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Проведено экспериментальное исследование влияния капиллярно-пористых покрытий, полученных ме-

тодом направленного плазменного напыления, на динамику парообразования и теплообмен при кипении азота 

в условиях стационарного тепловыделения на медных трубчатых нагревателях диаметром 16 мм. Показано, 

что наличие покрытий приводит к увеличению критического теплового потока относительно гладкого нагре-

вателя и интенсификации теплоотдачи до 3.5 раз в области малых тепловых потоков. Из анализа данных высо-

коскоростной видеосъемки следует, что интенсификация теплообмена при малых тепловых потоках связана 

со значительной активацией стабильно работающих центров парообразования. При последующем росте тепло-

вой нагрузки интенсификация связана с существенным вкладом высокоинтенсивного теплообмена в зоне мак-

рослоя в локальных областях между гребнями структурированных покрытий. Показано снижение угла наклона 

кривых кипения модифицированных нагревателей в предкризисных режимах, которое определяется пульси-

рующим характером поведения межфазных границ и сопровождается значительными колебаниями температу-

ры поверхности. 
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Введение 

Несмотря на то, что в литературе представлено большое количество работ, посвя-

щенных экспериментальному и теоретическому исследованию различных аспектов про-

цессов тепло- и массопереноса при кипении жидкости, на сегодняшний день не суще-

ствует завершенной теории теплообмена при пузырьковом кипении. До сих пор ведется 

активное экспериментальное исследование внутренних характеристик пузырькового 

кипения при варьировании системных параметров (сочетание факторов: жидкость/мате-

риал нагревателя, давление, шероховатость поверхности и т.д.). Такой интерес исследо-

вателей связан как с необходимостью верификации имеющихся моделей и разработки 

новых подходов, так и с развитием в последние годы прямого численного моделирова-

ния процессов кипения [1]. 

                                                           
* Работа выполнена в Институте теплофизики им. С.С. Кутателадзе СО РАН при финансовой поддержке госу-

дарственного контракта с ИТ СО РАН № 121031800216-1. 
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Пузырьковое кипение жидкости является одним из наиболее эффективных спосо-

бов отвода тепла от поверхности нагрева. В последнее время интерес исследователей 

направлен на поиск способов повышения коэффициентов теплоотдачи и критических 

тепловых потоков (КТП) при кипении. Одними из наиболее перспективных в этой облас-

ти являются методы, связанные с прямой модификацией теплообменных поверхностей 

за счет создания на них различных структур и покрытий на микро- и наномасштабах, 

о чем свидетельствует большое количество обзорных работ [2 – 7]. 

Одним из способов создания микроструктурированных пористых покрытий явля-

ется метод направленного плазменного напыления [8]. Уникальность покрытий, полу-

ченных с использованием указанного метода, заключается в одновременном сочетании 

организации высокопористого покрытия и структурированности его поверхности в виде 

квазиупорядоченных гребней и каналов. Исследование влияния таких покрытий на теп-

лообмен и критические тепловые потоки при кипении жидкостей с различными физи-

ческими свойствами (жидкий азот, фреон R21, вода) было проведено в работах [9 – 11]. 

Авторами показано, что для нагревателей с покрытиями в области относительно малых 

тепловых потоков наблюдается существенная интенсификация теплообмена (до 3 раз) 

независимо от типа жидкости в условиях стационарного тепловыделения. Был проведен 

анализ механизмов интенсификации теплообмена, которые различаются в зависимости 

от свойств жидкости и микроструктурных характеристик покрытий. Несмотря на доста-

точно глубокое исследование влияния таких структур на теплообмен при кипении, оста-

ется слабоизученным вопрос об особенностях динамики парообразования в области вы-

соких тепловых потоков. Кроме того, во всех работах исследовались цилиндрические 

нагреватели с диаметром, соизмеримым с толщиной покрытия, что вносит существен-

ную неопределенность при вычислении плотности теплового потока на нагревателях 

с пористыми покрытиями. 

Целью настоящей работы является исследование влияния трехмерных капиллярно-

пористых (ТКП) покрытий, полученных методом направленного плазменного напыле-

ния, на динамику парообразования и теплообмен при кипении жидкого азота в условиях 

стационарного тепловыделения при атмосферном давлении. 

1. Экспериментальные методики 

Схема установки и подробное описание экспериментальных методик представлены 

в [11]. В качестве рабочих участков с «гладкой» теплоотдающей поверхностью (без по-

крытия) использовались медные цилиндрические трубки с внешним диаметром 16 мм, 

толщиной стенки 3 мм, длиной 50 мм и параметром шероховатости Ra = 8,5 мкм. 

