2014. Том 55, № 4

Июль – август

C. 805 – 813

УДК 546.657/824:541.451

ИССЛЕДОВАНИЕ ТЕРМИЧЕСКОГО РАСПАДА СЛОИСТЫХ ПЕРОВСКИТОПОДОБНЫХ ОКСИДОВ ANdTiO₄ И A₂Nd₂Ti₃O₁₀ (A = Na, K)

А.М. Санкович, И.А. Зверева

Санкт-Петербургский государственный университет, Химический факультет E-mail: irina.zvereva@spbu.ru

Статья поступила 25 января 2014 г.

Исследована термическая устойчивость катионоупорядоченных перовскитоподобных слоистых титанатов ANdTiO₄ и A₂Nd₂Ti₃O₁₀ (A = Na, K) в температурном интервале 900—1400 °C. Установлен структурно-химический механизм их термического разложения. Проведен сравнительный анализ термической стабильности соединений с разной толщиной перовскитового слоя и различной природой щелочного катиона, с кристалло-химических позиций дано объяснение наблюдаемому термическому поведению.

Ключевые слова: перовскитоподобные слоистые титанаты, термическая стабильность, порошковая рентгеновская дифракция.

введение

Соединения с перовскитоподобной структурой являются объектом пристального внимания, поскольку представляют один из наиболее перспективных классов керамических материалов. В силу особенностей кристаллической структуры эти соединения обладают уникальными свойствами (электрическими, магнитными, каталитическими) [1—5] и находят применение в новейших областях науки и техники.

Слоистые титанаты на основе щелочных и редкоземельных металлов являются перспективными катализаторами, в том числе для реакций фотоиндуцируемого разложения воды с целью получения водорода как альтернативного вида топлива [6, 7]. Более того, слоистые оксиды могут рассматриваться как принципиально новые каталитические системы, где межслоевое пространство увеличивает эффективную площадь поверхности [8]. Еще одной важной особенностью данного класса оксидов является их способность к ионному обмену [9, 10], в связи с чем соединения могут использоваться как прекурсоры для получения других перовскитоподобных фаз [11—13].

Рассматриваемые в данной статье перовскитоподобные слоистые титанаты принадлежат гомологическому ряду (A,Nd)_{n+1}Ti_nO_{3n+1} (A = Na, K), где n — число слоев перовскита; структуры ANdTiO₄ содержат один слой, а A₂Nd₂Ti₃O₁₀ — три слоя перовскита. Исследуемые соединения являются представителями класса фаз Раддлесдена—Поппера [14] и имеют кристаллическую структуру, близкую структуре сложных оксидов Sr₂TiO₄ и Sr₄Ti₃O₁₀ соответственно.

Строение $A_2Nd_2Ti_3O_{10}$ отвечает той же пространственной группе симметрии, что и титанаты стронция, *I4/mmm* [15]. Однако вследствие большой разницы зарядов катионов A и Nd в изучаемых соединениях наблюдается полное упорядочение этих катионов по неэквивалентным структурным позициям. В результате катионы A заселяют 9-координированные позиции, расположенные между блоками структурного типа перовскита, и вместе с ближайшими атомами кислорода образуют фрагменты структуры каменной соли. При этом катионы неодима, на-

[©] Санкович А.М., Зверева И.А., 2014

ходящиеся в 12-координированном состоянии, заселяют позиции внутри блока со структурой перовскита.

В структуре ANdTiO₄ в отличие от $A_2Nd_2Ti_3O_{10}$ и атомы A, и атомы Nd находятся в 9-координированном состоянии. Упорядочение катионов щелочного и редкоземельного элементов проявляется в том, что один блок каменной соли заселен только атомами A, другой — только атомами Nd. В результате отсутствует зеркальная плоскость симметрии, проходящая через центры октаэдров перпендикулярно оси *c*, и пространственная группа переходит в *P*4/*nmm* в случае NaNdTiO₄ [16, 17]. В структуре KNdTiO₄ имеет место более сильное искажение, и пространственная группа оказывается орторомбической *Pbcm* [9].

