РЕАКЦИЯ СТАЛЬНОГО ЦИЛИНДРИЧЕСКОГО КОНТЕЙНЕРА НА ВНУТРЕННЕЕ ВЗРЫВНОЕ НАГРУЖЕНИЕ В ЗАВИСИМОСТИ ОТ СТЕПЕНИ НАПОЛНЕНИЯ ВОДОЙ

В. А. Рыжанский, А. Г. Иванов, Н. П. Ковалев, Г. П. Симонов, Ю. Д. Чернышев, В. Н. Минеев^{*}, В. В. Жуков^{**}

РФЯЦ, ВНИИ экспериментальной физики, 607190 Саров

Объединенный институт высоких температур РАН, 127412 Москва

** Опытное конструкторское бюро машиностроения, 603603 Нижний Новгород

Приведены результаты экспериментального исследования реакции стальных цилиндрических контейнеров на внутреннее взрывное нагружение в зависимости от степени наполнения водой. Эксперимент сопровождался численными расчетами системы «взрывчатое вещество — заполняющая среда — контейнер». Обнаружено существенное влияние заполняющей среды на форму и деформацию контейнера. При этом основное значение имеют сжимаемость заполняющей среды и отношение ее массы к массе деформируемых стенок контейнера.

В технике локализации взрывов широко используются взрывозащитные контейнеры с цилиндрической несущей оболочкой. При изучении взрывостойкости оболочек, труб и сосудов, заполненных воздухом или водой (см., например, [1–6]), было, в частности, установлено сильное влияние заполняющей среды на реакцию контейнера [1, 4]. Однако без углубленного изучения взрывных процессов причины этого влияния оставались неясными. Настоящая работа посвящена данному аспекту проблемы локализации взрыва.

Работа выполнена в рамках общирной программы 1976–1987 гг. по изучению взрывостойкости корпуса быстрого реактора типа БН-600 [6]. Этот корпус частично заполнен жидким натрием, близким по ряду физикомеханических свойств к воде. В случае аварийного взрывоподобного энерговыделения в активной зоне импульсному нагружению подверглось бы не только внутриреакторное оборудование, но и корпус. Поскольку при аварии он служит барьером на пути ее развития, взрывостойкость является важной характеристикой его прочности [7].

Постановка эксперимента. Схемы проведения опытов приведены на рис. 1. Объекты исследования — цилиндрические контейнеры двух типоразмеров: большие (N^o 1 и 2) и малые (N^o 3 и 4), выполненные из стали 12X18H10T; торцевые элементы контейнеров — дно и крышка — были плоскими. Размеры оболочек: наружный радиус $R_0 = 1,22$ и 0,1525 м, толщина $h_0 = 0,03$ и 0,004 м, длина $L \approx 5,5$ и $\approx 0,62$ м. Учитывая близость значений $h_0/R_0 (\approx 2,5$ и 2,6%) и $L/R_0 (\approx 4,5$ и 4,1), оболочки разномасштабных контейнеров можно считать геометрически подобными. Поэтому для сравнительного анализа результатов эксперимента различие размеров оболочек представляется несущественным.

Рис. 1. Схемы постановки опытов с контейнерами: 1 — крышка, 2 — оболочка, 3 — заряд ВВ, 4 — дно; римскими цифрами помечены секторы нагружения контейнеров

Таблица 1

Номер контейнера	$R_0,$ M	${h_0/R_0\over\%},$	$\sigma_{0,2},$ M Π a	т, кг	$\xi,$ %	Деформация	$v_0,$ M/c	$\varepsilon_{\max},$	$t_{\max},$ MKC	$\overset{arepsilon_{\Pi}}{\%}$
1	1,22	2,5	314	112,51	1,29	Окружная	$pprox 91^*$	$\approx 8,7^*$	$\approx 1900^{*}$	$7,\!9$
						Меридиональная	_	-0,3	800	0
2	1,22	2,5	314	77,80	0,89	Окружная	182	39,1	7300	37,5
						Меридиональная				-3,0
3	$0,\!1525$	2,6	315	$0,\!071$	0,39	Окружная	106	17,1	650	16,3
4	$0,\!1525$	2,6	315	0,071	0,39	— // —	107	18,5	675	16,9

Исходные данные опытов и кинематические параметры оболочек в среднем поперечном сечении

Примечание. *Расчетная оценка в плоскости центра взрыва, смещенной от датчика на ≈ 130 мм (см. сноску 3).

Исследовались следующие случаи заполнения контейнеров:

- воздухом (контейнер № 1),
- водой (контейнеры № 2 и 3),
- водой на 3/4 объема (контейнер N⁻ 4)¹.

В центре контейнера, установленного вертикально на деревянном щите на бетонированной площадке (N^o 1 и 2) или на деревянном столе (N^o 3 и 4), подрывали шаровой заряд из конденсированного взрывчатого вещества (ВВ). Детонацию инициировали в центре заряда. Все контейнеры подвергались однократному нагружению взрывом заряда из сплава тротила с гексогеном (ТГ): контейнеры № 1 и 2 — из ТГ 40/60 (цифры в маркировке указывают массовое содержание компонентов, плотность ВВ $\rho_{\rm BB} = 1720 \text{ кг/м}^3$, теплота взрыва Q = 4,93 МДж/кг), N° 3 и 4 — из ТГ 50/50 $(\rho_{\rm BB} = 1650 \text{ kr/m}^3, Q = 4,78 \text{ MДж/kr}).$ Поскольку для больших и малых контейнеров использовались ВВ разной мощности, для удобства сравнения результатов в табл. 1 указаны тротиловые эквиваленты масс зарядов, определенные по формулам, полученным на основе [8, с. 493, 575, 576] при условии энергетического подобия сравниваемых ВВ и равенства ударных импульсов давления:

при взрыве в воздухе (массой воздуха пренебрегаем)

$$m = m_x \sqrt{Q_x/Q},\tag{1}$$

при взрыве в воде (в акустическом приближении)

$$m = m_x Q_x / Q, \tag{2}$$

где m, Q (4,232 МДж/кг) — масса и теплота взрыва эквивалентного заряда тротила ($\rho_{\rm BB} = 1620 \text{ кг/m}^3$); m_x , Q_x — эти же параметры иного ВВ. Для сравнительного анализа эффективности взрыва удобно использовать такой параметр, как относительная масса ВВ:

$$\xi = m/M,\tag{3}$$

где $M \approx 8\pi\rho R_0^2 h_0$ — масса оболочки длиной $4R_0, \rho = 7800 \text{ кг/м}^3$ — плотность стали.

Для нагружения контейнеров N^o 3 и 4, различающихся степенью заполнения водой, использовались одинаковые заряды BB, причем контейнер N^o 3 считался контрольным.

Опыты проводили при нормальных условиях. Методами скоростной фотохронографии [9] или тензометрии регистрировали расширение оболочек $r(t) = R(t) - R_0$ в разных поперечных сечениях (t — время от начала процесса, R — текущее значение наружного радиуса) или относительную деформацию $\varepsilon(t) =$ $r(t)/R_0$; относительная погрешность данных не более 5 и 10% соответственно. При тензометрировании применяли проволочные бифилярные тензодатчики, кольцевые (см. [10]) и зигзаг-решетки (с базой $50 \div 100 \text{ мм})^2$. Кроме того, проводилась скоростная киносъемка контейнеров. После опытов определяли пластическую (остаточную) деформацию оболочек (относительная погрешность не более 0,2%) по разметке, выполненной заранее без повреждения их поверхности.

