2017. Том 58, № 6

Июль – август

C. 1285 – 1294

УДК 546.22/.24:54.057:538.9

ИССЛЕДОВАНИЕ НАНОСТРУКТУР ZnS_xSe_{1-x}@Al₂O₃ МЕТОДАМИ РЕНТГЕНОВСКОЙ ДИФРАКЦИИ И EXAFS СПЕКТРОСКОПИИ

А.И. Чукавин¹, Р.Г. Валеев¹, Я.В. Зубавичус², А.Л. Тригуб^{1,2}, А.Н. Бельтюков¹

¹Физико-технический институт УрО РАН, Ижевск, Россия E-mail: andrey_chukavin@mail.ru ²Национальный исследовательский иентр "Курчатовский институт", Москва, Россия

Статья поступила 9 декабря 2016 г.

С доработки — 21 апреля 2017 г.

Нанокомпозитные системы на основе тройных полупроводниковых соединений ZnS_xSe_{1-x} различного состава (x = 0, 0, 3, 0, 5, 0, 7, 1) в диэлектрических матрицах нанопористого анодного оксида алюминия (AAO) были синтезированы методом высоковакуумного термического распыления смеси порошков сульфида и селенида цинка. Исследовано влияние атомной концентрации твердых растворов и структурных параметров матрицытемплата AAO на кристаллическую структуру синтезированных нанокомпозитов и ло-кальное атомное окружение атомов Zn и Se.

DOI: 10.15372/JSC20170623

Ключевые слова: ZnS_xSe_{1-x} , наноструктуры, EXAFS, рентгеновская дифракция, нанопористый анодный оксид алюминия, термическое напыление.

введение

В твердом растворе ZnS_xSe_{1-x} существует возможность контролируемо варьировать его оптические и прочностные характеристики, изменяя содержание серы (селена) и, следовательно, получать материал с заданными свойствами, необходимыми для конкретных приложений [1]. В настоящее время широко изучаются наноструктуры на основе твердых растворов ZnS_xSe_{1-x} в связи с их возможным применением в светоизлучающих диодах и фотодетекторах, работающих в видимой и ультрафиолетовой области спектра [2]. Различные наноструктуры на основе твердых растворов ZnS_xSe_{1-x} успешно получают методами химического парофазного осаждения и металлоорганической газофазной эпитаксии [3—6], термического осаждения [7,8], импульсного лазерного осаждения [9] и др. Особый интерес вызывают технологии, позволяющие создавать упорядоченные массивы наноструктур в связи с развитием электронных и оптикоэлектронных устройств, таких как дисплеи полевой эмиссии и устройства хранения информации с высокой плотностью [10].

В данной работе предложен темплатный подход с применением метода термического испарения, основанный на формировании наночастиц полупроводника в шаблонах пористого оксида алюминия с высокой упорядоченностью и контролируемым диаметром каналов. Пористый анодный оксид алюминия, благодаря гексагонально-упорядоченному расположения вертикально-ориентированных к поверхности пленки пор, нашел широкое применение в качестве темплатов для синтеза наноструктур [11].

Синтез тройных твердых растворов ZnS_xSe_{1-x} нами успешно опробован при получении тонких пленок [12] термическим испарением смеси порошков сульфида и селенида цинка

[©] Чукавин А.И., Валеев Р.Г., Зубавичус Я.В., Тригуб А.Л., Бельтюков А.Н., 2017

Рис. 1. СЭМ изображения мембран ААО со средним диаметром пор, нм: 29 (ААО_40) (*a*), 40 (ААО_80) (*б*) и 100 (ААО_120) (*в*)

в высоком вакууме (10^{-5} Па), при этом состав получаемых материалов может быть задан составом смеси порошков ZnS и ZnSe в испаряемом материале.

