УДК 662.76

МОДЕРНИЗАЦИЯ ПОТОЧНОГО ВОЗДУШНОГО ГАЗИФИКАТОРА ДЛЯ ТВЕРДОТОПЛИВНОЙ ПАРОГАЗОВОЙ УСТАНОВКИ

А. Ф. Рыжков¹, Н. А. Абаимов¹, И. Г. Донской^{1,2}, Д. А. Свищёв^{1,2}

¹Уральский федеральный университет им. первого Президента России Б. Н. Ельцина 620002 Екатеринбург, nick.sum41@mail.ru

²Институт систем энергетики им. Л. А. Мелентьева, 664033 Иркутск

Высокая эффективность комбинированного цикла и наличие систем глубокой очистки синтезгаза перед сжиганием позволяют рассматривать парогазовые установки с внутрицикловой газификацией в качестве перспективного решения для повышения эффективности и экологичности угольной энергетики. Ключевым элементом установки является газификатор. Газификатор Mitsubishi Heavy Industries выбран в качестве исходной конструкции для модернизации, которая заключалась в нагреве дутьевого воздуха до 900 °C и подаче пара с температурой 900 °C. Для определения влияния модернизации на характеристики газификатора использованы нуль-, однои трехмерная модели. Модернизация газификатора позволила повысить тепловую мощность по синтез-газу и химический КПД с 77.2 до 84.9 %, увеличить соотношение H_2/CO с 0.34 до 0.6.

Ключевые слова: газификация, уголь, парогазовая установка, CFD, моделирование, термогазодинамика.

DOI 10.15372/FGV20180310

ВВЕДЕНИЕ

Парогазовая установка с внутрицикловой газификацией является перспективным решением проблем повышения эффективности и экологичности угольной энергетики [1, 2]. Ее ключевой элемент — газификатор твердого топлива. По газифицирующему агенту газификаторы делятся на кислородные и воздушные. К достоинству первых относится высокий показатель химического КПД — эффективности превращения химической энергии топлива в химическую энергию синтез-газа, а к достоинству вторых — низкие капитальные и эксплуатационные затраты [3]. В данной работе рассмотрен вопрос об улучшении воздушного газификатора.

Единственным коммерческим воздушным газификатором является двухступенчатая поточная установка Mitsubishi Heavy Industries (MHI) производительностью 1700 т/сут [4]. Двухступенчатая организация процесса газификации позволяет зонировать основные его этапы (горение и газификация), что приводит к повышению химического КПД (далее опускаем слово «химический») и степени конверсии углерода. Поэтому именно газификатор МНІ выбран в качестве исходной конструкции для дальнейшей модернизации.

Цель модернизации — повышение КПД и корректировка соотношения H₂/CO в синтезгазе для улучшения энергетических и экологических показателей сжигания синтез-газа в камере сгорания газовой турбины парогазовой установки с внутрицикловой газификацией угля.

На настоящем этапе модернизация заключается в двух принципиальных технических решениях:

1) нагрев дутьевого воздуха,

2) подача пара во вторую ступень.

Нагрев дутьевого воздуха как альтернативный обогащению кислородом способ повышения интенсивности горения и газификации способен уменьшить недостатки воздушного процесса и повысить эффективность использования воздуха и газификации в целом [5, 6]. При этом уменьшится нагрузка на газификатор и обслуживающий его компрессор, снизятся габаритные размеры и стоимость газификатора, появится возможность обогащения воздушного дутья водяным паром, повышения соотношения H₂/CO и минимизации содержания метана в синтез-газе, что будет влиять на энер-

Исследование выполнено при поддержке Российского научного фонда (проект № 14-19-00524).

[©] Рыжков А. Ф., Абаимов Н. А., Донской И. Г., Свищёв Д. А., 2018.

гетические и экологические показатели работы газовой турбины [7]. Технология высокотемпературного нагрева компонентов дутья (воздуха и пара) изложена в [8]. Предложения по обогащению воздушного дутья водяным паром рассматривались в [9, 10]. Вопрос о месте ввода пара в газификатор является дискуссионным [11].

1. МЕТОДЫ ИССЛЕДОВАНИЯ

Оценка предлагаемых решений проводится на основе методов термодинамического и численного анализа работы газификатора МНІ в новых условиях.