¹Материалы опытов с контейнерами N° 1 и 4 публикуются впервые, а с N° 2 и 3 приведены в [6].

²С помощью кольцевого тензодатчика и заигзагрешетки регистрировали соответственно окружную и меридиональную деформации. Бифилярная конструкция использовалась для компенсации электромагнитных наводок.

Результаты опытов. Исходные данные и некоторые результаты измерений приведены в табл. 1–3, где $\sigma_{0,2}$ — условный предел текучести стали, v_0 — максимальная начальная скорость расширения, ε_{\max} и t_{\max} — максимальная деформация и время ее достижения, ε_{π} — пластическая окружная деформация. На рис. 2 и 3 приведены фотографии контейнеров после нагружения, схемы их тензометрирования и эпюры окружной пластической деформации вдоль образующей оболочки. На рис. 4 даны типичные осциллограммы тензометрирования (на примере контейнера N^o 1), на рис. 5 зависимости $\varepsilon(t)$ в различных поперечных сечениях контейнера N^o 4 и в среднем поперечном сечении контрольного контейнера № 3 (пунктирная линия).

Рассмотрим полученные результаты.

1. У контейнера N^o 1 (с воздухом) в результате взрыва вначале раздулась оболочка в средней зоне, затем выпучились дно и крышка. Последняя оторвалась от оболочки и отлетела на ≈ 360 м в сторону. По данным киносьемки, она взлетела с вертикальной составляющей скорости ≈ 150 м/с, траектория полета была крутой и, по-видимому, высокой (по баллистическим оценкам, до ≈ 800 м). При падении крышки образовалась выбоина в грунте (супесь) глубиной до ≈ 1 м.

Видно (см. рис. 2, 4, табл. 1, 2), что оболочка расширилась в основном в сравнительно узкой ($\approx 2R_0$) средней зоне, ближайшей к центру взрыва³. При расширении сильно доминировала окружная деформация растяжения (до 8% в средней части оболочки), а меридиональная деформация была упругой (см. рис. 4, датчик 4): амплитуда до $\approx 0,3\%$; пластическая меридиональная деформация не обнаружена. По мере удаления от средней зоны окружная деформация резко убывает до нуля у краев оболочки, а на краях принимает отрицательные значения. Это локальное сужение краев оболочки обусловлено их стягиванием к оси при выпучивании торцов. Таким образом, в целом напряженно-деформированное состояние оболочки, исключая края, было близким к плоской (окружной) деформации.

2. Контейнеры № 2 и 3 (заполненные водой) приняли после взрыва бочкообразную форму (см. рис. 2, 3): их оболочки выпучились почти по всей длине (исключая края) с максимальной деформацией в среднем поперечном сечении, ближайшем к центру взрыва. Как и в опыте с воздухом, напряженнодеформированное состояние оболочек близко к плоской деформации с доминантой окружного растяжения (меридиональная деформация сжимающая, в среднем поперечном сечении ее абсолютное значение на порядок меньше окружной). Но в отличие от опыта с воздухом оболочка с водой деформируется в пульсирующем режиме (см. рис. 5, пунктирная линия). На удалении от среднего поперечного сечения пластическая окружная деформация плавно снижается до нуля у краев (см. рис. 2, 3). На краях она принимает отрицательные значения, обусловленные выпучиванием дна и крышки. Что касается пластической меридиональной деформации, то по мере удаления от среднего поперечного сечения она быстро исчезает [6].

Параметры деформации в различных поперечных сечениях контейнера N $^\circ1$ (см. рис. 2)							
<i>х</i> , м	Номер датчика	Направление регистрации	v_0 , м/с	$arepsilon_{ ext{max}}, \%$	t_{\max} , мкс	$\varepsilon_{\Pi},\%$	
$^{-1,2}$	1	Окружное	33	$1,\!8$	1200	$1,\!5$	
-0,8	2	— // —	44	3,3	1600	2,9	
-0,4	3	— <i>''</i> —	85	7,0	1800	6,6	
0	4	Меридиональное		0,3	800	0	
	5,6	Окружное	91	8,4	1900	7,5	
0,8	7	— // —	33	1,8	1200	1,5	
1,2	8	_ //	42	$1,\!3$	900	1,0	

Таблица 2

³Из-за неточной установки заряда ВВ центр взрыва оказался ниже среднего поперечного сечения на ≈ 130 мм. Соответственно смещен и максимум деформации (см. рис. 2).

Рис. 2. Внешний вид контейнеров N^o 1 и 2 после нагружения:

треугольниками показано расположение тензодатчиков (их координаты указаны в табл. 2 и 3); точки — эксперимент, линии — расчет

Рис. 3. Внешний вид контейнеров № 3 и 4 после нагружения:

треугольниками показано расположение тензодатчиков (их координаты указаны в табл. 3); точки — эксперимент, сплошные линии — расчет, штриховая линия — часть расчетной зависимости $\varepsilon_{\Pi}(x)$ в случае заполнения воздухом

Несмотря на существенно меньшее значение ξ , чем в опыте с воздухом, деформация оболочек с водой значительно больше и обширнее (на всей длине). Отметим, что окружная деформация оболочки контейнера N^o 2 асимметрична относительно среднего сечения: выше него деформация заметно меньше, чем внизу. Это обусловлено большей податливостью крышки, чем дна, деформация которого затруднена сопротивлением малоподатливого основания. Поэтому ударная волна (УВ) отражается от дна с меньшими потерями и генерирует здесь более эффективные нагрузки на оболочку, чем УВ, отраженная от крышки. У контейнера № 3, установленного на существенно более податливом основании, такая асимметрия деформации оболочки практически отсутствует. Крышка контейнера № 2 была сорвана взрывом и от-

Таблица З

Контейнер	Nº 1	N <u>°</u> 2	Контейнер	Nº 3	Nº 4	Контейнер	Nº 3	Nº 4
<i>х</i> , м	$\varepsilon_{\pi}, \%$		х, м	$\varepsilon_{\pi}, \%$		<i>х</i> , м	$\varepsilon_{\Pi}, \%$	
-2,75	-1,9	-0,5	-0,310	-1,2	-2,5	0,155	7,5	
-2,5	-0,5		-0,287	_	2,1	0,180		0
-2,4		5,8	-0,271	2,5	_	0,194	5,0	
-2,25	0,2		-0,265		3,9	0,200*		
-2	_	13,3	-0,233	4,8	_	0,216	_	0,4
-1,75	0,9		-0,227		5,4	0,223	3,1	
-1,6	_	19,6	$-0,200^{*}$		_	0,252		1,8
$-1,2^{*}$	$1,\!5$	25,8	-0,194	6,3	_	0,271	1,9	
$-0,8^{*}$	2,9	32,4	-0,189		6,7	0,274		4,8
-0,6	4,5		-0,155	8,1		0,288		4,2
$-0,4^{*}$	6,6	36,7	$-0,150^{*}$		8,9	0,300		2,7
-0,2	7,9		-0,116	10,6		0,301	-1,9	
0*	7,5	37,5	-0,113		11,8	0,310	-3,7	-1,2
0,2	$5,\!9$		$-0,100^{*}$		_	Прогиб	10 5	
0,4	4,4	33,3	-0,078	13,4	_	крышки, мм	12,5	7,5
0,6	2,9	_	-0,076	_	14,4			
$0,8^{*}$	1,5	26,2	-0,039	15,0				
1	$1,\!1$		-0,038		16,2			
$1,2^{*}$	1	17,4	0*	16,3	16,9			
1,6		11,3	0,036		15,7			
1,8	0,6		0,039	15,0				
2		6,8	0,072		11,5			
2,25	$0,\!3$		0,078	13,8				
2,4	0	2,7	0,100*			-		
2,5	-0,7		0,108		5,5	-		
2,6	$^{-1,4}$		0,116	10,7		-		
$2,\!65$		0	0,144		1,4	-		
2,75	$-3,\!6$	-4	$0,150^{*}$	—				