В зависимости от используемого метода свойства наноструктур ZnS_xSe_{1-x} могут существенно отличаться, что связано с влиянием условий синтеза материала на его структуру, примесный состав, наличие дефектов и их содержание. При этом в настоящее время в литературе практически не встречаются сведения по локальной атомной структуре наноструктур твердых растворов ZnS_xSe_{1-x} . В связи с этим работа посвящена исследованию локальной атомной структуры упомянутых выше наноструктур, а также изучению зависимости параметров локального атомного окружения атомов Zn и Se от значения *x* и структурных параметров пористой матрицы-подложки.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез нанокомпозитов $ZnS_xSe_{1-x}@Al_2O_3$. Исследуемые образцы нанокомпозитов ZnS_xSe_{1-x} (x = 0, 0, 3, 0, 5, 0, 7 u 1) были синтезированы методом термического испарения в сверхвысоком вакууме (не хуже 10^{-5} Па). В качестве исходного материала для напыления использованы смеси порошков сульфида и селенида цинка, полученных измельчением монокристаллов в агатовой ступке. В качестве подложки использовались мембраны пористого анодного оксида алюминия (AAO) с тремя различными диаметрами пор (рис. 1). Для получения пористого оксида алюминия использовали метод двухстадийного анодного окисления, подробно описанный в [13]. В качестве электролита использовали 0,3M раствор C₂H₂O₄. После анодирования Al селективно удаляли в растворе CuCl₂ и 5 % HCl. Перечень и маркировка образцов матриц пористого оксида алюминия, параметры анодирования, а также характеристики их пористой структуры представлены в табл. 1. Маркировку образцов выбирали следующим образом: анодный оксид алюминия AAO; 40 — цифры — напряжение анодирования.

Напыление проводили при температуре испарителя ~1600 °С и температуре подложки ~300 °С, после чего образцы отжигались в течение 1 ч при температуре ~350 °С. Перечень и маркировка образцов нанокомпозитов представлены в табл. 2. Маркировка образцов выбиралась следующим образом: "ZnS" — материал распыляемого порошка, "AAO_40" — соответствующая матрица пористого оксида алюминия, на которую производилось напыление (цифры

Таблица 1

Перечень и маркировка образцов оксидных пленок алюминия, полученных при различных условиях анодного окисления

Образец	Электролит	Температура электролита, °С	Напряжение анодирования, В	Диаметр пор, нм	Расстояние между центрами соседних пор, нм	
AAO_40	0,3M (COOH) ₂	от 0 до 5	40	29(3)	76(5)	
AAO_80	0,3M (COOH) ₂	от 0 до 5	80	40(8)	130(15)	

Таблица 2

	Массовая доля	Параметр	Размер	
Образец	порошков ZnS и ZnSe	решетки, Å	ОКР, нм	
ZnS		5,409	62	
ZnSe		5,667	98	
ZnS@AAO_40	1:0	5,408	60	
ZnS@AAO_80	1:0	5,409	61	
ZnS@AAO_120	1:0	5,412	58	
ZnS _{0,7} Se _{0,3} @AAO_40	2:1	5,526	17	
ZnS _{0,7} Se _{0,3} @AAO_80	2:1	5,540	17	
ZnS _{0,7} Se _{0,3} @AAO_120	2:1	5,535	18	
ZnS _{0,5} Se _{0,5} @AAO_40	1:1	5,595	20	
ZnS _{0,5} Se _{0,5} @AAO_80	1:1	5,587	18	
ZnS _{0,5} Se _{0,5} @AAO_120	1:1	5,598	20	
ZnS _{0,3} Se _{0,7} @AAO_40	1:2	5,644	19	
ZnS _{0,3} Se _{0,7} @AAO_80	1:2	5,625	17	
ZnS _{0,3} Se _{0,7} @AAO_120	1:2	5,627	16	
ZnSe@AAO_40	0:1	5,659	22	
ZnSe@AAO_80	0:1	5,669	26	
ZnSe@AAO 120	0:1	5.663	25	