Свойства перовскитоподобных соединений находятся в сильной зависимости от их структуры, поэтому практическое применение материалов на их основе неизбежно сталкивается с проблемой устойчивости и, как следствие, с нежелательной возможностью изменения уникальных свойств функциональной керамики. Вместе с тем вопросам устойчивости слоистых соединений не уделялось должного внимания.

В данной статье представлены результаты исследования термической устойчивости катионоупорядоченных оксидов ANdTiO₄ и $A_2Nd_2Ti_3O_{10}$ с разным числом слоев перовскита и разного катионного состава.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Термическое разложение исследуемых соединений проводили путем изотермического обжига и закалки и методом синхронного термического анализа, сопряженного с массспектрометрией. Проведена серия опытов на высокотемпературную стабильность соединений вплоть до температуры их полного разложения. Выбор нижней границы температурных интервалов обусловлен преимущественно температурами синтеза данных слоистых оксидов [18, 19]. Для оксидов ANdTiO₄ (A = Na, K) изучение проводили с шагом 50 °C в температурном интервале 500—900 °C в случае KNdTiO₄ и 900—1100 °C для NaNdTiO₄. Устойчивость $A_2Nd_2Ti_3O_{10}$ исследовали в интервале 1000—1400 °C (для K) и 1100—1400 °C (для Na) с шагом 100 °C. Обжиг каждого образца при заданной температуре проводили в течение 6 ч, для распада Na₂Nd₂Ti₃O₁₀ требуется более длительная термообработка — 8 ч. Контроль качественного состава образцов осуществляли методом рентгенофазового анализа. Морфологию частиц исходных соединений и смеси продуктов их разложения изучали с помощью сканирующей электронной микроскопии.

Сложные оксиды NaNdTiO₄ и $A_2Nd_2Ti_3O_{10}$ были синтезированы керамическим способом при атмосферном давлении на воздухе. В качестве исходных веществ использовали реактивы марки Johnson Mattey высокой степени чистоты: оксид неодима Nd₂O₃ (99,99 %), предварительно прокаленный при 900 °C в течение 3 ч с целью удаления влаги, тонкодисперсный диоксид титана TiO₂ (99,9 %) в модификации анатаза, карбонаты натрия Na₂CO₃ (99,5 %) и калия K₂CO₃ (Merck, 99,5 %). Реагенты брали в стехиометрических количествах согласно реакциям:

$$Nd_2O_3 + 2TiO_2 + Na_2CO_3 \rightarrow 2NaNdTiO_4 + CO_2,$$
(1)

$$Nd_2O_3 + 3TiO_2 + A_2CO_3 \rightarrow A_2Nd_2Ti_3O_{10} + CO_2.$$
⁽²⁾

Обжиг образцов проводили в силитовой печи в корундовых тиглях, температурный режим контролировали платино-платино-родиевой термопарой и обеспечивали точность ± 1 °C с помощью программного терморегулятора ТП 403. Температуры трехчасового синтеза оксидов NaNdTiO₄, K₂Nd₂Ti₃O₁₀, Na₂Nd₂Ti₃O₁₀ составляли 780, 1000 и 1100 °C соответственно. Для компенсации потерь карбонатов как легколетучих компонентов при нагревании Na₂CO₃ и K₂CO₃ были взяты в 20%-ом избытке.

Синтез соединения KNdTiO₄ осуществляли путем реакций ионного обмена в растворе [9], в качестве прекурсора был выбран NaNdTiO₄. Замещение катионов Na⁺ на K⁺ происходило в два этапа:

$$NaNdTiO_4 + HCl \rightarrow HNdTiO_4 + NaCl,$$
(3)

$HNdTiO_4 + KOH \rightarrow KNdTiO_4 + H_2O.$ (4)

На первой стадии (3) была получена твердая кислота HNdTiO₄ посредством обработки NaNdTiO₄ 0,1 M раствором HCl, взятым в 5-кратном избытке для полного замещения Na⁺ \rightarrow H⁺. Суспензию NaNdTiO₄ перемешивали на магнитной мешалке при комнатной температуре в течение 3 дней. Полученную протонированную форму отфильтровывали от маточного раствора с использованием ацетатно-целлюлозных фильтров, промывали дистиллированной водой до нейтральной реакции и высушивали при температуре 70 °C. На следующем этапе (4) порошок HNdTiO₄ обрабатывали 1 M раствором КОН из расчета 100 мл на 1 г твердой кислоты. Суспензию перемешивали на магнитной мешалке при температуре 60 °C три дня. Отфильтрованный и промытый дистиллированной водой KNdTiO₄ прокаливали при 500 °C в течение 12 ч.