1.1. Модернизируемый газификатор

Принцип действия газификатора типа МНІ заключается в конструктивном разделении областей горения первичного угля и коксозольного остатка (K3O), рециркулирующего из второй ступени, и газификации вторичного угля продуктами конверсии из первой ступени (рис. 1).

В качестве топлива для модернизируемого газификатора принят широко применяемый в российской энергетике кузнецкий каменный уголь марки Д, характеристики которого приведены в табл. 1. По составу и теплоте сгорания он схож с углем, используемым в коммерческом газификаторе МНІ [12]. В расчетах взят аналитический состав угля для повышения чувствительности результатов вычисления к добавке пара в газификатор. Кинетические константы гетерогенного реагирования для этого угля заимствованы из [9], а выход летучих веществ — из [13].

Для получения параметров работы газификатора МНІ в новых условиях используются три типа вычислительных инструментов в соответствии с целями расчета.

1.2. Нульмерное моделирование

Нульмерное термодинамическое моделирование позволяет определить удельные расхо-

Рис. 1. Принципиальная схема работы газификатора МНІ [12]:

первая ступень, камера сгорания: уголь = летучие вещества + коксозольный остаток, летучие вещества + $O_2 = CO_2 + H_2O$, $C + O_2 = CO_2$; вторая ступень, камера газификации: $C + CO_2 = 2CO$, $C + H_2O = CO + H_2$, уголь = летучие вещества + коксозольный остаток

ды входных потоков угля, воздуха и пара, обеспечивающие предельную эффективность конверсии установки (максимальный КПД и оптимальное отношение H₂/CO при минимальном содержании метана в синтез-газе) с учетом технологических ограничений по температуре [14]. Исходные параметры модели: коэффициент расхода воздуха α оптимизируется, удельный расход пара $g_{\rm H_2O} = 0 \div 0.6$ моль/моль ОМТ (органическая масса топлива), теплопотери 2 % (от теплоты сгорания Q_i^a), температура паровоздушного дутья 500 ÷ 1 200 °С, температура топлива 25 °С, давление 3 МПа. Последние два параметра приняты такими же, как в коммерческом газификаторе МНІ.

Коэффициент расхода воздуха α рассчитывается таким образом, чтобы режим не допускал присутствия свободного углерода в системе. Этот прием позволяет найти совокупность режимов с максимальным КПД, достижимым при определенном уровне теплообмена реактора с окружающей средой [15].

Таблица 1

Характеристики кузнецкого каменного угля

W^{a}	W^r	A^d	V^d	\mathbf{C}^{daf}	\mathbf{H}^{daf}	N^{daf}	\mathbf{S}^{daf}	\mathcal{O}^{daf}	$Q_i^a, \mathrm{M}\mathrm{J}$ ж/кг
2.9	11.5	23.7	29.9	78.79	5.97	2.16	0.97	12.11	31.5

Таблица 2

TA	КПД, %	lpha	$\chi, \%$	$T_{\rm bbix}, ^{\circ}{\rm C}$	Состав сухого синтез-газа, % (об.)				
ИСТОЧНИК					СО	CO_2	H_2	CH_4	N ₂ и др.
Эксперимент [23]	77.2	Нет данных	99.9	1200	30.5	2.8	10.5	0.7	55.5
Нульмерная модель	78.6	0.406	100	1200	30.5	1.7	10.5	0.7	56.7
Трехмерная модель	78	0.4	99	1 180	31.0	3.0	11.0	0.5	54.5

Результаты верификации нульмерной и трехмерной моделей

 Π римечания.
имечания. α — коэффициент расхода воздуха,
 χ — степень конверсии углерода, $T_{\rm вых}$ — температура на выходе из газификатора.

1.3. Одномерное моделирование

Одномерное термодинамическое моделирование с макрокинетическими ограничениями применено для оптимизации линейных размеров и распределения по ступеням реактора полученных в термодинамических расчетах входных потоков. Математическая модель представляет собой систему пространственноодномерных уравнений тепло- и массопереноса с кинетико-термодинамическим блоком решения задачи химических превращений. Подобные модели применялись в работах [16–18] для оценки характеристик процесса газификации.

В модели решаются уравнения смешанного лучисто-конвективного теплообмена между топливными частицами и газовой фазой. Температура стенки считается равной температуре топлива.

1.4. Трехмерное моделирование

Привлечение трехмерного моделирования с использованием метода вычислительной гидродинамики (CFD) призвано решать отдельные режимные (условия шлакования, шлакоудаления) и конструкционные вопросы через анализ термогазодинамических особенностей внутри ступеней газификатора (поля скорости, концентрации и температуры).