Перечень и маркировка образцов нанокомпозитов

означают напряжение анодирования). Морфологию полученных образцов исследовали методом сканирующей электронной микроскопии. Для исследования наноструктур пленку ZnS_xSe_{1-x} наклеивали на медную подложку при помощи углеродного скотча, после чего матрицу AAO удаляли травлением в 5%-ом растворе H_3PO_4 при комнатной температуре. На рис. 2 представлены изображения наноструктур ZnS_xSe_{1-x} , полученных напылением на матрицы AAO_80 и AAO_120. Видно, что при термическом вакуумном напылении в каналах пор формируются массивы упорядоченных наноструктур, при этом размеры (диаметры) нановключений коррелируют с диаметрами пор матриц AAO, используемых в качестве подложки.

EXAFS спектроскопия. Данные по EXAFS и рентгеновской дифракции были получены на станции "Структурное материаловедение", расположенной на канале 1.36 Курчатовского центра синхротронного излучения НИЦ "Курчатовский институт". Источником синхротронного излучения (СИ) на канале 1.36 служит поворотный магнит с полем 1,7 Тл накопительного кольца "Сибирь-2". При генерации синхротронного излучения энергия электронного пучка

Рис. 2. СЭМ изображения наноструктур ZnS_xSe_{1-x} , полученных напылением на матрицы ААО со средним диаметром пор, нм: 40 (ААО_80) (*a*), 100 (ААО_120) (*б*)

составляет 2,5 ГэВ, средний ток 60—70 мА. Монохроматизацию рентгеновского излучения проводили с помощью кристалла Si(111). EXAFS-спектры были получены на *K*-краях поглощения Zn (E_K = 9659 эВ) и Se (E_K = 12658 эВ) при комнатной температуре, диапазоны сканирования по энергии 9550—10450 и 12550—13500 эВ соответственно. Шаг сканирования 1,5 эВ со временем сканирования в точке 10 с.

Обработку экспериментальных спектров EXAFS проводили с использованием пакета программ IFFEFIT [14, 15]. В качестве предварительных геометрических моделей, которые в последующем уточнялись по экспериментальному спектру, были выбраны геометрические модели ZnS и ZnSe с кубической структурой сфалерита, основанные на кристаллографических данных [16]. Амплитуды рассеяния и сдвиги фаз вычисляли программой FEFF6. Далее значения таких параметров, как межатомные расстояния R_i , координационные числа N_i , факторы Дебая— Уоллера σ_i^2 и химический сдвиг ΔE_0 , уточняли путем минимизации функционала невязки теория—эксперимент.

В процессе подгонки минимизируется суммарный квадрат отклонения для всех точек Фурье-преобразования рассматриваемой части спектра:

$$S = \sum_{i} (F(R)_{i}^{e} - F(R)_{i}^{m})^{2}.$$
 (1)

Здесь $F(R)_i^e$ — Фурье-преобразование $(F(R) = \frac{1}{2\pi} \int_{k_{\min}}^{k_{\max}} k^n W(k) \chi(k) e^{2ikR} dk$, где k_{\min} и k_{\max} — ми-

нимальное и максимальное значение модуля волнового вектора фотоэлектрона осциллирующей части экспериментального спектра); $F(R)_i^m$ — Фурье-преобразование модельного спектра, вычисленного с использованием формулы:

$$\chi(k) = \sum_{j} \frac{N_{j} S_{0}^{2}(k)}{k R_{j}^{2}} |f_{j}^{\text{eff}}(k)| e^{-2k^{2} \sigma_{j}^{2}} e^{-\frac{2R}{\lambda(k)}} \sin(2k R_{j} + \phi_{ij}(k)),$$
(2)

где $\chi(k) = \Delta \mu/\mu$ — нормированная осциллирующая часть коэффициента поглощения; k — волновой вектор фотоэлектрона; N_j — число атомов в *j*-й координационной сфере; R_j — расстояние от поглощающего атома в положении *i* до координационной сферы *j*; $f_l^{\text{eff}}(k)$ — функция эффективной амплитуды рассеяния волны; $S_0^2(k)$ — фактор уменьшения амплитуды из-за много-кратных процессов; $\phi_{ij}(k)$ — фазовый сдвиг; σ_j^2 — фактор Дебая—Уоллера, описывающий изменение радиусов координационных сфер из-за тепловых движений и структурного разупорядочения; λ — длина свободного пробега фотоэлектрона.

