Таким образом, при использовании в гидродинамических экспериментах с фотохромной визуализацией потока водяного раствора сопротивления с концентрацией ФХВ $5 \cdot 10^{-4}$% $< c < 30 \cdot 10^{-4}$% и энергии активирующего импульса УФ-излучения ОКГ 0,01 Дж $< E < 0,12$ Дж длина окрашенного трека можно вычислять по формуле (2.1)

$$l = (\alpha + \beta)^{-1}(E - E^*)/E.$$

Здесь $\alpha = 10$ мм$^{-1}$; $\beta = 0,005$ мм$^{-1}$; $E^* = 0,011$ Дж.

Следует ожидать, что при расчете длины окрашенного трека в жидкостях с применением других ФХВ в различных растворителях окажется прямолинейной зависимостью (2.1), в которой постоянные α, β и E^* будут иметь другие значения.

ЛИТЕРАТУРА

1. Барачевский В. А., Манджиков В. Ф. и др. Фотохромный метод визуализации гидродинамических потоков.— ИМФ, 1984, № 5.
2. Рязанов Ю. С., Кривко В. Н. и др. Исследование движения жидкости в замкнутом объеме методом фотохромной визуализации.— В кн.: Тез. докл. III Весенка, семинар по гидромеханике и теплоассоциации. Чернигов, 1984.
7. Барачевский В. А., Лапков Г. И., Цековский В. А. Фотохромизм и его применение.— М.: Химия, 1977.
9. Барачевский В. А., Козлов В. М. и др. Фотохромные органические материалы для средств оптической обработки информации.— ЖИФиФракт, 1974, т. 19, вып. 3.
11. Поликаин А. Д., Дьячков В. В. Формулы повышенной информативности в химической механике.— ДАН СССР, 1984, т. 277, № 1.

Поступила 21 1986 г.

О ПРОСТРАНСТВЕННОМ ОБТЕКАНИИ КРЫЛА ГИПЕРЗВУКОВЫМ ПОТОКОМ ЗАПЫЛЕННОГО ГАЗА

В. Н. Голубкин

(Москва)

В ряде работ (например, [3, 4]) рассмотрено гиперзвуковое обтекание тел простой формы запыленным газом в предположении, что наличие примеси не влияет на течение газовой фазы. Обтекание тонкого клина с учетом взаимного влияния фаз исследовалось в [5].

При переходе через головной скачок уплотнения параметры газа резко изменяются, а параметры пыли остаются неизменными [5, 6]. По степени аэрокинематики скорости и температуры к соответствующим значениям для газа с рассеянием различаются два предельных режима двухфазных течений: саморожденные, когда аэрокинематика идёт очень медленно и изменения параметров частиц несущественны, и хронические, когда они протекают очень быстро в узкой зоне вблизи скачка [6] и в основной части поля течения параметры фаз идентичны.

В данной работе методом тонкого ударного слоя [1, 7] изучается пространственное гиперзвуковое обтекание крыла малого удлинения под конечным углом атаки в
промежуточном режиме, когда зона релаксации занимает весь ударный слой, прямая линия в пангерметной поверхностью крыла. Скорость, температура и концентрация частиц сильно меняются по периметру ударного слоя. В то же время вполне реална ситуация, когда вследствие мощности газа в нем влияние приближения на газодинамические переменные в главном (нейлоновском) приближении несущественно, однако его необходимо учитывать в некоторых приближениях, в частности при уточнении нейлоновской формулы для давления.

1. Рассмотрим пространственное гиперзвуковое обтекание крыла запыленным газом, считая, что движение газовой и твердой фаз описывается уравнениями течения сплошной среды. Предположим, что все частицы примеси одинаковы и имеют сферическую форму, не меняющуюся в процессе движения. Будем пренебрегать столкновениями частиц и их броуновским движением, а также объемной концентрацией \(\varepsilon \ll 1 \). Вязкость газа учитывается лишь при межфазном взаимодействии.

