξn — N(0,1) случайные величины.

3. Численный эксперимент

Численный эксперимент проводился для краевой задачи с известным точным реше-
нием, в которую по описанной выше схеме были добавлены случайные возмущения в
граничное условие, соответствующее внешней поверхности. Для выбранных числовых
параметров краевой задачи численно моделировалось решение задачи со случайными
возмущениями, которое потом сравнивалось с точным решением невозмущённой задачи.

В качестве точного решения уравнения (1) рассматривалось частное решение из книги
А.Д. Полянина [8, с. 60] вида

u(t, x) = (A(x2 + 2at) +B) exp(bt). (10)
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Константы A и B в формуле (10) были взяты следующие: A = 2, B = 1. В этом случае
решение (10) принимает вид

u(t, x) = (2x2 + 4at+ 1) exp(bt). (11)

Отсюда при t = 0 получаем начальное распределение температуры

u0(x) = 2x2 + 1. (12)

Для данного эксперимента в граничных условиях k = a коэффициенты теплообмена
были взяты постоянными:

α0(t) = 1, α1(t) = 10. (13)

На основе уравнений (2), (3), (11), (13) получаем функции температуры окружающей
среды для внутренней и внешней поверхностей:

r0(t) = (4at+ 1) exp(bt), (14)

r1(t) = (4at+ 0.4al + 2l2 + 1) exp(bt). (15)

В численном эксперименте были приняты следующие значения числовых параметров:
a = 2, b = −10−6, l = 0.5, T = 10. Значение коэффициента уровня шума σ — постоянная
величина, равная 1.0.

Для проверки точности вычислений решение невозмущённой задачи было вычислено
на сетке из 101 узла по переменной x и с шагом h = 10−6 по переменной t в методе
Эйлера–Маруямы. При этом наблюдалось совпадение шести десятичных знаков в чис-
ленном и точном решениях. Но в расчётах с моделированием случайных возмущений
параметры, определяющие точность вычислений, были усилены: h = 10−8, N = 140.

На рисунках 1 и 2 представлены графики решений невозмущённой задачи и задачи
со случайными возмущениями в граничном условии соответственно. Результаты вычис-
лений показали сходимость численного решения задачи с возмущениями к точному ре-
шению невозмущённой задачи при удалении от границы со случайными возмущениями.

Рис. 1. Решение невозмущённой задачи Рис. 2. Решение со случайными возмущения-
ми в граничном условии

4. Оценка влияния возмущений на внешней границе

Моделирование случайных возмущений на внешней границе (x = l) позволяет нагляд-
но продемонстрировать реальные ситуации, которые могут происходить во время полё-
та. Кроме того, моделируя большое количество траекторий, можно оценивать некоторые
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вероятностные характеристики, например вероятность превышения заданных уровней
температуры на определённом расстоянии от внешней поверхности.

В данном пункте рассматривается более простой случай и находится оценка изме-
нения температуры на внутренней границе (x = 0), когда на внешней границе измене-
ние происходит на некоторую заданную постоянную величину. Такая постановка вполне
уместна, если, например, важно максимально возможное отклонение температуры, и
вопрос стоит о надёжности изделия.

Пусть отклонение внешней температуры в граничном условии есть постоянная ве-
личина Z на всём отрезке времени [0, T ], а значение коэффициента b в правой части
уравнения (1) равно нулю. Запишем для этого случая невозмущённую и возмущённую
краевые задачи

∂u1
∂t

= a
∂2u1
∂x2

, (t, x) ∈ (0, T ]× (0, l),

k
∂u1
∂x

∣∣∣
x=0

= α0(u1(t, 0)− r0(t)),

−k∂u1
∂x

∣∣∣
x=l

= α1(u1(t, l)− r1(t)),

u1(0, x) = u0(x),

∂u2
∂t

= a
∂2u2
∂x2

, (t, x) ∈ (0, T ]× (0, l),

k
∂u2
∂x

∣∣∣
x=0

= α0(u2(t, 0)− r0(t)),

−k∂u2
∂x

∣∣∣
x=l

= α1(u2(t, l)− (r1(t) + Z)),

u2(0, x) = u0(x).