Качество подгонки определяли *R*-фактором:

$$R = \sum_{i} \frac{\left[\text{Im}(F_{\text{exp}}(R_{i}) - F_{\text{theor}}(R_{i})) \right]^{2} + \left[\text{Re}(F_{\text{exp}}(R_{i}) - F_{\text{theor}}(R_{i})) \right]^{2}}{\left[\text{Im}_{\text{exp}}(F(R_{i})) \right]^{2} + \left[\text{Re}(F(R_{i})) \right]^{2}}$$
(3)

(подгонка считается удовлетворительной, если R-фактор < 0,05).

Все спектры были получены с диапазоном импульсного пространства $k \ge 13$ Å⁻¹.

Данный метод исследования предоставляет следующие возможности в определении параметров локальной атомной структуры около поглощающего атома: для радиусов координационных сфер с $\Delta R/R \approx 1$ %; для координационных чисел $\Delta N/N \approx 10$ %; для факторов Дебая—Уоллера $\Delta \sigma/\sigma \approx 20$ %.

Рентгеновская дифракция. Рентгенодифракционные исследования проводились на синхротронном излучении с энергией 17,8 эВ и длиной волны 0,69 Å. Для проведения исследований образцы измельчали до порошкового состояния в агатовой ступке, при этом в исследуемый порошок попало небольшое количество алюминия, поэтому на некоторых дифрактограммах присутствуют пики от Al, с позицией наиболее интенсивного пика около 17°.

Размеры областей когерентного рассеяния ZnS_xSe_{1-x} были рассчитаны по пику (113) для всех составов по формуле Шерера [17].

Рис. 3. Дифрактограммы образцов с различным составом (x — количественное содержание серы в ZnS_xSe_{1-x}), напыленных на мембраны AAO со средним диаметром пор, нм: 29 (AAO_40) (a), 40 (AAO_80) (δ) и 100 (AAO_120) (e)

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

На рис. 3, *a*, *б*, *в* представлены дифрактограммы образцов, напыленных на мембраны с различным диаметром пор. На всех образцах можно наблюдать три хорошо определенных пика дифракции, соответствующих плоскостям кристаллической решетки (111), (220) и (311). Эти пики соответствуют кубической структуре сфалерита. Однако также на дифрактограммах можно выделить пик (100) вюрцита и пик (111) Al (см. рис. 3, *г*). В зависимости от состава наноструктур с уменьшением доли серы в составе наблюдается смещение пиков сфалерита (111), (220) и (311) в сторону больших углов (на рис. 3, *a*, *б*, *в* отмечена область, в пределах которой сдвигаются пики при изменении состава от ZnS к ZnSe), что объясняется увеличением параметра решетки.

Результаты по определению параметра решетки представлены табл. 2. Наблюдается небольшое (в пределах 0,001—0,004 Å) изменение параметра решетки в зависимости от диаметра пор матрицы-подложки, что может быть объяснено искажениями кристаллической решетки в процессе роста наноструктур во внутрипоровом пространстве матрицы. В табл. 2 представлены значения размеров ОКР, полученные по дифракционным данным. Размер ОКР и диаметр пор матрицы-подложки не претерпевают значительных изменений.