Результаты измерений пластических деформаций контейнеров

Примечание. * Координата тензодатчика.

Рис. 4. Типичные осциллограммы тензометрирования контейнера N° 1:

номера зависимостей $\varepsilon(t)$ (справа) соответствуют номерам датчиков на рис. 2 и в табл. 2

брошена на ≈ 20 м. Но в отличие от опыта с воздухом траектория полета крышки, повидимому, была невысокой, так как при ее падении в грунте образовалась неглубокая (до ≈ 0.2 м) выбоина.

Контейнер N^o 3, нагруженный при меньшем значении ξ , чем N^o 2, не разрушился.

3. Контейнер N° 4 (заполненный водой на 3/4 объема) не разрушился, но в отличие от контрольного (N° 3) принял несколько иную форму, напоминающую кувшин (см. рис. 3). Как и прежде, максимальная деформация оболочки имела место в среднем поперечном сечении (см. рис. 3, 4), но в зонах ниже и выше него форма ее резко различается. В нижней зоне, заполненной водой, деформация и ее распределение вдоль образующей оболочки практически совпадают с таковыми у контрольного контейнера. В верхней же зоне, частично заполненной водой, деформация резко (на длине $\approx R_0$, как

Рис. 5. Зависимости $\varepsilon(t)$, полученные по результатам тензометрирования контейнеров N° 3 (пунктирная кривая) и N° 4 (кривые 2–7):

номера 2–7 соответствуют номерам датчиков на рис. 3; датчик 1 показал отсутствие деформации; штриховая линия — расчет

у контейнера с воздухом) уменьшается до нуля в надводной части, но у самого края оболочка вновь заметно расширяется. У контрольного контейнера этот эффект отсутствует.

Данные опытов подтверждают и расширяют вывод [1, 4] о сильном влиянии заполняющей среды на поведение контейнера при взрыве. При этом обращают на себя внимание глубокие качественные отличия в поведении контейнера в зависимости от степени заполнения его водой. Прежде всего, это относится к деформации оболочки и ее форме. Нельзя также не отметить и существенную разницу в метательной способности заполняющей среды (см. выше о крышках контейнеров N² 1 и 2).

Для понимания сущности исследуемых физических процессов, их причинно-следственной связи были проведены численные расчеты.

Численные расчеты проводились в переменных Лагранжа по программам решения двумерных задач газо- и гидродинамики и механики твердого тела. Рассматривались осесимметричное взаимодействие продуктов детонации (ПД) сферического заряда ВВ со средой, заполняющей полый стальной цилиндр с плоскими торцами, и динамическое воздействие среды на его стенки. При этом использовали следующие уравнения состояния:

для BB — в форме Зубарева [11] с параметрами из [8, с. 99] при характеристиках соответствующих BB, для воздуха — табличное [12] при начальной плотности 1,29 кг/м 3 ,

для воды — в форме Ми — Грюнайзена [13] с параметрами n = 7,15, $\Gamma = 0,4$ при начальной плотности 1000 кг/м³ и начальной скорости звука 1500 м/с,

для стали — при плотности 7800 кг/м³ с использованием для упругой области деформирования коэффициента Пуассона $\nu = 0,3$ и модуля Юнга E = 210 ГПа, а для пластической области — с использованием $\nu = 0,5$ и уравнения деформирования стали в форме [14, с. 101] с учетом фактора упрочнения в виде [15, с. 138].

В [14] получено уравнение деформирования стали при плавном расширении стального кольца, однократно нагруженного импульсом изнутри (близкие к таким нагружение и расширение оболочки имели место в опыте с контейнером N^o 1, заполненным воздухом). В этом уравнении роль фактора упрочнения играет коэффициент k. В опытах с водой (контейнеры № 2 и 3) оболочки расширялись в пульсирующем режиме, обусловленном многократным импульсным нагружением. При этом они упрочнялись в результате каждой пульсации. Такое упрочнение исследовалось в [15], где получен интегральный фактор упрочнения $K(\varepsilon_0)$, зависящий от остаточной деформации оболочки ε_0 после пульсаций. Поэтому для контейнера с водой подходит уравнение [14] с фактором $K(\varepsilon_0)$ вместо k. Но использование $K(\varepsilon_0)$ вместо k делает уравнение [14] универсальным, подходящим для случаев как с водой, так и с воздухом, поскольку при отсутствии пульсаций (случай с воздухом) $\varepsilon_0 = 0$ и K(0) = k.

Расчеты для контейнера с воздухом (N° 1) проводили по программе «Д» [16], а для контейнеров с водой (N° 3 и 4) — по программам комплекса «Сигма» [17] с использованием уравнений движения оболочки в форме [18]. При этом, поскольку сжимаемость продуктов детонации и воздуха высока, их масса по сравнению с массой воды и контейнера мала, а деформация оболочки незначительна, контейнер N° 1 считался абсолютно жестким, а воздушная среда над водой в контейнере N° 4 была заменена вакуумом. Откольная прочность воды не учитывалась и считалось, что водная среда не теряет сплошности. Расчеты для контейнеров с водой проводили с использованием схемы мгновенной детонации BB и с учетом податливости оболочек и торцов. Эти допущения значительно упростили расчеты без существенного ущерба для интересующих нас результатов.

Рассмотрим результаты опытов и расчетов.

Контейнер № 1 (с воздухом). Ввиду цилиндрической симметрии, на рис. 6, а приведена исходная расчетная сетка в 1/4 продольного сечения системы «ВВ — воздух — контейнер».

Рис. 6. Расчетная сетка системы «BB — воздух — контейнер» в исходном состоянии (a), ее деформация в начале воздействия взрыва на оболочку (δ) и деформация в процессе дальнейшего разлета ПД (область II), сжатия вытесненного воздуха (области I и I') и распределения его тонким слоем по внутренней поверхности контейнера (a):

I и I' — воздух, II — ВВ, III — контейнер; 1-2-3-4-5 — граница «воздух — жесткая стенка»; на рисунке *б* стрелкой показано направление движения УВ к торцу Газодинамическое состояние среды в контейнере иллюстрировано расчетными сетками на рис. 6.