В данной работе используется предложенная в [19, 20] модель поточной газификации твердого топлива на основе метода вычислительной гидродинамики. Моделирование выполнено на предварительно проанализированной неструктурированной сетке с 550 000 расчетных элементов. Для учета теплообмена со стенкой температура стенки задавалась исходя из реальных условий эксплуатации газификаторов [21]. В более точной постановке необходимо учитывать тепловые режимы шлаковых пленок [22]. Для газовой фазы на стенках установки выполнялось условие прилипания. Рассчитывалось 2000 траекторий движения частиц топлива. В качестве расчетного алгоритма выбран так называемый полностью сопряженный метод решения, при котором скорость и давление в расчетном элементе определяются одновременно.

1.5. Верификация моделей

Верификация нульмерной и трехмерной моделей проведена по данным, полученным на коммерческом газификаторе МНІ [23] (табл. 2). Верификация одномерной и трехмерной моделей выполнена с использованием более детальных данных [24], полученных на экспериментальном газификаторе МНІ с расходом топлива 2 т/сут. Эти данные включали в себя не только состав синтез-газа на выходе из установки (табл. 3), но и распределение температуры вдоль оси газификатора (рис. 2). Из приведенных данных видно, что все три модели удовлетворительно согласуются с экспериментом и могут быть использованы для решения задач данного исследования.

Таблица 3 Результаты верификации одно- и трехмерной моделей

Источник	Со на	став (выхо	$T_{\rm bbix}, ^{\circ}{\rm C}$		
	H_2	СО	CO_2	${\rm H}_2{\rm O}$	
Эксперимент [24]	7.3	20.2	6.3	2.0	1050
Одномерная модель	7.4	20.7	4.2	6.2	1070
Трехмерная модель	6.9	21.5	5.1	3.7	1 040

Рис. 2. Результаты верификации одномерной и трехмерной моделей

2. РЕЗУЛЬТАТЫ

2.1. Нульмерное моделирование

Всего было рассчитано более 2000 режимов работы газификатора. Итоговые результаты приведены на рис. 3.

Изменение одного из двух режимных параметров (температуры дутья $T_{\pi\nu\tau be}$ по маршруту AC или перегретого пара по AD) нарушает термическое равновесие в реакционной системе (рис. 3,a). В точке C увеличение КПД на 2.6 % сопровождается перегревом системы относительно исходного режима (принятого за оптимальный) на 200 К, а в точке D увеличение КПД на 5 % приводит к охлаждению системы на 260 К. Совместное действие теплового и химических возмущений позволит провести термонейтральный изотермический процесс AE с увеличением КПД на ≈ 9 %. Это на 5 % меньше, чем в точке G при предельных уровнях нагрева паровоздушного дутья и расхода пара. Однако нагрев дутья выше 900 °С технически труднодостижим и экономически не оправдан, а предельный расход пара ($g_{\rm H_2O} = 0.6$ моль/моль ОМТ) снизит температуру среды на 200 К, что уменьшит скорость реагирования углерода и повысит содержание метана в синтез-газе. Поэтому в качестве рабочего участка выбран отрезок FL с нагревом дутья до 900 °C и подачей пара $g_{\rm H_2O} = 0.1 \div 0.2$ моль/моль ОМТ. Предельные показатели данного режима: КПД = $86 \div 88$ %, H₂/CO = $0.6 \div 0.65$, содержание метана в синтез-газе менее 1 % (рис. $3, \delta$).

2.2. Одномерное моделирование

В расчетах рассмотрено влияние удельного расхода вторичного пара $g''_{\rm H_2O}$ (расход первичного пара определяется по разности) и распределения топлива по ступеням (от 10/90 до

Рис. 3. Влияние подачи пара и нагрева дутья на режим работы газификатора:

а: сплошные линии — КПД, штриховые — температура среды; *б*: объемный состав синтез-газа, параметры *α* и H₂/CO по маршруту *BH*

90/10 %) на специфику формирования искомого двухступенчатого режима конверсии и определены условия вырождения двухступенчатого процесса в менее эффективный одноступенчатый.