На рис. 4 представлены нормированные осциллирующие части и их фурье-образы, полученные из EXAFS спектров поглощения на *K*-краях Zn (см. рис. 4, e, c) и Se (см. рис. 4, d, e) для исходного порошка ZnSe и на *K*-крае Zn (см. рис. 4, a, δ) для исходного порошка ZnS. На фурье-образах для ZnSe наблюдаются хорошо выраженные пики первых трех координационных

Рис. 4. Нормированные осциллирующие части EXAFS спектров и соответствующие им Фурье-образы: ZnS порошок, данные по *K*-краю Zn (a, δ) ; ZnSe порошок, данные по *K*-краю Se (d, e)

сфер. Для ZnS хорошо выражен пик первой координационной сферы, а пики от второй и третьей сливаются в дуплет. Параметры локального окружения исходных порошков ZnSe и ZnS, рассчитанные методом обратного фурье-преобразования, представлены в табл. 3. Как для ZnSe, так и для ZnS межатомные расстояния первых трех координационных сфер в пределах погрешности совпадают с кристаллографическими значениями для ZnSe и ZnS с кубической структурой сфалерита [16], что согласуется с результатами дифракции. Координационные числа были определены как 4, 12 и 12 соответственно для первой, второй и третьей координационной сферы (КС).

На рис. 5 представлены нормированные осциллирующие части и их фурье-образы из EXAFS спектров поглощения на *K*-крае Zn и Se для наноструктур ZnS_xSe_{1-x} , полученных напылением на матрицы AAO со средним диаметром пор 29 нм (*a*), 40 нм (*б*) и 100 нм (*в*). На фурье-образах рис. 5, *a*, *б*, *в* наблюдается смещение наиболее интенсивного пика, соответствующего первой координационной сфере, в сторону меньших расстояний при увеличении значения *x* (концентрации серы). Это смещение является закономерным, так как длина химической связи Zn—S (2,344 Å) меньше, чем Zn—Se (2,454 Å). Параметры локальной атомной структуры атомов Zn представлены в табл. 4. Длины химических связей Zn—S и Zn—Se для различных составов тройных соединений близки к значениям чистых ZnS и ZnSe соответственно с расхождениями

Таблица З

	Координационная сфера									
	Первая			Вторая			Третья			
Образец	$R_1, Å$	N_1	σ_1^2	<i>R</i> ₂ , Å	N_2	σ_2^2	<i>R</i> ₃ , Å	N_3	σ_3^2	
	Данные по <i>К</i> -краю Zn									
	Zn—S			Zn—Zn			Zn—S ₂			
Модель	2,344	4,0		3,828	12		4,488	12		
ZnS	2,344	4,0	6,0	3,850	12	15,0	4,480	12	15,6	
	Zn—Se			Zn—Zn			Zn—Se ₂			
Модель	2,457	4,0		4,012	12		4,704	12		
ZnSe	2,444	4,0	5,6	4,012	12	18,2	4,684	12	18,1	
	Данные по <i>К</i> -краю Se									
	Se—Zn			Se—Se			Se—Zn ₂			
Модель	2,454	4,0		4,008	12	_	4,699	12		
ZnSe	2,451	4,0	5,1	4,017	12	11,9	4,713	12	14,2	

Параметры локального атомного окружения исходных порошков ZnS и ZnSe

 R_i — межатомные расстояния *i*-й координационной сферы; N_i — координационные числа; σ_i^2 — факторы Дебая—Уоллера, 10^{-3} Å^{-2} .