Детонация превращает ВВ в сферу из высокотемпературных пересжатых газообразных ПД и возбуждает в соседних слоях воздуха мощную сферическую ударную волну, расширяющуюся с начальной скоростью ≈ 9 км/с. Удаляясь от центра взрыва, она несколько слабеет в силу необратимых потерь энергии, и ее движение замедляется. Вслед за ней с некоторым отставанием расширяется сфера ПД.

При скорости ≈ 3 км/с УВ сначала достигает оболочки в среднем поперечном сечении, ближайшем к центру взрыва. Позже УВ достигает соседних сечений, более удаленных от центра взрыва, и делится на две симметричные части, расходящиеся вдоль оси к торцам (рис. 6, δ). При этом поверхности фронтов УВ, ограниченные по краям жесткой оболочкой, почти не меняются и УВ движутся с минимальными энергетическими потерями.

Действие взрыва на оболочку наиболее эффективно в ее среднем сечении, так как направлено по нормали к ней. Здесь поток ударного импульса через единицу поверхности можно оценить [8, с. 487–500] как

$$i_0 \sim \frac{m}{R_0^2} \sqrt{Q \left(1 + \frac{\rho_a R_0^3}{\rho_{\rm BB} R_{\rm BB}^3}\right)},$$
 (4)

где ρ_a — начальная плотность воздуха, $R_{\rm BB}$ — радиус заряда ВВ. После многократного отражения УВ от оболочки и приближающихся ПД воздух сильно сжимается (до $\approx 10^2$ раз), давление на оболочку достигает максимума (до ≈ 300 МПа) и она получает максимальную скорость v_0 .

На расстоянии x от среднего сечения оболочка испытывает косой удар, так как здесь направление действия ударных импульсов на оболочку отличается от нормального (см. рис. 1). При этом нормальная компонента $i_n(x)$ потока импульса $i_{\varphi}(x)$, действующего на оболочку под углом φ к нормали, равна [8, с. 499]

$$\boldsymbol{i}_n(x) = \boldsymbol{i}_{\varphi}(x)\cos^2\varphi, \qquad (5)$$

$$i_{\varphi}(x) \approx \frac{m}{R_{\varphi}^2} \sqrt{Q\left(1 + \frac{\rho_a R_{\varphi}^3}{\rho_{\rm BB} R_{\rm BB}^3}\right)},$$
 (6)

$$R_{\varphi} = R_0 \sqrt{1 + (x/R_0)^2}$$
(7)

— радиус фронта УВ,

$$\cos\varphi = [1 + (x/R_0)^2]^{-1/2}.$$
 (8)

Из-за сильной сжимаемости воздух и ПД способны к значительным перемещениям, о чем можно судить по искривлению радиальных линий расчетной сетки (ср. рис. $6, a, \delta$ и 6, a). Поэтому при косом ударе возле оболочки формируются газодинамические потоки, скользящие вдоль нее к торцам вслед за УВ. При этом в силу удаления от центра взрыва (7) ударный импульс давления на оболочку слабеет сам по себе (6), его нормальная составляющая тем более уменьшается (5), а касательная — увеличивается. Поэтому ударное воздействие на оболочку резко ослабевает, а интенсивность течения вдоль оболочки возрастает. Таким образом, возникает сильный двумерный эффект, характерный для взрыва в цилиндрическом контейнере: под влиянием жесткого ограничения оболочкой одномерное радиальное расширение ПД трансформируется в мощные радиальноосевые газодинамические потоки.

Эти потоки содержат более 90% энергии взрыва, в том числе ≈ 75% кинетической. Скорость головы потока (до ≈ 3 км/с) превышает скорость УВ ($\approx 2 \text{ км/c}$), и они оказывают на торец мощное ударное воздействие: сначала УВ — на оси (пик давления до ≈ 40 МПа), затем УВ вместе с догнавшим ее потоком — в углу возле оболочки (пик давления до ≈ 160 МПа). При этом ПД занимают почти всю полость контейнера и отделены от его стенок лишь тонким слоем сжатого воздуха (см. рис. 6, 6). Тем временем косой удар по оболочке приводит к возникновению вторичных волн давления в ПД. Они коллапсируют под углом к оси и формируют в ее окрестности «шнуровые» газовые струи (типа кумулятивных), устремленные к торцам и оказывающие на них наиболее мощное воздействие (пик давления в центре торца достигает ≈ 220 MПа). В опыте действие УВ, потоков и струй привело к выпучиванию торцов (по оценкам, на это потребовалось $\approx 0.25 \%$ энергии взрыва) и отрыву крышки от оболочки (отрыву дна помешало жесткое основание).

В результате разлета ПД давление в центральной части контейнера резко снижается (менее 5 МПа). В эту зону разгружаются отраженные УВ и волны давления, после чего волновые процессы затухают, давление в контей-

где

нере быстро падает и выравнивается по объему.

Таким образом, в целом можно считать, что оболочка испытывает ударное нагружение, близкое к однократному, после чего плавно расширяется по инерции. Под действием внутренних усилий расширение оболочки замедляется до остановки с переходом в затухающие радиальные колебания (см. рис. 4, датчики 1, 2, 5, 7, 8).

Рассмотрим характер распределения пластической окружной деформации оболочки вдоль образующей. Учитывая, что состояние оболочки близко к плоской деформации с сильной окружной доминантой, выделим в ней на расстоянии x от среднего сечения элементарное кольцо шириной dx (см. рис. 1). Площадь внутренней поверхности кольца $(h_0/R_0 \ll 1)$ —

$$dS = 2\pi R_0 (1 - h_0/R_0) dx \approx 2\pi R_0 \, dx, \quad (9)$$

его масса —

$$dM \approx \rho h_0 \, dS. \tag{10}$$

Работа пластического деформирования кольца —

$$dW(x) \approx h_0 dS \int_{0}^{\varepsilon_{\rm II}(x)} \sigma(\varepsilon) d\varepsilon, \qquad (11)$$

где $\sigma(\varepsilon)$ — окружное напряжение в кольце. Эта работа происходит за счет кинетической энергии кольца:

$$dU(x) \sim \frac{[\boldsymbol{i}_n(x)dS]^2}{2dM}.$$
 (12)

Если пренебречь упругой деформацией, то согласно [14] при плавном расширении стального кольца со скоростью, уменьшающейся от максимума до нуля,

$$\sigma(\varepsilon) = \sigma_s + \eta \dot{\varepsilon}_0(x) = \text{const} = \sigma(x), \quad (13)$$