Обозначим, как обычно, через \(\mathbf{V} = (u, v, w) \), \(p \), \(T \) соответственно вектор скорости, давление, плотность и температуру. Функции, относящиеся к частицам, отмечим индексом \(p \). Систему уравнений, описывающую стационарное течение исследуемой двухфазной среды, запишем в виде

\[
(1.1) \quad \mathbf{v} \cdot (\rho \mathbf{V}) = 0, \quad \rho (\mathbf{V} \cdot \mathbf{v}) \mathbf{V} = -\mathbf{v} p + N \mathbf{I}, \quad \rho c_v \mathbf{V} \cdot \mathbf{v} T = p \mathbf{V} \cdot \mathbf{v} \ln p + \]

\[+ N \mathbf{I} (\mathbf{V}_p - \mathbf{V}) - N Q, \quad c_v (\mathbf{V} \cdot \mathbf{v}) T = 0, \quad m_p (\mathbf{V} \cdot \mathbf{v}) \mathbf{V}_p = \]

\[= -f, \quad m_p c_v \mathbf{V}_p \cdot \mathbf{v} T_p = Q, \quad f = \frac{4}{3} c_p \rho a^2 \rho (\mathbf{V}_p - \mathbf{V}), \quad Q = \sigma (T - T_p), \]

\[q = |\mathbf{V} - \mathbf{V}_p|, \quad N = \rho_p / m_p, \quad m_p = \frac{4}{3} \pi a^2 \rho_p, \]

где \(\varepsilon \), \(c_v \) — показатель адабаты и теплоемкость газа при постоянном объеме; \(\rho_p \), \(c_p \) — плотность и теплоемкость материала частиц; \(a \) — их радиус; \(c_p \), \(\sigma \) — коэффициент сопротивления сферы и коэффициент теплоотдачи к ее поверхности, являющиеся известными (см., например, [8]) функциями чисел Рейнольдса Re, Маха M и Прандтля Pr: \(c_p = c_p(Re, M), \sigma = \sigma(Re, Pr, M) \). Входящие в (1.1) функции удовлетворяют граничным условиям, которые получаются из обычных соотношений Ранкина — Гогоню, условия непрерывности функций \(\mathbf{V}_p \), \(\mathbf{v}_p \), \(T_p \) на головном скачке уплотнения и из условия непротекания газа через поверхность крыла.

2. Для решения поставленной задачи в случае гиперзвукового обтекания тонкого крыла под конечным углом атаки \(\alpha \) примем метод тонкого ударного слоя [1], позволяющий при \(\varepsilon \rightarrow 0 \), \(M_\infty \rightarrow \infty \) представить все исходные функции в сильно сжатом слое газа между наветренной поверхностью крыла и головным скачком уплотнения в виде разложений по малому параметру \(\varepsilon \), равному отношению плотностей на скачке.

\[\varepsilon = \frac{x}{\varepsilon} = \frac{1}{\varepsilon} (1 + m^{-1}), \quad m = \frac{1}{2} (\varepsilon - 1) M_\infty^2 \sin^2 \alpha = O (1). \]

Здесь и далее индексом \(\infty \) обозначаются параметры набегающего потока. Рассмотрим наиболее интересный и математически сложный случай пространственного обтекания крыла малого удлинения со скачком неизвестной в основном приближении формы, полагая [7, 9], что при \(\varepsilon \rightarrow 0 \) отношение его полуразмаха \(b \) к корневой хорде \(L \) порядка \(b/L = O(e^{1/2} \theta g \alpha) \) и относительная толщина \(d = O(e \theta g \alpha) \). Пусть \(\theta g \alpha \) — связанная с крылом декартова система координат. Введем безразмерные переменные на скачке, в основном слое, относя все размеры по оси \(x \), \(y \), \(z \) соответственно к \(L \), \(L \theta \) \(\theta \), \(L \theta^{1/2} \theta \), \(\varepsilon \), и сохраним для безразмерных переменных прежние обозначения. При чем, что в набегающем потоке скорость и температура газа и частиц одинаковой. Тогда с учетом оценок порядков
величин [7] искомые функции можно представить в виде следующих асимптотических разложений:

\[(2.1)\]
\[u/V_\infty = u_0 \cos \alpha + eu, \sin \alpha \tg \alpha + \ldots, v/V_\infty = w_1 \sin \alpha + \ldots,\]
\[w/V_\infty = 2u_1 \sin \alpha + \ldots,\]
\[(p - p_0)/(\rho_\infty V_\infty^2) = \sin^2 \alpha (p_0 + ep_1 + \ldots), q/V_\infty = q_0 \cos \alpha + \ldots,\]
\[\rho/V_\infty = \rho_0 \cos \alpha + \ldots, \]
\[u_p/V_\infty = u_p \cos \alpha + \ldots, \]
\[v_p/V_\infty = -v_p \sin \alpha + \ldots, \]
\[w_p/V_\infty = e^{1/2}w_p \sin \alpha + \ldots, N/N_\infty = N_0 + \ldots, T_p/T_\infty = T_p + \ldots\]