Качественный рентгенофазовый анализ полученных образцов осуществляли методом порошков с использованием дифрактометра ARL X'TRA, излучение Cu K_{α} . Съемку дифрактограмм вели с шагом 0,04° в диапазоне углов $2\theta = 5 \div 70^\circ$, время съемки — 4 с/точка. Фазовый состав образцов определяли с помощью базы данных ICDD PDF-2.

Синхронный термический анализ проводили на установке STA 449 F1 Jupiter, совмещенной с масс-спектрометром NETZSCH QMR Aëolos.

Электронные микрофотографии синтезированных образцов и продуктов распада получены на электронном сканирующем микроскопе Carl Zeiss EVO 40EP.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Как показало проведенное исследование, сложный оксид NaNdTiO₄ не подвергается разложению до температуры 900 °C. Выдерживание образцов при температурах 950—1050 °C приводит к разложению, степень которого растет по мере повышения температуры. РФА показал, что помимо рефлексов исходного соединения обнаруживаются дифракционные пики трехслойного оксида Na₂Nd₂Ti₃O₁₀ и фаз, не содержащих атомов натрия — Nd₂Ti₃O₉ и Nd₂TiO₅. Полностью оксид NaNdTiO₄ разлагается при температуре 1100 °C. Проведенный анализ позволяет представить распад NaNdTiO₄ в температурном интервале 950—1100 °C следующим уравнением:

$$8NaNdTiO_4 \rightarrow Na_2Nd_2Ti_3O_{10} + Nd_2Ti_3O_9 + 2Nd_2TiO_5 + 3Na_2O.$$
(5)

Структурно-химическая форма превращений, соответствующих реакции (5), показана на рис. 1, а. Очевидно, при температурах выше 900 °С каждый третий слой перовскита в цепочке -P-RS-P-RS- сдвигается на (a + b)/2, катионы Na⁺ и Nd³⁺ формируют новое упорядочение, в результате чего выделяется фаза Na₂Nd₂Ti₃O₁₀. Потеря Na из исходного образца в виде оксида Na₂O, который при высоких температурах относительно летуч, приводит к образованию дефицитного оксида Nd₂Ti₃O₉. Структура Nd₂Ti₃O₉ напоминает трехслойный Na₂Nd₂Ti₃O₁₀, но отличается отсутствием слоя каменной соли, вместо которого в межслоевом пространстве сосредоточена высокая плотность кислородных вакансий [20]. Как следствие, часть атомов Ті, находящихся вблизи межслоевого пространства, становится окруженной лишь пятью атомами кислорода. Одна треть катионов Nd³⁺ перемещается из слоев перовскита на позиции кислородных вакансий, а 2/3 остаются в слоях. В первом приближении можно считать, что половина атомов кислорода, занимающих анионные позиции межслоевого пространства структуры $Na_2Nd_2Ti_3O_{10}$, замещается беспорядочно распределенными 2/3 Nd^{3+} и 1/3 O^{2-} вакансий. Третий продукт распада в уравнении (5) относится к структурному типу куспидина $Ca_4(Si_2O_7\Box)(OH,F)_2$, где □ — вакансия [21, 22]. Удвоив число атомов в Nd₂TiO₅, можно представить это соединение более наглядной формулой: $Nd_4(Ti_2O_8)O_2$. Вместо групп Si_2O_7 в структуре Nd_2TiO_5 имеются отдельные цепи состыкованных вершинами тригональных бипирамид TiO₅, а томы Nd с соседними атомами кислорода образуют октаэдры.