где $\sigma_s = \sigma_{0,2} + \sigma_\eta = 564$ МПа — динамический предел текучести, $\sigma_{0,2} = 314$ МПа (см. табл. 1), $\sigma_\eta = 250$ МПа — составляющая, обусловленная динамической вязкостью $\eta \approx 0,06$ МПа · с, $\dot{\varepsilon}_0(x) = v_0(x)/R_0$ — начальная скорость деформации. Из табл. 2 следует, что $v_0(x) < v_0(0)$, поэтому и $\dot{\varepsilon}_0(x) < \dot{\varepsilon}_0(0)$. При этом $\dot{\varepsilon}_0(0) = v_0(0)/R_0 = 91/1,22 \approx 75 \text{ c}^{-1}, \eta \dot{\varepsilon}_0(0) \approx 0,06 \cdot 75 \approx$ 4,5 МПа. Очевидно, что при таких скоростях $\sigma_s \gg \eta \dot{\varepsilon}_0(0)$ и тем более $\sigma_s \gg \eta \dot{\varepsilon}_0(x)$. Следовательно, членом $\eta \dot{\varepsilon}_0(x)$ в (13) можно пренебречь. Таким образом, формула (11) принимает вид

$$dW(x) \approx \sigma_s \varepsilon_{\pi}(x) h_0 \, dS. \tag{14}$$

Из закона сохранения энергии с учетом формул (4), (5), (12), (14) следует

$$\frac{dW(x)}{dW(0)} = \frac{dU(x)}{dU(0)} \to \frac{\varepsilon_{\pi}(x)}{\varepsilon_{\pi}(0)} \approx \left[\frac{\boldsymbol{i}_n(x)}{\boldsymbol{i}_0}\right]^2.$$
(15)

Отсюда с учетом (4)–(8) получаем искомую формулу распределения $\varepsilon_{n}(x)$:

$$\varepsilon_{\pi}(x) \approx \varepsilon_{\pi}(0) \left\{ 1 + \frac{\rho_a R_0^3}{\rho_{BB} R_{BB}^3} \left[1 + \left(\frac{x}{R_0}\right)^2 \right]^{3/2} \right\} \right/ \\ \left/ \left\{ \left(1 + \frac{\rho_a R_0^3}{\rho_{BB} R_{BB}^3} \right) \left[1 + \left(\frac{x}{R_0}\right)^2 \right]^4 \right\}.$$
(16)

Значения $\varepsilon_{\rm n}(x)$, рассчитанные по формуле (16), хорошо согласуются с экспериментальными почти на всей длине оболочки, исключая края, стянутые к оси при выпучивании торцов (см. рис. 2). Это доказывает, что в опыте с контейнером, заполненным воздухом:

- эффективность импульсного нагружения оболочки в некотором ее поперечном сечении определяется не только удаленностью последнего от центра взрыва, но и сильной зависимостью нормальной компоненты ударного импульса от угла его действия на оболочку при косом ударе, которая обусловлена высокой сжимаемостью заполняющей среды и ее относительно малой массой (≈ 1% от массы контейнера);
- именно в резком ослаблении импульсного воздействия газовой среды на оболочку при косом ударе заключается причина локализации пластической деформации, главным образом, в сравнительно узкой средней зоне (на длине $\approx 2R_0$).

Оценим энергоемкость оболочки при пластической деформации:

$$W \approx 2\pi R_0 h_0 \iint_{x,\varepsilon} \sigma(\varepsilon) \, d\varepsilon \, dx. \tag{17}$$

При x = 0 согласно вышеизложенному $\sigma(\varepsilon) = \text{const} \approx 570$ МПа. Примем это значение для всей оболочки, пренебрегая влиянием $\dot{\varepsilon}_0(x)$. Численное интегрирование (методом трапеций) экспериментальной кривой

 $\varepsilon_{\rm n}(x)$, приведенной на рис. 2, с учетом (17) в интервале $-L/2 \leq x \leq +L/2$ дает $W \approx$ 16,1 МДж. При этом энергия взрыва Qm =4,232 · 112,51 \approx 476,1 МДж. Таким образом, отбор энергии взрыва оболочкой составил всего \approx 3,4%, в том числе \approx 2,3% (или \approx 68% от W) пришлось на среднюю зону оболочки в пределах $-R_0/2 \leq x \leq +R_0/2$. Еще меньше энергии взрыва было затрачено на деформирование дна и крышки (\approx 0,25%).

Из-за столь малого отбора энергии взрыва контейнером газы в нем содержат почти всю энергию взрыва (≈ 96%) и в силу высокой сжимаемости обладают значительной метательной способностью (в случае разрушения контейнера). Поэтому в опыте после отрыва крышки сжатые газы, расширяясь, эффективно воздействовали на нее в течение некоторого времени, сообщая ей часть своей энергии, и таким образом разогнали ее до значительной скорости.

Итак, при взрыве в контейнере с воздухом:

- основным фактором его импульсного нагружения являются ПД, обладающие всей энергией взрыва;
- оболочка подвергается практически однократному ударному воздействию и ее деформация локализуется в сравнительно узкой средней зоне (на длине ≈ 2R₀), что обусловлено высокой сжимаемостью заполняющей среды и ее крайне малой массой (≈ 1 % от массы контейнера);
- в силу вышеупомянутой причины отбор энергии взрыва оболочкой весьма низок (≈ 3 %) и большей частью (≈ 2 %) происходит в средней зоне оболочки;
- низкий отбор энергии взрыва оболочкой и высокая сжимаемость заполняющей среды обусловливают сильный двумерный эффект взрыва (переход УВ и газовых потоков за ее фронтом от сферической симметрии к цилиндрической) с наиболее мощным действием вдоль оси на торцы и с эффективной метательной способностью.

Контейнеры N° 2 и 3 (заполненные водой). Для определенности остановимся на контейнере N° 3. На рис. 7, а приведена исходная расчетная сетка в 1/4 продольного сечения системы «BB — вода — контейнер». Конечное состояние расчетной сетки системы приведено на рис. 7, 6.

Рис. 7. Расчетная сетка системы «ПД — вода — контейнер N^o 3» в момент окончания детонации BB (a) и через 815 мкс (b):

I — ПД, II — вода, III — оболочка, IV — крышка; радиальные линии на рисунке δ , оставшиеся прямыми, свидетельствуют, что характер нагружения контейнера был близок к секторному

Детонация превращает ВВ во взвешенный в воде высокотемпературный газовый пузырь из пересжатых ПД. Волна детонации, выйдя к воде, генерирует в ней мощную сферическую УВ, в которой сжатие воды первоначально достигает 60 %, а давление ≈ 10 ГПа. Начальная скорость УВ достигает ≈ 6 км/с, массовая скорость воды за ее фронтом ≈ 2 км/с. При этом к центру пузыря коллапсирует волна разрежения и пузырь динамично расширяется, импульсивно «расталкивая» окружающую воду и возбуждая в ней волну давления, бегущую вслед за первичной УВ. В дальнейшем расширение пузыря происходит в слабо пульсирующем режиме, вследствие циркуляции в нем волн давления, и, замедляясь, продолжается в течение всего периода нагружения контейнера, оказывая значительное квазистатическое давление на воду и через нее на стенки контейнера. К моменту подхода первичной УВ к оболочке пузырь передает в воду до 80 % энергии взрыва, в том числе до 40 % кинетической, и становится, так сказать, «холодным» (относительно первоначального состояния).