Входящие в правые части разложений функции имеют порядок единиц при \(\varepsilon \to 0\) и зависят от координат \(x, y, z\) и ряда безразмерных параметров подобия. Из (2.1) видно, что в ударном слое скорость газа по отношению к частицам гиперзвуковая (\(M \gg 1\)). Считая, что и \(Re\) достаточно велико (\(Re \gg 1\)), аналогично [4] положим \(\varepsilon = const\). Подставим (2.1) в уравнения (1.1) и граничные условия и перейдем к пределу \(\varepsilon \to 0\), считая при этом, что сохраняются постоянными порядки единицы следующие параметры подобия:

\[I = \frac{3\pi_\infty}{8\varepsilon} \frac{L}{\alpha}, \quad E = \frac{\alpha_\infty}{c_\infty}, \quad I_\chi, \quad \]
\[I_p = \frac{3\pi_\infty}{8\varepsilon} \frac{L}{\alpha}, \quad E_p = \frac{(m + 1)\varepsilon_\infty}{cm_p} \frac{L}{\alpha}, \quad I_p, \]
где \(I_\chi = L/V_\infty \cos \alpha; \) параметры \(I_p, E_p\) характеризуют воздействие газа на движение частиц примеси, параметры \(I, E\) — обратное воздействие примеси на течение газа. Принятые выше условия \(I = O(1), E = O(1)\) соответствуют случаю, когда в нулевом приближении наличие примеси не влияет на течение газа и, как и в чистом газе, \(u_p = p_0 = p_0 = T_0 = 1\).

Наряду с этим для частиц в нулевом приближении получим систему обыкновенных дифференциальных уравнений, содержащую лишь производные поперек ударного слоя (индекс 0 опущен):

\[(2.2)\]
\[v_p \frac{du_p}{dz} = I_p q (u_p - 1), \quad \frac{dv_p}{dy} = I_p q, \quad \frac{d(Nvp)}{dy} = 0,\]
\[v_p \frac{dT_p}{dy} = E_p \left(\frac{T_p}{m + 1} - 1\right), \quad q = [(u_p - 1)^2 + v_p^2 \tg^2 \alpha]^{1/2}.\]

Границные условия на скачке уплотнения дают

\[(2.3)\]
\[u_{ps} = v_{ps} = N_{ps} = T_{ps} = 1, \quad y = S(x, z).\]

Из первых двух уравнений системы (2.2) следует, что в сжатом слое \(u_p - 1 = f(x, z)v_p\), откуда с учетом (2.3) получим

\[(2.4)\]
\[f(x, z) = 0, \quad u_p = 1.\]

Далее из (2.2), (2.3) находим вид остальных функций

\[(2.5)\]
\[v_p = \exp \{I_p a[y - S(x, z)]\}, \quad N = v_p^{-1}, \]
\[T_p = 1 + m \left(1 - \exp \left[\frac{-E_p}{(m + 1)I_p \left(1 - v_p^2\right)}\right]\right), \quad I_p = I_p a.\]

Полученное решение (2.4), (2.5) показывает, что продольная составляющая скорости частиц в ударном слое сохраняется, а нормальная составляющая резко уменьшается поперек слоя за счет передачи определенной дли и импульса в этом направлении от частиц к газу. Это влияние примеси на газ сказывается в первом приближении, которое описывает структуру течения и распределение давления в пространственном ударном слое. Соответствующая нелинейная система уравнений и краевые условия на 2 пмф. № 1, 1957 г.
скачек и поверхности крыла \(y = B(x, z) \) имеют вид (индекс 1 опущен)

\[
(2.6) \quad \frac{\partial u}{\partial y} + \frac{\partial w}{\partial z} = 0, \quad Du = 0, \quad Dw = 0,
\]