Слоистый оксид Na₂Nd₂Ti₃O₁₀ устойчив к распаду до температуры 1100 °C. При 1200 °C появляются рефлексы фаз Nd₂TiO₅, Nd₂Ti₃O₉ и Nd_{2/3}TiO₃. Две последних фазы являются различными кристаллическими модификациями соединения с молекулярной формулой Nd₂Ti₃O₉:

Puc. 1. Структурно-химические уравнения реакций разложения NaNdTiO₄ при 950—1100 °С (*a*), Na₂Nd₂Ti₃O₁₀ при 1200—1300 °С (*б*) и образования Nd₂Ti₂O₇ из продуктов разложения Na₂Nd₂Ti₃O₁₀ при 1300—1400 °С (*b*)

одна из них имеет тетрагональную структуру, другая искажена до орторомбической. При температуре 1300 °C помимо рефлексов вышеупомянутых титанатов наблюдаются дифракционные пики слоистого соединения $Nd_2Ti_2O_7$ [23]. При 1400 °C пропадают рефлексы фаз Nd_2TiO_5 , $Nd_2Ti_3O_9$ и исходного оксида $Na_2Nd_2Ti_3O_{10}$, а система становится двухфазной, состоящей из $Nd_{2/3}TiO_3$ и $Nd_2Ti_2O_7$. Исчезновение пика при малом угле $2\theta = 6,32^\circ$ свидетельствует о том, что в системе отсутствуют слоистые перовскитоподобные соединения. На основании результатов рентгенофазового анализа в интервале 1200—1300 °С продуктами разложения Na₂Nd₂Ti₃O₁₀ являются Nd₂TiO₅ и Nd_{2/3}TiO₃. Исходя из стехиометрических соображений, наряду с установленными продуктами реакции в системе можно предположить присутствие TiO₂ в модификации рутила, который не регистрируется рентгенографически. Отсутствие рефлексов диоксида титана можно объяснить тем, что при закалке от температур выше 1100 °С частицы TiO₂ малых размеров с большой площадью поверхности переходят из жидкоподобного состояния, возникающего при $T = 2/3T_{nл.}$ [24] (для TiO₂ $T_{nл.} = 1870$ °С), в аморфное. Поэтому уравнение распада Na₂Nd₂Ti₃O₁₀ при 1200—1300 °С можно представить в виде:

$$2Na_2Nd_2Ti_3O_{10} \rightarrow 3Nd_{2/3}TiO_3 + Nd_2TiO_5 + 2TiO_2 + 2Na_2O.$$
 (6)

При температуре 1400 °C рефлексов оксида Nd_2TiO_5 не наблюдается, вместо него в смеси присутствует $Nd_2Ti_2O_7$. Этот факт позволяет сделать предположение о том, что $Nd_2Ti_2O_7$ напрямую не является продуктом распада $Na_2Nd_2Ti_3O_{10}$, но образуется из них по реакции:

$$iO_2 + Nd_2 TiO_5 \rightarrow Nd_2 Ti_2 O_7.$$
⁽⁷⁾

Проведенный в рамках данного исследования синтез $Nd_2Ti_2O_7$ при температуре 1400 °C по реакции (7) подтвердил наше предположение. Структурные превращения для реакций (6) и (7) представлены на рис. 1, б и в.

До 1300 °C на дифрактограммах присутствуют и $Nd_{2/3}TiO_3$, и $Nd_2Ti_3O_9$, выше этой температуры стабилен только оксид $Nd_{2/3}TiO_3$. Таким образом, $Nd_2Ti_3O_9$ является интермедиатом при переходе к трехмерному катионодефицитному соединению $Nd_{2/3}TiO_3$:

$$Nd_2Ti_3O_9 \rightarrow 3Nd_{2/3}TiO_3. \tag{8}$$

Если $Nd_2Ti_3O_9$ все еще сохраняет черты слоистой перовскитоподобной структуры, то $Nd_{2/3}TiO_3$ является перовскитом, в котором 1/3 позиций катионов Nd^{3+} вакантна [25].

Соединение KNdTiO₄ уже при 800 °С начинает медленно разлагаться. Обжиг образца при данной температуре вызывает в исходном соединении появление следов $K_2Nd_2Ti_3O_{10}$ и других продуктов распада, которые удается идентифицировать после прокаливания при более высокой температуре. При 900 °С KNdTiO₄ разлагается уже в значительной степени, и можно судить о качественном составе смеси продуктов распада: помимо $K_2Nd_2Ti_3O_{10}$ обнаруживаются рефлексы фаз Nd₂TiO₅, Nd₂Ti₃O₉ и K_2O . Полученные результаты дают право описать данный процесс распада следующим уравнением реакции:

$$3KNdTiO_4 \rightarrow K_2Nd_2Ti_3O_{10} + 2Nd_2TiO_5 + Nd_2Ti_3O_9 + 3K_2O.$$
 (9)

Исследование термической устойчивости KNdTiO₄ позволяет найти ответ на вопрос, почему данное соединение не удается получить путем обычной твердофазной реакции. Становится очевидным, что при высоких температурах синтеза образование оксида KNdTiO₄ не происходит по причине его термической нестабильности.