Расширяясь coсредней скоростью ≈ 2 км/с и увлекая за собой воду со средней скоростью $\approx 10^2$ м/с, первичная УВ быстро слабеет в силу необратимых потерь энергии и на подходе к оболочке амплитуда давления уже не превышает 360 МПа. При таких давлениях сжимаемость воды ничтожна, что в замкнутом объеме повышает эффективность передачи контейнеру энергии взрыва. Поэтому оболочка испытывает жесткий удар, существенно усиленный напором динамично расширяющегося пузыря. При этом за время $\approx 2h_0/c_0$ (c_0 — скорость звука), т. е. значительно быстрее, чем при заполнении воздухом, сообщается максимальная радиальная ей скорость v_0 , сначала в ближайшем к центру взрыва среднем поперечном сечении. Здесь интенсивность потока ударного импульса (в акустическом приближении) [8, с. 577]

$$i_0 \sim \frac{m^{2/3}}{R_0}.$$
 (18)

После удара по оболочке к ее оси коллапсирует отраженная УВ, резко тормозящая встречный сравнительно низкоскоростной поток воды, увлеченной ранее первичной УВ. В результате оболочка опережает близлежащие слои воды и давление на границе «вода — оболочка» резко уменьшается и даже меняет знак. Это приводит к кавитации в воде и отрыву от нее оболочки⁴, которая продолжает расширяться по инерции, замедляясь под действием внутренних усилий. Так реализуется первая пульсация расширения оболочки (см. рис. 5, пунктирная линия). При этом в силу ничтожной сжимаемости воды увеличение объема при расширении контейнера приводит к резкому ослаблению волн давления в ней.

Тем временем первичная УВ в результате взаимодействия с оболочкой делится на две волны, симметрично расходящиеся к торцам. При этом отраженная УВ огибает пузырь и формирует на его полюсах вторичные волны давления. Они движутся вдоль оси вслед за первичными УВ, которые уже приближаются к торцам оболочки. В этих же направлениях вдоль оболочки, нагружая ее (наряду с напором пузыря), движутся волны давления, образованные при косом ударе первичной УВ. Отражаясь от торцов, первичные УВ оказывают давление до ≈ 300 МПа (существенно большее, чем на примыкающие участки оболочки) и вызывают их выпучивание, а при недостаточной прочности — и отрыв (как у контейнера N^o 2).

В результате интерференции УВ, отраженных от торцов, с ослабленными встречными волнами давления на оси образуются вторичные УВ, устремленные к пузырю. Одновременно в средней части контейнера кавитационные полости в воде коллапсируют, генерируя новые волны давления. Усиленные напором пузыря, они взаимодействуют со вторичными УВ и повторно нагружают оболочку (вторая пульсация ее расширения). Затем в результате взаимодействия вторичных УВ и волн давления возбуждаются новые волны давления, снова нагружающие (наряду с напором пузыря) стенки контейнера (третья пульсация) и т. д. Вследствие резкого ослабления волновых процессов и демпфирующего влияния воды, пульсации оболочки относительно быстро затухают (быстрее, чем в опыте с воздухом).

Из-за малой сжимаемости воды ее перетекание при косых ударах по оболочке крайне незначительно, что подтверждается отсутствием искривления радиальных линий расчетной сетки на рис. 7,6 (ср. с рис. 6,6). Это обстоятельство, а также то, что основными факторами нагрузки являются первичная УВ и расширяющийся пузырь ПД, логически приводят к идее «секторного» нагружения контейнера из центра: его стенки нагружаются импульсами воды, заключенной в объемах разных, обращенных к ним, тел вращения (вокруг оси контейнера) секторов с вершинами в центре взрыва (см. рис. 1): к оболочке относится сектор I, к крышке — II, к дну — III⁵. Отметим, что наряду с осевой симметрией эти секторы симметричны и относительно среднего поперечного сечения.

Рассмотрим на основе секторной схемы нагружения характер распределения пластической деформации оболочки вдоль ее образующей. Поскольку, как и в предыдущем случае, состояние оболочки близко к плоской деформации с сильной окружной доминантой, выделим

⁴Это характерно при взрывном нагружении тонкой стальной преграды в воде (см., например, [7, с. 560– 561]).

⁵Разумеется, это упрощенная схема, так как на самом деле волновые процессы в разных секторах, естественно, взаимосвязаны. Но, по-видимому, связь эта достаточно слаба.

в ней элементарное кольцо шириной dx. Формулы, определяющие его параметры и энергоемкость, аналогичны формулам (9)–(12). Учитывая малые сжимаемость и перетекание воды, предположим, что закон Паскаля остается справедливым и для происходящих процессов. Поэтому в отличие от (5) в опыте с воздухом на границе «вода — оболочка»

$$\boldsymbol{i}_n(x) = \boldsymbol{i}_{\varphi}(x) \sim \frac{m^{2/3}}{R_{\varphi}},\tag{19}$$

где R_{φ} по-прежнему определяется по формуле (7). Иными словами, эффективность потока импульса не зависит от угла его действия и определяется только удаленностью сечения оболочки от центра взрыва.

Зависимость $\sigma(\varepsilon)$ в (11) также будет отличаться от (13). Это обусловлено пульсирующим характером деформации оболочки: в результате каждой пульсации она несколько упрочняется, поэтому (за пределами упругости)

$$\sigma(\varepsilon) \approx \sigma_s + \eta \dot{\varepsilon}_0(x) + \int_0^{\varepsilon_{\Pi}(x)} k(\varepsilon) \, d\varepsilon,$$

где $k(\varepsilon) = k_0 \exp(-a\sqrt{\varepsilon})$ — фактор упрочнения, $k_0 = 1400 \text{ МПа}, a = 1,2 \text{ [15]}$. Здесь, как и ранее, по сравнению с σ_s (= 564 МПа) членом $\eta \dot{\varepsilon}_0(x)$ можно пренебречь. В самом деле, $\dot{\varepsilon}_0(x) < \dot{\varepsilon}_0(0)$, а $\eta \dot{\varepsilon}_0(0) = \eta v_0(0)/R_0 \approx 0.06 \cdot 106/0.1525 \approx$ 42 МПа, что составляет $\approx 7\%$ от σ_s . Итак, пренебрегая упругой деформацией и влиянием $\dot{\varepsilon}_0(x)$, примем в первом приближении

$$\sigma(\varepsilon) \approx \sigma_s + \int_{0}^{\varepsilon_{\Pi}(x)} k(\varepsilon) \, d\varepsilon.$$
 (20)

Интегрируя (11), с учетом (9) и (20) получаем

$$dW(x) \approx 2\pi R_0 h_0 \mathcal{E}(x) \, dx, \qquad (21)$$

где

$$\mathcal{E}(x) = \left(\sigma_s + \frac{2k_0}{a^2}\right)\varepsilon_{\pi}(x) - \frac{12k_0}{a^4} \left\{1 - \left[1 + a\sqrt{\varepsilon_{\pi}(x)} + \frac{12k_0}{a^4}\right]\right\}$$

$$+\frac{a^2}{3}\varepsilon_{\pi}(x)\Big]\exp[-a\sqrt{\varepsilon_{\pi}(x)}]\Big\}.$$
 (22)

Из закона сохранения энергии с учетом (12), (18), (19) и (21) следует

$$\frac{dW(x)}{dW(0)} = \frac{dU(x)}{dU(0)} \to \frac{\mathcal{E}(x)}{\mathcal{E}(0)} \approx$$

$$\approx \left[\frac{i_n(x)}{i_0}\right]^2 = \left[1 + \left(\frac{x}{R_0}\right)^2\right]^{-1}, \quad (23)$$

откуда получаем уравнение, определяющее в неявном виде функцию $\varepsilon_{n}(x)$:

$$\mathcal{E}(x) \approx \mathcal{E}(0) \left[1 + \left(\frac{x}{R_0}\right)^2 \right]^{-1},$$
 (24)

где $\mathcal{E}(0)$ — значение $\mathcal{E}(x)$ при x = 0.