Покрытия на исходную рабочую поверхность наносились методом направленного 

плазменного напыления. Для напыления использовался порошок бронзы БрАМц 9  – 2. 

На рис. 1 представлены SEM-фотография рабочего участка с покрытием, а также 2D- 

и 3D-профили покрытия. Из рисунка видно, что покрытия представляют собой квази-

упорядоченные вдоль поверхности трубки пористые гребни и каналы. Основные морфо-

логические характеристики покрытий указаны в таблице, а именно: 𝛿 — средняя по вы-

соте гребней толщина покрытия, λ — среднее расстояние между соседними гребнями, 

h — толщина остаточного слоя, l — ширина каналов, ε — пористость. Анализ использо-

ванных в проведенных сериях опытов в течение нескольких часов и дней нагревателей 

показал, что каких-либо признаков нарушения целостности покрытий не наблюдается. 
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2. Результаты 

На рис. 2a приведены кривые кипения и критические тепловые потоки (qКТП) 

для гладкого медного образца и образцов с ТКП-покрытиями. Также представлены дан-

ные [12] по теплообмену при кипении жидкого азота на плоском медном нагревателе 

с гладкой поверхностью, которые, как видно на рис. 2а, хорошо согласуются с результа-

тами, полученными для гладкой поверхности в настоящей работе. Следовательно, наличие 
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Рис. 2. Результаты экспериментов: кривые кипения (а) и плотность центров парообразования (b). 

1 — без покрытия, 2 — покрытие № 1, 3 — покрытие № 2, 4 — данные [12].  

Таблица  

Параметры покрытий 

Номер Фракция, мкм δ, мкм λ, мкм h, мкм l, мкм ε, % 

1 20 – 32 200 350 50 120 50 

2 20 – 32 350 460 100 240 64 

 

Рис. 1. SEM-фотография, 

2D- и 3D-профили 

покрытия № 2. 
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капиллярно-пористых покрытий на поверхности нагревателей приводит к существенно-

му увеличению критического теплового потока. При этом максимальная величина КТП 

наблюдалась для образца № 2 и была в 1,8 раза выше соответствующего значения для 

гладкой трубки без покрытия. Для обоих модифицированных нагревателей наблюдалась 

существенная интенсификация теплообмена до 3,5 раз в области малых тепловых пото-

ков, которая снижается до 2 раз при тепловых потоках, близких к qКТП на нагревателе 

без покрытия. 

Важно отметить, что характерной особенностью пузырькового кипения азота 

на модифицированных нагревателях в сравнении с гладкой поверхностью в области вы-

соких тепловых нагрузок (выше значения КТП на гладком нагревателе) являлось значи-

тельное снижение угла наклона кривой теплообмена. Повышение плотности теплового 

потока в таком режиме сопровождалось существенными периодическими колебаниями 

температуры поверхности амплитудой 1 – 2 K и характерными частотами пульсаций  

0,1 – 0,2 Гц. Схожие пульсационные эффекты при кипении жидкостей в кризисных 

и переходных режимах с детальным анализом спектральных характеристик были пока-

заны в цикле работ коллектива авторов [13]. 

На основе анализа данных высокоскоростной видеосъемки была проведена количе-

ственная оценка плотности активных центров парообразования (NSD) при различных 

плотностях тепловых потоков (см. рис. 2b). Для гладкого нагревателя наблюдается прак-

тически линейный рост NSD при увеличении мощности тепловыделения, в то время как 

на нагревателях с ТКП-покрытиями эта величина остается практически постоянной. При этом 

видно, что плотность центров парообразования на нагревателях с капиллярно-порис-

тыми покрытиями существенно выше, чем на гладком нагревателе при тепловых пото-

ках q < 1 – 2 Вт/см
2
. Дальнейшее повышение мощности тепловыделения приводит к тому, 

что NSD для гладкого участка становится больше аналогичной величины для модифи-

цированных образцов. Можно сделать вывод, что увеличение плотности центров паро-

образования не является определяющим механизмом интенсификации теплообмена при 

кипении жидкого азота на исследованных покрытиях. Анализ видеосъемки показал, что 

парообразование на модифицированных образцах реализуется в микроканалах покрытия. 

Кроме того, было обнаружено, что центры парообразования при кипении жидкого азота 

на гладком участке в области малых тепловых потоков не являются стабильными. В то 

же время на всех исследованных ТКП-покрытиях наблюдалась непрерывная парогене-

рация, что и приводит к существенной интенсификации теплообмена при q < 1,5 Вт/см
2
. 