Сложный оксид K₂Nd₂Ti₃O₁₀ устойчив до 1100 °C. Разложение начинает происходить при температуре 1200 °C, когда в образце фиксируется наличие фаз Nd_{2/3}TiO₃ и Nd₂Ti₂O₇. При 1400 °C слоистая структура K₂Nd₂Ti₃O₁₀ полностью разлагается и уравнение реакции распада имеет вид:

$$2K_2Nd_2Ti_3O_{10} \to 3Nd_{2/3}TiO_3 + Nd_2Ti_2O_7 + TiO_2 + 2K_2O.$$
(10)

Структуры соединений, участвующих в реакциях (9) и (10), приведены на рис. 2, а и б.

Микрофотографии поликристаллических образцов NaNdTiO₄ и Na₂Nd₂Ti₃O₁₀ (рис. 3, *а* и δ) свидетельствуют о том, что их частицы имеют различную морфологию. Образец NaNdTiO₄ имеет частицы пластинчатой формы, размер которых не превышает 1 мкм, в то время как частицы Na₂Nd₂Ti₃O₁₀ неправильной формы, и их размер составляет 3,5 мкм. По микрофотографиям разложившихся соединений (см. рис. 3, *в* и *г*) можно судить о многофазности образцов: мы видим неоднородные по форме и размерам поликристаллы.

Таким образом, все исследованные в данной работе слоистые перовскитоподобные титанаты являются в той или иной степени неустойчивыми и разлагаются прежде, чем достигается температура их плавления.

Рис. 2. Структурно-химические уравнения реакций разложения KNdTiO₄ при 800—900 °С (*a*) и K₂Nd₂Ti₃O₁₀ при 1200—1400 °С (б)

Рис. 3. Электронные микрофотографии исходных образцов NaNdTiO₄ (*a*), Na₂Nd₂Ti₃O₁₀ (δ) и разложившихся NaNdTiO₄ (*b*), Na₂Nd₂Ti₃O₁₀ (ϵ)

Соединение	Пространственная группа	Параметр элементарной ячейки, Å	Координационное число катионов	
			Nd ³⁺	Ti ⁴⁺
NaNdTiO ₄	P4/nmm	a = 3,7515; c = 12,832	9	6
KNdTiO ₄	Pbcm	a = 13,1995; b = 5,403; c = 5,4166		
$Na_2Nd_2Ti_3O_{10}$	I4/mmm	a = 3,8168; c = 28,2816	12	6
$K_2Nd_2Ti_3O_{10}$		a = 3,8494; c = 29,572		
Nd ₂ TiO ₅	Pnam	a = 10,72; b = 11,361; c = 3,84	6	5
Nd ₂ Ti ₃ O ₉	I4/mmm	a = 3,8334; c = 24,363	12	6, 5
Nd _{2/3} TiO ₃	Pmmm	a = 3,834; b = 3,852; c = 7,7413	12	6
$Nd_2Ti_2O_7$	$P2_1$	$a = 7,677; b = 5,456; c = 26,013; \beta = 98,4^{\circ}$	12	6

Симметрия, параметры элементарной ячейки и координационные числа катионов исходных соединений и продуктов разложения

Различное термическое поведение соединений со слоистым типом структуры может быть объяснено при рассмотрении структурных особенностей многокатионных оксидов. С точки зрения кристаллохимии причина такого поведения сложных оксидов заключается в различной степени анизотропии их структуры. Фазовые превращения сопровождаются изменением координационного окружения катионов Nd³⁺ (КЧ 9, 12 и 6) и Ti⁴⁺ (КЧ 6 и 5) и значительным искажением их координационных полиэдров. КЧ исходных соединений и продуктов их разложения приведены в таблице.