Рассмотрим краевую задачу для разности u = u2 − u1

∂u

∂t
= a

∂2u

∂x2
, (t, x) ∈ (0, T ]× (0, l), (16)

k
∂u

∂x

∣∣∣
x=0

= α0u(t, 0), (17)

−k∂u
∂x

∣∣∣
x=l

= α1(u(t, l)− Z), (18)

u(0, x) = 0. (19)

Приведём задачу (16)–(19) к задаче с однородными краевыми условиями. Для этого
сделаем замену

u(t, x) = v(t, x) + ψ(x), (20)

где ψ(x) = p0 + p1x. Запишем краевую задачу для функции v

∂v

∂t
= a

∂2v

∂x2
, (t, x) ∈ (0, T ]× (0, l), (21)

k
∂v

∂x

∣∣∣
x=0

= α0v(t, 0) + α0p0 − kp1, (22)

−k ∂v
∂x

∣∣∣
x=l

= α1v(t, l) + α1p0 + α1p1l + kp1 − α1Z, (23)

v(0, x) = −ψ(x). (24)

Для того, чтобы краевые условия (22)–(23) были однородными, потребуем выполнение
равенств
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α0p0 − kp1 = 0, α1p0 + (α1l + k)p1 = α1Z. (25)

Эта система уравнений относительно p0, p1 однозначно разрешима, поскольку определи-
тель её матрицы положителен

∆ = α0α1l + (α0 + α1)k > 0.

В результате решения системы уравнений (25) получаем функцию ψ:

ψ(x) =
α1(k + α0x)Z

α0α1l + (α0 + α1)k
. (26)

Когда l → ∞, при x = 0 (внутренняя граница) значение функции (26) стремится к
нулю. Таким образом, если существует решение краевой задачи (16)–(19), то при больших
значениях l решение возмущённой краевой задачи на внутренней границе будет близко
к решению невозмущённой задачи. При этом зависимость от l выражается простейшей
рациональной дробью с полиномом первой степени в знаменателе.

В краевой задаче (21)–(24) краевые условия однородные, если p0 и p1 удовлетворяют
системе (25). Её решение может быть получено методом разделения переменных. В [9]
представлено решение одномерной краевой задачи для линейного однородного уравне-
ния теплопроводности с однородными краевыми условиями, полученное разделением
переменных, в виде ряда по тригонометрическим функциям

v(t, x) =

∞∑
n=0

BnXn(x) exp(−λ2nat), (27)

где Xn(x) =
(
k
α0
λn cosλnx+ sinλnx

)
. Также в [9] дано доказательство ортогональности

системы функций {Xn} на интервале (0, l). Собственные числа λn являются корнями
уравнения [9]

tg λl =
k(α0 + α1)λ

k2λ2 − α0α1
.

Это уравнение имеет бесконечное множество решений, и при больших значениях n
λn ≈ πn/l.

Коэффициенты Bn в уравнении (27) для случая краевой задачи (21)–(24) определя-
ются из равенства

Bn = −
l∫

0

ψ(x)Xn(x)dx

/ l∫
0

X2
n(x)dx.

Функция (27) удовлетворяет начальному условию (24)

v(0, x) =
∞∑
n=0

BnXn(x) = −ψ(x). (28)

Из (20), (26)–(28) следует

|u(t, 0)| = |v(t, 0) + ψ(0)| ≤ |v(t, 0)|+ |ψ(0)| ≤ 2|ψ(0)| = 2α1k|Z|
α0α1l + (α0 + α1)k

. (29)

На основании (29) можно сформулировать следующее утверждение.
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Утверждение. При действующем постоянном возмущении температуры окружающей
среды на внешней границе отклонение температуры на внутренней границе от соответ-
ствующей температуры невозмущённой задачи по абсолютной величине будет меньше
ε > 0, если для значений l и Z выполняются следующие ограничения:

l ≥ 2α1k|Z| − ε(α0 + α1)k

εα0α1
, |Z| ≤ ε(α0α1l + (α0 + α1)k)

2α1k
.
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