Зависимость $\varepsilon_{n}(x)$, полученная при численном решении (24), хорошо согласуется с данными опытов в верхней части контейнера N^o 2 (см. рис. 2) и почти на всей длине оболочки контейнера N^o 3 (см. рис. 3)⁶, исключая края, стянутые к оси при выпучивании торцов. Это доказывает, что:

- секторная схема внутреннего взрывного нагружения контейнера с водой близка к реальности;
- эффективность импульсного нагружения оболочки в некотором ее сечении определяется только удаленностью последнего от центра взрыва и практически не зависит от угла действия импульса при косом ударе; это явление есть следствие малой сжимаемости среды, передающей действие взрыва на элементы контейнера, и обусловливает менее сильную, чем при заполнении воздухом, зависимость $\varepsilon_{\rm n}(x)$.

Оценим энергоемкость оболочки W при пластической деформации. Численное интегрирование экспериментальной зависимости $\varepsilon_{\rm n}(x)$, приведенной на рис. 3, с учетом (17) и (20) в интервале $-L/2 \leq x \leq +L/2$ дает $W \approx$ 0,1233 МДж. При $Qm = 4,232 \cdot 0,071 \approx$ 0,3 МДж отбор энергии взрыва оболочкой составил $\approx 41\%$ (это практически вся кинетическая энергия воды), в том числе $\approx 34\%$ (или $\approx 83\%$ от W) пришлось на среднюю зону оболочки в пределах $-R_0 \leq x \leq +R_0$. Таким образом, очевидно, что при заполнении контейнера

 $^{^{6}}$ Причина асимметрии контейнера N^{\circ} 2 и симметрии контейнера N^{\circ} 3 относительно среднего сечения после взрыва объяснена выше.

водой ресурс оболочки используется более полно, чем при заполнении воздухом.

Из-за ничтожной сжимаемости и практически полной затраты кинетической энергии на деформацию контейнера вода обладает относительно низкой (по сравнению с газами) метательной способностью в случае разрушения контейнера (ср. вышеупомянутые данные об оторванных взрывами крышках контейнеров N^o 1 и 2).

Таким образом, при взрыве в контейнере с водой:

- основными факторами импульсного нагружения его стенок являются УВ в малосжимаемой воде, поглощающей до 80% энергии взрыва, и волны давления в воде, генерированные динамично расширяющимся пузырем ПД;
- характер нагружения контейнера близок к секторному: оболочка и торцы нагружаются импульсами воды, заключенной в объемах разных, обращенных к ним, тел вращения (вокруг оси контейнера) секторов с вершинами в центре взрыва;
- оболочка подвергается многократному постепенно слабеющему ударному воздействию и деформируется по всей длине в пульсирующем режиме;
- отбор энергии взрыва контейнером $(\approx 40\%)$ на порядок выше, чем при заполнении воздухом $(\approx 3\%)$, из-за низкой сжимаемости и обусловленной этим существенно большей эффективности воды как передающего звена в системе «ПД вода контейнер».

Контейнер N° 4 (заполненный водой на 3/4 объема). Динамику и последовательность расширения оболочки контейнера в разных поперечных сечениях можно проследить по зависимостям $\varepsilon(t)$ на рис. 5. Здесь расчетная зависимость (штриховая линия) удовлетворительно согласуется с экспериментальной (кривая 4). Поэтому можно полагать, что результаты расчета достаточно адекватно отражают характер, последовательность и взаимосвязь реальных процессов, которые иллюстрирует серия состояний расчетных сеток системы «BB — вода — контейнер» на рис. 8, 9.

После детонации ВВ расширение оболочки началось, естественно, в ближайшем к центру

взрыва среднем поперечном сечении. Деформация здесь была наибольшей. Эпюры $\varepsilon_{\pi}(x)$ у данного и контрольного контейнеров (см. рис. 3) резко различаются в надводной части и весьма близки в подводной, где оба контейнера деформированы практически одинаково. В этой части контейнера N^o 4 значения $\varepsilon_{\pi}(x)$, рассчитанные по формуле (24), также хорошо согласуются с экспериментальными. По мере удаления от среднего сечения к крышке это согласие постепенно ухудшается: значения, полученные в опытах, занимают промежуточное положение между расчетными для случаев заполнения воздухом и водой. В надводной области деформация контейнера совершенно иная: на уровне воды и несколько выше деформация отсутствует (это показал и датчик 1), а возле крышки резко возрастает до некоторого максимума.

По нашему мнению, деформация подводной части контейнера служит прямым экспериментальным подтверждением справедливости вышеизложенной концепции секторного нагружения контейнера с водой. Но в отличие от контрольного случая, где секторы симметричны относительно среднего поперечного сечения (см. рис. 1, контейнер N^o 3), у контейнера N^o 4 они асимметричны, так как секторы I и II ограничены более низким уровнем воды. Иными словами, в данном случае секторному нагружению подвергается только подводная часть контейнера. При этом часть оболочки нагружается по вышеописанной схеме: импульсом воды, заключенной в объеме тела вращения сектора I, а дно — импульсом воды, находящейся в объеме конуса III. В конусе II при отражении УВ от границы «вода — воздух» и далее по мере расширения и всплытия пузыря ПД вздымается динамичный куполообразный столб воды («гидромолот»), устремленный к крышке со средней скоростью ≈ 200 м/с (см. рис. 8,б).

Вначале «гидромолот» бьет в центр крышки (см. рис. 9, a), а при дальнейшем подъеме воды в процессе ее торможения и радиального растекания на крышке область удара распространяется на всю крышку. О силе удара «гидромолотом» можно судить по прогибу крышки, который вполне соизмерим с таковым у контрольного контейнера (см. табл. 3). Очевидно, в данном случае решающее значение имеют высокая (по сравнению с воздухом) плотность жидкости и ее несжимаемость, опре-

Рис. 8. Расчетная сетка системы «ПД — вода — контейнер N° 4» в момент окончания детонации ВВ (a) и через 800 мкс (b):

I — ПД, II и II' — вода, III — вакуум, IV — оболочка, V — крышка, VI — дно; *б* — происходит расширение оболочки и прогиб дна; «гидромолот» приблизился к крышке

деляющие массу «гидромолота» и (наряду со скоростью) импульс и эффективность (жесткость) удара. В действительности, как известно, при выходе УВ на свободную поверхность воды происходит диспергирование последней. Поэтому наружный слой «гидромолота» дробится и насыщается воздухом (в расчете этот эффект отсутствует, так как водная среда считается сплошной и нет воздуха). Априори ясно, что диспергированный слой воды должен смягчать импульсное воздействие «гидромолота» на контейнер. Однако определение значимости этого фактора требует специального исследования.