Наиболее существенное различие термической стабильности наблюдается между однослойными и трехслойными оксидами. При формировании слоистой структуры искажаются полиэдры путем одновременного удлинения и укорочения аксиальных связей Ti—O (рис. 4, *a*). Так, в структуре NaNdTiO₄ катионы Ti⁴⁺ находятся в значительно искаженном октаэдрическом окружении анионов кислорода и помимо четырех одинаковых экваториальных связей образуют две аксиальные связи разной длины: одна — 1,738 Å, другая — 2,541 Å. Такое искажение октаэдров вызвано именно упорядочением катионов A⁺ и Nd³⁺, в результате которого катионы Ti⁴⁺, чтобы скомпенсировать заряд между слоями каменной соли, смещены по направлению к слою, содержащему Na⁺. В отличие от однослойных структур, где слои каменной соли поочередно содержат то катионы A⁺, то Nd³⁺, в структуре оксидов A₂Nd₂Ti₃O₁₀ тройные блоки перовскита разделены только двойным слоем AO. Три октаэдра, расположенные вдоль оси *с* и образующие тройной слой, искажены в разной степени. Деформация крайних октаэдров носит тот же характер, что и в однослойных соединениях, но центральный октаэдр деформирован незначительно и вместе с катионами Nd³⁺ напоминает фрагмент структуры перовскита NdTiO₃, а перовскит, как известно, является устойчивым образованием.

В слоистой структуре атомы Ti остаются в 6-координированном состоянии, как в перовските, но окружение атомов Nd может претерпевать существенное изменение, и это влечет за собой неустойчивость структуры. В трехслойных соединениях $A_2Nd_2Ti_3O_{10}$ атомы Nd сохраняют КЧ 12, что для больших катионов энергетически более выгодно, в то время как в оксидах ANdTiO₄ атомы Nd переходят в 9-координирован-

ное состояние.

Существенным фактором, влияющим на устойчивость слоистой структуры, можно считать длину мостиковой связи А—О, соединяющей слои перовскита и каменной соли (см. рис. 4, δ). При одинако-

Рис. 4. Деформация полиэдров (*a*) и мостиковая связь Na—O в структурах NaNdTiO₄ и Na₂Nd₂Ti₃O₁₀ (б)

Рис. 5. Структуры однослойных оксидов NaNdTiO₄ и KNdTiO₄

вом координационном окружении катионов A^+ (КЧ 9) в соединениях с n 1 и 3 различия в длине мостиковой связи A—О также приводит к большей устойчивости слоистых структур $A_2Nd_2Ti_3O_{10}$. Так, в соединении $Na_2Nd_2Ti_3O_{10}$ имеет место более сильное взаимодействие между слоями перовскита и катионами Na^+ в блоке каменной соли, и длина связи составляет 2,13 Å, в то время как для NaNdTiO₄ эта величина равна 2,30 Å.

Na-содержащие соединения оказываются стабильнее К-содержащих. Эта разница особенно заметна на примере однослойных оксидов NaNdTiO₄ и KNdTiO₄, структуры которых представлены на рис. 5. При замене Na на K тетрагональная структура P4/nmm соединений с n = 1 искажается до

орторомбической *Pbcm*. Деформация происходит вследствие несоразмерности слоев *P* и *RS* тетрагональной симметрии. Внедрение большего катиона K^+ в межслоевое пространство сопровождается разворотом октаэдров TiO₆, и более искаженная структура KNdTiO₄ оказывается менее устойчивой.

ЗАКЛЮЧЕНИЕ

На основании полученных экспериментальных данных по термической устойчивости фаз Раддлесдена—Поппера составов ANdTiO₄ и $A_2Nd_2Ti_3O_{10}$ (A = Na, K) можно заключить, что при определенных термодинамических условиях структура полностью упорядоченных соединений становится неустойчивой и разлагается преимущественно на структурно родственные фазы. Так, сложные оксиды ANdTiO₄ с одним слоем перовскита под действием высоких температур превращаются в соединения $A_2Nd_2Ti_3O_{10}$ с утроенной толщиной перовскитового слоя, а фазы $A_2Nd_2Ti_3O_{10}$, в свою очередь, при дальнейшем повышении температуры переходят в структурный тип катионодефицитного перовскита $Nd_{2/3}TiO_3$.