\[
Dv = -\frac{\partial p}{\partial y} - I_a v_{p1}, \quad I_a = I \ \text{tg} \ \alpha,
\]

\[
D(p - \rho) = \frac{2m}{m + 1} I_a v_p^2 + \frac{E}{v_p} \left(\frac{T_p}{m + 1} - 1 \right)
\]

\[
\left(D = \frac{\partial}{\partial x} + v \frac{\partial}{\partial y} + w \frac{\partial}{\partial z} \right)
\]

\[
u_z = -\frac{\partial S}{\partial x}, \quad v_z = \frac{\partial S}{\partial x} - \left(\frac{\partial S}{\partial x} \right)^2 - 1, \quad w_z = -\frac{\partial S}{\partial z}, \quad p_z = -2u_z - w_z^2 - 1,
\]

\[
p_s = 1 + p_s + \frac{m}{m + 1} \left(2u_z + w_z^2 \right), \quad y = S(x, z),
\]

\[
v_b = \frac{\partial p}{\partial x} + w_b \frac{\partial B}{\partial z}, \quad y = B(x, z).
\]

Из первого и третьего уравнений этой системы следует

\[
(2.7) \quad D \frac{\partial \omega}{\partial y} = 0,
\]

т. е. установленное впервые в [9] фундаментальное свойство сохранения потенциальной составляющей завихренности вдоль линий тока остается справедливым и при наличии примеси в газе. Значит, определяемая уравнениями (2.6), (2.7) и соответствующими краевыми условиями аналогично [9] кинематическая картина поля течения и форма скачка уплотнения в данном случае такие же, как и в чистом газе [9]. Это непосредственно связано с высокой плотностью газа в ударном слое, из-за которой упомянутая в нём скорость выше передача импульса от частиц к газу влияет на поле скоростей в нём лишь в высших приближениях. В то же время приращение давления за счет этого происходит уже в первом приближении. Действительно, обозначая через \(\rho_c \) известное давление в чистом газе и учитывая (2.5), из четвертого уравнения (2.6) имеем

\[
\frac{\partial p}{\partial y} = \frac{\partial \rho_c}{\partial y} + I_a \exp \{I_p \{y - S(x, z)\} \}.
\]

Интегрируя и удовлетворяя условию на скачке, получаем формулу

\[
(2.8) \quad \rho_b = \rho_{bo} + \frac{I}{I_p} \left[1 - \exp \{I_p \{B(x, z) - S(x, z)\} \} \right],
\]

позволяющую определить давление на крыле с учетом влияния примеси, если известны давление и форма скачка уплотнения в чистом газе. Согласно (2.8), влияние запыленности газа приводит к повышению давления на крыло, причем приращение давления непосредственно зависит от параметров \(I, I_p \) и от угла атаки, входящего в выражение для относительной скорости фаз \(\alpha \). В чистом газе зависимость от \(\alpha \) проявляется только через параметр подобия \(\Omega = b/\sqrt{\rho} \cdot \text{tg} \ \alpha \) [7]. Вследствие межфазного обмена энергии интеграл Бернулли для уравнений движения газа несправедлив.
и поправка первого порядка к плотности должна находиться из последнего уравнения (2,6).

В качестве примера на рис. 1, 2 показаны распределения давления вдоль размаха и вдоль корневой хорды плоского крыла гиперболической формы в плане при его обтекании с присоединенным к передней кромке скачком уплотнения. Решение для случая обтекания крыла чистым газом, полученное в [10], показано штриховой линией, а линиями 1, 2 — для газа с примесью \((\alpha = 30^\circ\) и \(20^\circ\)) при \(I = I_p = 1\); основной геометрический параметр подобия
\(\Omega = 3,16\). Видно, что запыленность газа приводит к повышению давления и делает распределение \(p_0(x)\) немонотонным с характерным максимумом примерно на середине полуразмаха. Распределение \(p_0(x)\) также становится немонотонным и имеет минимум на небольшом расстоянии вниз по потоку от вершины крыла.