Как показывает анализ приведенных на рис. 4 данных, граница между одноступенчатым и двухступенчатым режимами конверсии пролегает при стехиометрическом соотношении топлива и воздуха в первой ступени $\alpha_1 = 1$, чему соответствует определенный относительный расход топлива b_1 в первой ступени газификатора ($b_1 = 30$ % при $g''_{H_2O} = 0.2$ моль/моль ОМТ). При $b_1 < 30$ % ($\alpha_1 > 1$) реализуются

Рис. 4. Влияние распределения топлива по ступеням на работу газификатора при разных удельных расходах вторичного пара:

a -КПД, $\delta -$ температура в первой ступени T_1 , e -температура на выходе из газификатора $T_{\text{вых}}$, e -доля угля в первичном топливе b_1 , d -температура потока по высоте газификатора h, e -состав (по объему) синтез-газа после первой ступени

режимы с полным сгоранием первичного топлива в первой ступени (рис. 4, e), режимы со ступенчатым характером профиля температуры (рис. 4, d), с относительно низкой температурой на выходе из газификатора (рис. 4, e) и с близким к равновесному КПД (рис. 4, a). При этом доля свежего угля в первичном топливе составляет всего $30 \div 70 \%$ (рис. 4, e). Остальные $70 \div 30 \%$ приходятся на рециркулирующий коксозольный остаток, который выносится из газификатора в горячем виде, что увеличивает теплопотери и уменьшает КПД.

Максимальные температуры в первой ступени газификатора достигаются при $b_1 = 30 \%$ (рис. 4, δ), когда $\alpha_1 = 1$ (рис. 4,z). В этом режиме на отметке ≈ 3 м температура газа резко снижается за счет нагрева и сушки вторичного топлива. Затем протекают гетерогенные химические реакции.

При $b_1 < 30 \%$ ($\alpha_1 > 1$) топливовоздушная смесь в первой ступени газификатора обедняется и температура в ней падает (см. рис. 4, δ). Происходящий при этом вынос остаточного кислорода с газами первой ступени приводит к развитию во второй ступени экзотермических реакций, повышающих температуру (см. рис. 4, ϵ) и глубину протекания эндотермических реакций, что и отражается на некотором росте КПД при малых значениях $b_1 \approx 10 \div 20 \%$ (см. рис. 4, a).

При $b_1 > 30$ % кислородная зона заметно укорачивается и наряду с экзотермическими реакциями в первой ступени начинают интенсивно протекать эндотермические реакции газификации высокоразогретого первичного топлива. При этом эффективность второй ступени заметно падает, температура выходящего из реактора газа растет (см. рис. 4, *e*) и КПД резко уменьшается (см. рис. 4, *a*). Процесс переходит в режим одноступенчатой паровоздушной газификации.

Оптимальные расходы сред для формирования двухступенчатого процесса (табл. 4) составляют: $b_1 < 30 \div 40$ %, расход пара во вторую ступень 0.1 моль/моль ОМТ, $\alpha_1 \gtrsim 1$. Далее эти параметры использованы при трехмерном моделировании.

2.3. Трехмерное моделирование

Результаты моделирования на основе метода вычислительной гидродинамики представлены на рис. 5.

Tаблица 4 Расходные характеристики газогенератора при $b_1 \approx 30~\%$ и $\alpha_1 \approx 1$

P	Расход, кг/с							
1 азогенератор	Топливо	Воздух	Азот	Пар				
	Первая ступень							
Форсунки угля	4	21.6	0.5	0				
Форсунки КЗО	9.5	21.6	1.3	0				
	Вторая ст							
Форсунки угля	15.7	0	4.8	1.35				
a	б	_	6					

Рис. 5. Распределения абсолютной скорости газов (a), аксиальной скорости (b), температуры в продольном сечении (e) и температуры в поперечных сечениях (e)

Максимальная локальная температура в первой ступени газификатора достигает 2400 °C (рис. 5,6,г). Во второй ступени при контакте со вторичным углем температура резко уменьшается до 1300 °C за счет вышеописанного физико-химического квенчинга. При такой температуре снижается риск шлакования второй ступени [25], так как зола находится в твердом состоянии. Наибольшие абсолютные скорости (более 20 м/с) наблюдаются в первой ступени на выходе из форсунок (рис. 5, a). Максимум аксиальной скорости приходится на зону пережима. Пики аксиальной скорости располагаются в ней вдоль стенок, но не выходят во вторую ступень. Значения пиков аксиальной скорости (8 м/с) не превышают допустимых по условиям шлакования (9 м/с). При большей скорости по данным испытаний [25] оплавленные частицы начинают залетать из первой ступени газификатора во вторую и прилипать к ее стенкам. Скорость обрат-