Таким образом, при высокой температуре перовскитоподобные слоистые титанаты $ANdTiO_4$ и $A_2Nd_2Ti_3O_{10}$ стремятся перейти в более устойчивую структуру либо перовскита, либо в слоистую структуру с большим числом перовскитовых слоев. Этот экспериментальный факт свидетельствует о повышении термической устойчивости катионоупорядоченных слоистых оксидов по мере увеличения толщины перовскитового блока, а также еще раз доказывает, что синтетические перовскитоподобные соединения менее стабильны по сравнению с природным минералом перовскитом.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант 12-03-00761) и гранта СПбГУ (12.0.105.2010).

СПИСОК ЛИТЕРАТУРЫ

- 1. Toda K., Kameo Y., Kurita S., Sato M. // J. Alloys Compounds. 1996. 234. P. 19.
- 2. Pradhan D.K., Samantaray B.K., Choudhary R.N.P., Thakur A.K. // Mat. Sci. Engin. 2005. B116. P. 7.
- 3. Moritomo Y., Asamitsu A., Kuwahara H., Tokura Y. // Nature. 1996. 380. P. 141.
- 4. Machida M., Miyazaki K., Matsushima S., Araic M. // Chem. Mater. 2003. 13. P. 1433.
- 5. Tai Y.-W., Chen J.-S., Yang Ch.-C., Wan B.-Z. // Catalysis Today. 2004. 97. P. 95.
- 6. Zhang L., Zhang W., Zhu J. et al. // J. Solid State Chem. 2005. 178. P. 761.
- 7. Родионов И.А., Силюков О.И., Зверева И.А. // Журн. общ. химии. 2012. 82, № 4. С. 548.
- 8. Sato M., Toda K., Shimizu K. et al. // Chem. Mater. 2005. 17. P. 5161.
- 9. Schaak R.E., Mallouk T.E. // J. Solid State Chem. 2001. 161. P. 225.
- 10. Silyukov O., Chislov M., Burovichina A. et al. // J. Thermal Anal. Calorimetry. 2012. 110, N 1. P. 187.
- 11. Gopalakrishnan J., Sivakumar T., Ramesha K. et al. // J. Amer. Chem. Soc. 2000. 122. P. 6237.

- 12. Shaak R.E., Mallouk T.E. // J. Amer. Chem. Soc. 2000. 122. P. 2798.
- 13. Abdulaeva L.D., Silyukov O.I., Petrov Yu.V., Zvereva I.A. // J. Nanomater. 2013. http://dx.doi.org/10.1155/2013/514781.
- 14. Ruddlesden S.N., Popper P. // Acta Crystallogr. 1957. 10. P. 538.
- 15. Richard M., Brohan L., Tournoux M. // J. Solid State Chem. 1994. 112. P. 345.
- 16. Blasse G. // J. Inorg. Nuclear Chem. 1968. 30. P. 656.
- 17. Zhu W.J., Feng H.H., Hor P.H. // Mater. Res. Bull. 1996. 31. P. 107.
- 18. Зверева И.А., Силюков О.И., Маркелов А.В. и др. // Физика и химия стекла. 2008. 34, № 6. С. 984.
- 19. Зверева И.А., Санкович А.М., Миссюль А.Б., Уголков В.Л. // Физика и химия стекла. 2010. **36**, № 2. С. 261.
- 20. Dulieu B., Bullot J., Wery J. et al. // Phys. Rev. 1996. 53. P. 10641.
- 21. Joubert O., Magrez A., Chesnaud A. et al. // Solid State Sci. 2002. 4. P. 1413.
- 22. Mueller-Buschbaum H., Scheunemann K. // J. Inorg. Nuclear Chem. 1973. 35. P. 1091.
- 23. Atuchin V.V., Gavrilova T.A., Grivel J.-C., Kesler V.G. // Surface Sci. 2008. 602. P. 3095.
- 24. Третьяков Ю.Д. Твердофазные реакции. М.: Химия, 1978.
- 25. Yoshii K. // J. Solid State Chem. 2000. 149. P. 354.