Распределение давления по размаху крыла, обтекаемого с отхождением от кромки скачком, иллюстрируется на рис. 3 на примере плоского треугольного крыла \((\Omega = 1,15)\), штриховая линия — решение в чистом газе [11], а линиями 1, 2 — газ с примесью \((\alpha = 40^\circ\) и \(30^\circ\)) при \(I = I_p = 1\). В данном случае ее влияние состоит в повышении давления, качественный же вид эпюра \(p_0(x)\) в этом случае не меняется. В отличие от [11] давление вдоль корневой хорды крыла становится монотонно возрастающим (рис. 4). Как показали исследования, такие же тенденции имеет влияние примеси и при обтекании треугольного крыла конечного размаха при углах атаки, близких к \(\alpha/2\) [12].

Важной характеристикой тела, обтекаемого запыленным газом, является его собирательная эффективность \(C\), равная отношению числа частиц, попадающих на тело в единицу времени, к числу частиц, которые попали бы на него при отсутствии межфазного взаимодействия. Для определения \(C\) необходимо рассчитать траекторию частиц, что для пространственного их движения связано с известными трудностями. Для получения верхней оценки величины \(C\) плоского треугольного крыла воспользуюмся решением в окрестности плоскости симметрии. Скачком здесь имеет форму \(S \approx \Delta_0 x\) \((\Delta_0 = \text{const})\), поэтому траектории частицы, входящей в ударный слой при \(x = \xi\), имеет вид

\[y(x, \xi) = \frac{1}{\nu \Delta_0 I_p} \ln \frac{\Delta_0 I_p}{(1 + \Delta_0 I_p) e^{-\nu \xi} - e^{-\nu x}}\]

Обозначим через \(\xi_0\) корень уравнения \(y(1, \xi_0) = 0\). Вблизи плоскости симметрии на крыло приходит все частицы, которые входят в ударный слой при \(0 < \xi < \xi_0\). Если не учитывать движение частиц вдоль размаха и принять, что на все крыло приходит частицы, входящие в ударный слой в пределах защищированной площади (рис. 5), то оценка собирательной эффективности будет следующей:

\[C \approx \xi_0 = \frac{1}{\nu} \ln \frac{\nu \tan \alpha + 1}{\nu \tan \alpha + \frac{1}{e^{-v}}}\]

Для крыла с \(\Omega = 1,15\) при \(\alpha = 45^\circ\) зависимость \(C(\nu)\) показана на рис. 6.
Предельный случай \(I_p \to 0 \) соответствует пренебрежимо малому влиянию газа на частицы, вследствие чего \(C \to 1 \); в случае \(I_p \to \infty \) течение смеси равномерное, скорость частиц совпадает со скоростью газа, обтекающего крыло, поэтому \(C \to 0 \).

Отметим, что все полученные выше результаты без труда обобщаются на случай нестационарного течения заполненного газа в ударном слое, если крыло с изменяющейся во времени формой поверхности обтекается стационарным двухфазным потоком.

Литература

10. Голубкин В. Н., Нерода В. В. Численный расчет иеровновесного обтекания крыла в приближении тонкого ударного слоя.— ЖВМФ, 1985, т. 25, № 4.
12. Голубкин В. Н., Нерода В. В. Гиперзвуковое обтекание крыла при больших углах атаки с отсоединенным скачком уплотнения.— Изв. АН СССР, МХИ, 1985, № 3.

Поступила 21/Х1 1985 г.

УДК 621.315 : 534

ЯВЛЕНИЕ АКУСТИЧЕСКОГО РЕЗОНАНСА ПРИ АЭРОДИНАМИЧЕСКОМ ВЗАИМОДЕЙСТВИИ РЕШЕТОК В ДОЗВУКОВОМ ПОТОКЕ ГАЗА

R. A. Имамов, B. B. Курзин, B. L. Окулов

(Ленинград, Новосибирск)

Как известно [1], в решетках турбомашин может быть акустический резонанс, который возникает при совпадении частот колебаний потока газа в решетках. В [2, 3] представлены результаты исследований этого явления для случая, когда акустические возмущения вызваны пульсирующими потока в кромочных слоях. Однако наилучший результат, постоянно действующий и периодический источников возмущения в турбомашине — аэродинамическое взаимодействие рабочего колеса и направляющего аппарата.

Данная работа посвящена экспериментальному изучению акустического резонанса при взаимодействии решеток в теоретическом определении условий его возникновения.