Как отмечалось в работе [11], при повышении плотности теплового потока основной 

вклад в интенсификацию теплообмена при кипении азота на таких покрытиях вносит 

увеличение областей тонких менисков жидкости между паровой и твердой фазами в об-

ластях между соседними гребнями покрытия и, как следствие, значительное увеличение 

доли тепла, передаваемого за счет интенсивного испарения в макрослое. 

Кадры высокоскоростной видеосъемки кипения на модифицированном нагревателе 

при высоких мощностях тепловыделения (выше критического теплового потока для 

гладкого образца) представлены на рис. 3. Как отмечалось, в этой области тепловых по-

токов наблюдались существенные колебания температуры поверхности нагрева. Анализ 

кадров видеосъемки кипения показал схожий пульсирующий характер поведения межфаз-

ной границы. По всей поверхности нагревателя образовывались толстые «паровые чулки», 

которые периодически отрывались от поверхности нагрева, обеспечивая последующий 

подток жидкости к теплоотдающей поверхности. Далее наблюдалась интенсификация 

парообразования с последующим периодическим формированием новых паровых конгло-

мератов. Зависимость частоты отрыва пара от плотности теплового потока представлена 
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на рис. 4. Аналогичное поведение межфазной поверхности отмечалось и для гладкого 

нагревателя вблизи кризисных значений теплового потока, однако существенного изме-

нения наклона кривой кипения в этом случае не было. Частота отрыва паровой фазы 

в таком режиме кипения слабо зависит от мощности тепловыделения и составляет 23 – 28 Гц. 

При этом минимальные значения плотности теплового потока, при которых происходил 

этот периодический процесс, лежат вблизи точек изменения наклонов кривых кипений 

для модифицированных нагревателей. Именно этот периодический процесс, сопровож-

дающийся соответствующими изменениями паросодержания в пристенном двухфазном 

слое и доли общей смоченной поверхности, определяет снижение теплоотдачи в пред-

кризисных режимах. Следует также отметить существенное различие в частотах пульса-

ций температуры и межфазной поверхности. Такое различие, вероятно, связано с тем, 

что наибольшие амплитуды колебаний температуры поверхности нагревателя соответ-

ствуют, как правило, моментам слияния паровых конгломератов от нескольких близле-

жащих друг к другу областей и образования более крупного «парового чулка» на тепло-

выделяющей поверхности. При этом за счет тепловой инерционности исследованных 

образцов высокочастотные пульсации температуры, очевидно, сглаживаются и не имеют 

столь выраженного характера. Так, согласно [14], характерное время стабилизации тем-

пературного профиля в режиме пузырькового кипения определяется следующим образом: 

н н н ,
с  




  

где н ,с  ,н  н  — теплоемкость, плотность и толщина нагревателя соответственно, 

 — линеаризованный коэффициент теплоотдачи. 

По оценкам, сделанным в областях с меньшими углами наклона кривых кипения 

(в предкризисных режимах), эта величина лежит в диапазоне 2 – 4 с, что хорошо согла-

суется с полученными данными. 

Выводы 

Представлены результаты экспериментального исследования теплообмена и дина-

мики парообразования на медных трубчатых нагревателях диаметром 16 мм со структу-

рированными капиллярно-пористыми покрытиями, полученными методом направленного 

плазменного напыления, при кипении азота в условиях стационарного тепловыделения. 

Анализ полученных результатов показал следующее. 
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Рис. 4. Зависимость частоты отрыва 

паровых конгломератов 
от плотности теплового потока. 

1 — без покрытия, 

2 — покрытие № 1, 3 — покрытие № 2. 
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1. Максимальное увеличение критического теплового потока в 1,8 раза относи-

тельно гладкого нагревателя наблюдается для покрытия № 2. Максимальная степень 

интенсификации теплообмена (до 3,5 раз) была получена для покрытий в области малых 

тепловых потоков. 

2. Плотность активных центров парообразования на ТКП-покрытиях остается 

практически неизменной при увеличении мощности тепловыделения и при тепловых 

потоках выше 1 – 2 Вт/см
2
 лежит ниже аналогичных значений для гладкого участка. Ин-

тенсификация теплообмена при малых q связана со значительной активацией стабильно 

работающих центров парообразования, а при последующем росте тепловых нагрузок — 

с существенным вкладом высокоинтенсивного теплообмена в зоне макрослоя в локаль-

ных областях между гребнями микроструктурированных капиллярно-пористых покрытий. 

3. Для модифицированных нагревателей наблюдается снижение угла наклона кри-

вых кипения в предкризисных режимах, которое сопровождается существенными коле-

баниями температуры поверхности и определяется пульсирующим характером поведе-

ния межфазных границ с периодическим отрывом крупных паровых конгломератов. 
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