Таблица 4

Данные по К-краю Zn								
		Вторая КС						
Образец	Zn—S			Zn—Se			Zn—Zn	
	$R_1, Å$	N_1	σ_1^2	$R_1, Å$	N_1	σ_1^2	<i>R</i> ₂ , Å	
ZnS_40	2,35	3,0	6				3,80	
$ZnS_{0,7}Se_{0,3}40$	2,33	2,3	6	2,44	2,0	5	3,90	
$ZnS_{0,5}Se_{0,5}_{40}$	2,34	1,3	6	2,44	3,0	5	3,95	
ZnS _{0,3} Se _{0,7} _40	2,34	0,7	6	2,45	3,6	5	4,00	
ZnSe_40	—			2,45	4,6	6	4,03	
ZnS_80	2,35	3,0	7				3,85	
ZnS _{0,7} Se _{0,3} _80	2,34	2,3	6	2,44	2,0	5	3,90	
$ZnS_{0,5}Se_{0,5}_{-}80$	2,33	1,0	6	2,44	3,0	5	3,92	
ZnS _{0,3} Se _{0,7} _80	2,33	0,7	7	2,45	3,6	5	3,98	
ZnSe_80	—			2,47	4,7	6	4,03	
ZnS_120	2,35	2,6	5	—			3,83	
ZnS _{0,7} Se _{0,3} _120	2,36	2,3	4	2,44	2,1	5	3,90	
ZnS _{0,5} Se _{0,5} _120	2,34	1,1	6	2,44	3,2	5	3,94	
ZnS _{0,3} Se _{0,7} _120	2,35	0,7	7	2,45	3,8	5	3,99	
ZnSe_120				2,46	4,3	6	4,05	

Параметры локального атомного окружения атомов Zn для наноструктур ZnS_xSe_{1-x}, полученных напылением на матрицы AAO

Окончание табл.

4

Данные по <i>К</i> -краю Se									
		Вторая КС							
Образец	Se—Zn			S—Zn			Se—Se		
	$R_1, Å$	N_1	σ_1^2	$R_1, Å$	N_1	σ_1^2	<i>R</i> ₂ , Å		
ZnSe_40	2,45	3,6	4	_			4,02		
ZnSe_80	2,45	4,2	6	—	—	—	4,01		
ZnSe_120	2,47	4,8	7	—	—	—	4,04		

 R_i — межатомные расстояния *i*-й координационной сферы; N_i — координационные числа; σ_i^2 — факторы Дебая—Уоллера в 10⁻³ Å⁻².

Рис. 5. Нормированные осциллирующие части и фурье-образы EXAFS спектров на *К*-крае Zn для наноструктур ZnS_xSe_{1-x} , полученных напылением на матрицу AAO со средним диаметром пор, нм: 29 (*a*, *б*); 40 (*b*, *c*) и 100 (*d*, *e*)

в пределах ±0,02 Å. При этом расстояния Zn—Zn уменьшаются с увеличением концентрации серы линейно. Используемый в работе метод не позволяет с высокой точностью определить координационные числа. Как отмечалось выше, для первой сферы ошибка составляет $\Delta N/N \approx 10$ %. Из полученных данных можно сделать достоверный вывод только о тенденциях в изменениях N_i :

а) количество атомов серы вокруг атомов цинка в первой координационной сфере закономерно увеличивается при увеличении x в ZnS_xSe_{1-x} , при этом количество атомов селена уменьшается;

б) количество атомов цинка вокруг атомов селена в первой координационной сфере уменьшается с уменьшением диаметра пор матрицы-подложки, и наоборот, количество атомов Se вокруг атомов цинка в первой координационной сфере увеличивается с уменьшением диаметра пор матрицы-подложки (но тенденция менее явная);

в) значения КЧ для первой координационной сферы атомов цинка выше, чем для окружения селена (за исключением образца с диаметром пор 100 нм), что может свидетельствовать о заметном отклонении от структуры идеального кристалла на уровне ближнего порядка.

Получить достоверные данные по КЧ второй сферы для тройных соединений из имеющихся спектров не удалось.

ЗАКЛЮЧЕНИЕ

В данной работе были успешно синтезированы образцы нанокомпозитов на основе твердых растворов ZnS_xSe_{1-x} в диэлектрической матрице пористого оксида алюминия. Структура ZnS_xSe_{1-x} — преимущественно сфалерит. Наблюдается небольшое (в пределах 0,001—0,004 Å) изменение параметра решетки в зависимости от диаметра пор матрицы-подложки, что может быть объяснено искажениями кристаллической решетки в процессе роста наноструктур во внутрипоровом пространстве матрицы.