Таблица 5

	Сост	ав сухого сі	интез-газа,	т °С	od MH / 3		
1 азификатор	CO	H_2	$\rm CO_2$	N_2	$I_{\rm BMX}$, 'C	Q_i^- , МДж/м $^{\circ}$	КПД, %
Коммерческий МНІ [23]	30.5	10.5	2.8	56.2	$1100\div 1200$	5.2	77.2
Модернизированный	27.8	16.8	4.8	50.6	1 1 1 0	6.6	84.9

Состав синтез-газа на выходе из газификатора

ных потоков в первой ступени, необходимых для стабилизации горения и поддержания условий жидкого шлакоудаления, достигает 4 м/с (рис. 5, δ). Во второй ступени условия для образования обратных потоков ухудшены и они ослабевают до 2 м/с, что также должно препятствовать шлакованию [25]. Состав синтез-газа и характеристики работы газогенератора приведены в табл. 5.

Трехмерное моделирование при параметрах работы газификатора, близких к полученным по нульмерной и одномерной моделям, позволило получить термогазодинамические условия, обеспечивающие стабильный режим жидкого шлакоудаления в первой ступени и режим твердого шлакоудаления во второй.

ЗАКЛЮЧЕНИЕ

Модернизация заключалась в дополнительном нагреве дутьевого воздуха до 900 °C в воздушном котле и подаче пара с температурой 900 °C во вторую ступень газификатора. Для определения влияния предложенной модернизации на характеристики газификатора и оптимизации параметров его работы выполнены многовариантные расчеты по нульмерной, одномерной и трехмерной (CFD) моделям.

1. Оптимальными с термодинамической и технической точки зрения получились следующие значения: температура паровоздушного дутья 900 °C, расход пара $0.1 \div 0.2$ моль/моль ОМТ, температура на выходе из газификатора 1 100 °C, коэффициент расхода воздуха $\alpha = 0.335$.

2. Результаты одномерного моделирования позволили определить оптимальное распределение расходов сред, которые далее использовались в трехмерном моделировании: доля угля в первичном топливе $b_1 < 30 \div 40$ %, расход пара во вторую ступень $0.1 \div 0.2$ моль/моль ОМТ, коэффициент расхода воздуха $\alpha_1 \gtrsim 1$.

3. Найденные на предыдущих стадиях параметры приняты в качестве исходных данных для CFD-модели, которая позволила провести более тонкий анализ задачи: формирование факела и зон рециркуляции в газификаторе и выбор бесшлаковочных режимов. В дальнейшем это будет полезно при выборе способов подачи топлива и пара.

Модернизация газификатора позволила повысить тепловую мощность по синтез-газу и его химический КПД с 77.2 до 84.9 %, а также увеличить H_2/CO с 0.34 до 0.6 при неизменном расходе топлива.

ЛИТЕРАТУРА

- 1. Higman C., Tam S. Advances in coal gasification, hydrogenation, and gas treating for the production of chemicals and fuels // Chem. Rev. — 2014. — V. 114, N 3. — P. 1673–1708.
- Minchener A. J. Gasification based CCS challenges and opportunities for China // Fuel. 2014. V. 116. P. 904–909.
- 3. Рыжков А. Ф., Богатова Т. Ф., Линянь Ц., Осипов П. В. Развитие поточных газификационных технологий в азиатско-тихоокеанском регионе (обзор) // Теплоэнергетика. — 2016. — № 11. — С. 40–50.
- Hashimoto T., Sakamoto K., Kitagawa Y., Hyakutake Y., Setani N. Development of IGCC commercial plant with air-blown gasifier // Mitsubishi Heavy Ind. Tech. Rev. — 2009. — V. 46, N 2. — P. 1–5.
- 5. Рыжков А. Ф., Гордеев С. И., Богатова Т. Ф. Выбор схемы подготовки рабочего тела газовой турбины для ПГУ с внутрицикловой газификацией // Теплоэнергетика. 2015. № 11. С. 32–37.
- Rao A. D. Combined Cycle Systems for Near-Zero Emission Power Generation. — Woodhead Publ. Ltd, 2012.
- Hasegawa T. Gas turbine combustion and ammonia removal technology of gasified fuels // Energies. 2010. V. 3. P. 335–449.
- Микула В. А., Рыжков А. Ф., Вальцев Н. В. Анализ возможности создания системы нагрева воздуха для ПГУ с внутрицикловой газификацией твердого топлива // Теплоэнергетика. — 2015. — № 11. — С. 9–14.