В это время надводная часть оболочки практически не нагружается, так как контактирует со скользящими по ней тангенциальными потоками воды. Радиальные и тангенциальные потоки «встречаются» в зоне сопряжения крышки с оболочкой. В результате их взаимодействия здесь образуется область повышенного импульсного давления (до $\approx 10^2$ МПа), и происходит удар по краю оболочки, вызывающий ее локальное выпучивание (см. рис. 9, δ). В дальнейшем вода отражается от стенок, в образовавшийся просвет выбрасываются ПД из всплывшего пузыря и гидродинамические процессы в контейнере затухают.

Важно отметить, что в данном случае заряд ВВ был полностью погружен в воду. Случаи другого расположения ВВ и соответствующая реакция контейнера нами не исследовались.

Итак, поведение стального цилиндрического контейнера после детонации в его центре сферического заряда конденсированного BB существенно зависит от степени заполнения его водой. При этом основное значение имеют сжимаемость заполняющей среды и соотношение ее массы с массой деформируемых стенок контейнера. В частности:

 При заполнении контейнера воздухом основным фактором его нагружения являются ПД. Воздух и ПД — сильносжимаемая газовая среда, содержащая практически всю энергию взрыва и обладающая значительной метательной способностью (в случае разрушения контейнера). Оболочка контейнера испытывает локальное расширение в относительно узкой средней части, причем отбор энергии контейнером незначителен вследствие сильной сжимаемости среды и ее сравнительно малой массы. Эти свойства, наряду с

Рис. 9. Расчетная сетка системы «ПД — вода — контейнер N° 4» через 900 (a) и 1700 мкс (δ) после окончания детонации ВВ:

a — «гидромолот» надвигается на крышку и растекается по ней, происходит дальнейший рост деформации оболочки (в средней зоне) и дна; δ — окончание эффективного воздействия взрыва на контейнер, от удара «гидромолотом» выпучилась крышка, в результате радиального удара по краю оболочки произошло ее локальное выпучивание

массивностью и жесткостью оболочки контейнера, обусловливают сильный двумерный эффект — трансформацию радиального разлета ПД в радиально-осевые течения с мощным кумулятивным воздействием на торцы контейнера.

- При заполнении контейнера водой основными факторами его нагружения являются УВ и вторичные волны давления в воде (мало- или несжимаемой среде), а также динамично расширяющийся пузырь ПД. Пузырь взвешен в воде и воздействует на контейнер волнами давления через воду, поглощающую практически всю энергию взрыва. Ее кинетическая часть расходуется на деформацию контейнера. Несжимаемость и значительная масса воды обусловливают секторный характер нагружения и существенно больший, чем при заполнении воздухом, отбор энергии взрыва контейнером (до 40%). Оболочка контейнера деформируется по всей длине, максимально — в средней зоне, в результате контейнер принимает бочкообразную форму.
- При частичном заполнении контейнера водой происходит его неравномерное нагружение. Если заряд ВВ погружен в воду, подводная часть контейнера подвергается секторному УВ-нагружению, как и в предыдущем случае, со всеми вытекающими последствиями. В надводной части крышка и сопряженный с ней край оболочки испытывают ударное нагружение «гидромолотом». В результате контейнер принимает кувшинообразную форму.

Авторы глубоко признательны Л. Д. Рябеву и Ф. М. Митенкову — организаторам и руководителям работ по вышеупомянутой программе. Во многом благодаря им программа была реализована, ибо потребовала значительных усилий крупных коллективов.

ЛИТЕРАТУРА

- Proctor J. F. Containment of explosions in water-filled right-circular cylinders // Exp. Mech. 1970. V. 10, N 11. P. 458–466.
- 2. Иванов А. Г., Минеев В. Н., Цыпкин В. И. и др. Пластичность, разрушение и масштабный эффект при взрывном нагружении сталь-

ных труб // Физика горения и взрыва. 1974. Nº 4. C. 603–607.

- Русак В. Н., Рыжанский В. А., Иванов А. Γ., Заикин С. Н. Взрывостойкость сварных титановых оболочек // Физика горения и взрыва. 1994. Т. 30, № 4. С. 148–156.
 - Рыжанский В. А., Иванов А. Г., Жуков В. В., Минеев В. Н. Взрывостойкость цилиндрической части корпуса быстрого реактора // Атом. энергия. 1995. Т. 79, вып. 3. С. 178–188.
 - Рыжанский В. А., Иванов А. Г., Жуков В. В. Методика оценки взрывостойкости и несущей способности корпуса быстрого реактора при запроектной аварии // Атом. энергия. 1994. Т. 76, вып. 2. С. 87–93.
 - Физика взрыва / Ф. А. Баум, Л. П. Орленко, К. П. Станюкович и др. М.: Наука, 1975.
 - Дубовик А. С. Фотографическая регистрация быстропротекающих процессов. М.: Наука, 1975. С. 63–68.
- Шитов А. Т., Минеев В. Н., Клещевников О. А. и др. Проволочный датчик для непрерывной регистрации больших деформаций при динамическом нагружении конструкций // Физика горения и взрыва. 1976. Т. 2, № 2. С. 304–307.
- Жерноклетов М. В., Зубарев В. Н., Телегин Γ. С. Изэнтропы расширения продуктов детонации конденсированных ВВ // ПМТФ. 1969. № 4. С. 127–132.
- 12. **Кузнецов Н. М.** Газодинамические функции и ударные адиабаты воздуха при высоких температурах. М.: Машиностроение, 1965.
- Цыпкин В. И., Клецевников О. А., Шитов А. Т. и др. Масштабный эффект при взрывном разрушении сосудов, заполненных водой // Атом. энергия. 1975. Т. 38, вып. 4. С. 251–252.

 Цыпкин В. И., Иванов А. Г., Минеев В. Н. и др. Влияние масштаба, геометрии и заполняющей среды на прочность стальных сосудов при внутреннем импульсном нагружении // Атом. энергия. 1976. Т. 41, вып. 5. С. 303–308.

- Зельдович Я. Б., Райзер Ю. П. Физика ударных волн и высокотемпературных гидродинамических явлений. М.: Наука, 1966. С. 543.
- Иванов А. Г., Кашаев Ю. Г., Коршунов А. И. и др. Влияние предыстории нагружения на механические свойства стали при одноосном растяжении // ПМТФ. 1982. № 6. С. 98–103.
- 15. Иванов А. Г., Коршунов А. И., Подурец А. М. и др. Упрочнение стали в результате динамического одноосного растяжения // ПМТФ. 1987. № 6. С. 133–140.
- 16. Анучина Н. Н., Бабенко К. И., Годунов С. К. и др. Теоретические основы и конструирование численных алгоритмов задач математической физики / Под ред. К. И. Бабенко. М.: Наука, 1979. С. 175–200.
- 17. Баталова М. В., Бахрах С. М., Винокуров О. А. и др. Комплекс «Сигма» для расчета задач двумерной газодинамики // Тр. Всесоюз. семинара по численным методам механики. Новосибирск, 1969. С. 283–288.
- Бахрах С. М., Певницкий А. В., Соловьев В. П., Симонов Г. П. Динамика тонкостенных камер, окруженных жидкостью, при импульсном нагружении // Вопросы атомной науки и техники. Сер. Методики и программы численного решения задач математической физики. 1984. Вып. 1(15). С. 37–40.

Поступила в редакцию 11/V 1999 г., в окончательном варианте — 11/I 2000 г.