Локальная атомная структура нанокомпозитов $ZnS_xSe_{1-x}@Al_2O_3$ была исследована методом EXAFS спектроскопии. Показано, что для всех значений атомной концентрации твердых растворов ZnS_xSe_{1-x} , полученных в данной работе, длины связей Zn—S и Zn—Se близки к значениям чистых ZnS и ZnSe, с отклонением не более 0,02 Å. Радиусы первых двух координационных сфер для атомов Zn растут линейно с уменьшением концентрации серы, что объясняется замещением в узлах кристаллической решетки атомов серы атомами селена, имеющими больший ковалентный радиус. Значение координационных чисел первой координационной сферы атомов цинка выше, чем для селена, что может свидетельствовать о заметном отклонении от структуры идеального кристалла на уровне ближнего порядка.

Работа выполнена в рамках проекта Российского фонда фундаментальных исследований № Ор 14-32-50274.

СПИСОК ЛИТЕРАТУРЫ

- 1. Гаврищук Е.М., Савин Д.В., Иконников В.Б. // Прикладная физика. 2010. **1**. С. 62 65.
- 2. Chuo H.X., Wang T.Y., Zhang W.G. // J. Alloys Comp. 2014. 606. P. 231 235.
- 3. Wang M., Fei G.T., Zhang Y.G., Kong M.G., Zhang L.D. // Adv. Mater. 2007. 19. P. 4491 4494.
- 4. Wu D., Chang Y., Lou Zh., Xu T., Xu J., Shi Zh., Tian Y., Li X. // J. Alloys Comp. 2017. 708. P. 623 627.
- 5. Liang Y., Xu H., Hark S. // Cryst. Growth Des. 2010. 10. P. 4206 4210.
- 6. Park S., Kim H., Jin C., Lee C. // Curr. Appl. Phys. 2012. 12. P. 499 503.
- 7. Lu J.P., Liu H.W., Sun C., Zheng M.R., Nripan M., Subodh G.M., Zhang X.H., Sow C.H. // Nanoscale. 2012. -4. – P. 976 – 981.
- 8. Xu H.Y., Liang Y., Liu Z., Zhang X.T., Hark S. // Adv. Mater. 2008. 20. P. 3294 3297.
- 9. *Choi Y.-J., Kwon S.J., Choi K.-J., Kim D.-W., Park J.-G.* // J. Korean Phys. Soc. 2009. **54**, N 4. P. 1650 1654.

- 10. Ming Chang, Xue Li Cao, Xi-Jin Xu, Lide Zhang // Phys. Lett. A. 2008. 372. P. 273 276.
- 11. Chahrour Khaled M., Ahmed Naser M., Hashim M.R., Elfadill Nezar G., Al-Diabat Ahmad M., Bououdina M. // J. Phys. Chem. Solids. 2015. **87**. P. 1 8.
- 12. Valeev R.G., Chukavin A.I., Mukhgalin V.V., Kriventsov V.V., Romanov E.A., Robouch B.V. // Mater. Res. Express. 2015. 2. P. 025006.
- 13. Masuda H., Fukuda K. // Science. 1995. 268, N 5216. P. 1466 1468.
- 14. Newville M. // J. Synchrotron Rad. 2001. 8, N 2. P. 96 100.
- 15. Ravel B., Newville M. // J. Synchrotron Rad. 2005. 12, N 4. P. 537 541.
- 16. Chichagov A.V. et al. // Kristallographiya. 1990. 35, N 3. P. 610 616.
- 17. Гусев А.И. Наноматериалы, наноструктуры, нанотехнологии. М.: ФИЗМАТЛИТ, 2005. С. 169.