- Abaimov N. A., Osipov P. V., Ryzhkov A. F. Experimental and computational study and development of the bituminous coal entrainedflow air-blown gasifier of IGCC // J. Phys.: Conf. Ser. — 2016. — V. 754. — 112001.
- Алексеенко С. В., Ануфриев И. С., Вигриянов М. С., Копьев Е. П., Шарыпов О. В. Характеристики процесса сжигания дизельного топлива в горелочном устройстве с подачей струи перегретого водяного пара // Физика горения и взрыва. — 2016. — Т. 52, № 3. — С. 37–44.
- 11. Wu Y., Yang W., Blasiak W. Energy and exergy analysis of high temperature agent gasification of biomass // Energies. 2014. V. 7, N 4. P. 2107–2122.
- Kaneko S., Hashimoto T., Furuya T., Uchida S. Operational results of 200 t/d IGCC pilot plant in Nakoso // Mater. High Temp. — 1997. — V. 14, N 2. — P. 87–94.
- Badzioch S., Hawksley P. G. W. Kinetics of thermal decomposition of pulverized coal particles // Ind. Eng. Chem.: Process Des. Develop. — 1970. — V. 9, I.4. — P. 521–530.
- Gorban A. N., Kaganovich B. M., Filippov S. P., Keiko A. V., Shamansky V. A., Shirkalin I. A. Thermodynamic Equilibria and Extrema: Analysis of Attainability Regions and Partial Equilibrium. — Springer Science + Business Media, 2006.
- Svishchev D. A., Kozlov A. N., Donskoy I. G., Ryzhkov A. F. A semi-empirical approach to the thermodynamic analysis of downdraft gasification // Fuel. — 2016. — V. 168. — P. 91–106.
- Sahraei M. H., Duchesne M. A., Yandon D., Hughes R. W., Ricardez-Sandoval L. A. Reduced order modeling of a short-residence time gasifier // Fuel. — 2015. — V. 161. — P. 222– 232.
- Hla S. S., Roberts D. G., Harris D. J. A numerical model for understanding the behaviour of coals in an entrained-flow gasifier // Fuel Process. Technol. — 2015. — V. 134. — P. 424–440.

- Zhang B., Ren Z., Shi S., Yan S., Fang F. Numerical analysis of gasification and emission characteristics of a two-stage entrained flow gasifier // Chem. Eng. Sci. — 2016. — V. 152. — P. 227–238.
- Абаимов Н. А., Рыжков А. Ф. Разработка модели поточной газификации угля и отработка аэродинамических механизмов воздействия на работу газогенераторов // Теплоэнергетика. — 2015. — № 11. — С. 3–8.
- Чернецкий М. Ю., Кузнецов В. А., Дектерев А. А., Абаимов Н. А., Рыжков А. Ф. Сравнительный анализ влияния моделей турбулентности на описание процессов горения угольной пыли при наличии закрутки потока // Теплофизика и аэромеханика. — 2016. — Т. 23, № 4. — С. 615–626.
- Monaghan R. F. D., Kumar M., Singer S. L., Zhang C., Ghoniem A. F. Reduced order modeling of entrained flow solid fuel gasification // Proc. of the ASME Intern. Mechanical Engineering Congress & Exposition IMECE, 2009 November 13–19, Lake Buena Vista, Florida, USA. P. 1–13.
- 22. Yang Z., Wang Z., Wu Y., Wang J., Lu J., Li Z., Ni W. Dynamic model for an oxygenstaged slagging entrained flow gasifier // Energy Fuels. — 2011. — V. 25. — P. 3646–3656.
- Giuffrida A., Romano M. C., Lozza G. Thermodynamic analysis of air-blown gasification for IGCC applications // Appl. Energy. — 2011. — V. 88, N 11. — P. 3949–3958.
- Watanabe H., Otaka M. Numerical simulation of coal gasification in entrained flow coal gasifier // Fuel. — 2006. — V. 85. — P. 1935–1943.
- Chen C., Horio M., Kojima T. Use of numerical modeling in the design and scale-up of entrained flow coal gasifiers // Fuel. 2001. V. 80, N 10. P. 1513–1523.

Поступила в редакцию 28/IX 2017 г., в окончательном варианте — 5/XII 2017 г.