УДК 541.11:547.235.5:547.772.1

ТЕРМОХИМИЧЕСКИЕ И ЭНЕРГЕТИЧЕСКИЕ ХАРАКТЕРИСТИКИ АЛКОКСИ-NNO-АЗОКСИПРОИЗВОДНЫХ ПИРАЗОЛА И НИТРОПИРАЗОЛОВ

И. Н. Зюзин¹, А. И. Казаков¹, Д. Б. Лемперт¹, И. А. Вацадзе², Л. С. Курочкина¹, А. В. Набатова¹

¹Институт проблем химической физики РАН, 142432 Черноголовка, lempert@icp.ac.ru ²Институт органической химии им. Н. Д. Зелинского РАН, 119991 Москва

Экспериментально измерены стандартные энтальпии образования соединений 1-(2,2-бис(метокси-NNO-азокси)этил)пиразола, 1-(2,2-бис(метокси-NNO-азокси)этил)-3-нитропиразола и 1-(2,2-бис(метокси-NNO-азокси)этил)-4-нитропиразола — 273.6 ± 6.7, 231.0 ± 3.3 и 213.8 ± 7.9 кДж/моль соответственно. На основании этих значений энтальпии определен вклад замены атома H у атомов N в гетероциклах на группу CH₂CH(N₂O₂Me)₂ (151.9 кДж/моль). Расчетным путем установлено, что 1-(2,2-бис(метокси-NNO-азокси)этильные производные пиразола, 3- и 4-нитропиразола, 3,4-динитропиразола, 3,4,5-тринитропиразола, а также биспроизводное бисфуразано[3,4-b;3',4'-е]пиперазина уступают октогену в качестве газифицирующих компонентов смесевых твердых ракетных топлив в составах с активным связующим без металла. Некоторый интерес может представлять только производное 3,4-динитропиразола, которое при невысоком содержании в паре с перхлоратом аммония обеспечивает удельный импульс 249 с в композициях топлива, не содержащих алюминия.

Ключевые слова: 1-(2,2-бис(метокси-NNO-азокси)этил)-пиразол, 1-(2,2-бис(метокси-NNO-азокси)этил)-3-нитропиразол, 1-(2,2-бис(метокси-NNO-азокси)этил)-4-нитропиразол, алкокси-NNO-азоксисоединения, пиразолы, нитропиразолы, энтальпия сгорания, энтальпия образования, смесевые твердые ракетные топлива, удельный импульс.

DOI 10.15372/FGV20190310

ВВЕДЕНИЕ

Идея создания молекул, являющихся комбинацией пиразольного цикла с различными заместителями, широко применяется для придания энергоемким соединениям требуемого комплекса свойств (элементный состав, энтальпия образования, плотность, термическая стабильность, совместимость с другими компонентами, чувствительность к механическим воздействиям и т. д.). При этом зачастую удается не только улучшить конкретное желаемое свойство компонента, но и сбалансировать другие эксплуатационные свойства, что может расширить область применения энергоемкого соединения. И это несмотря на то, что улучшение одной из характеристик часто ведет к ухудшению других. Например, увеличение содержания водорода в энергоемком соединении практически неизбежно уменьшает плотность и кислородный баланс, но одновременно, как правило, улучшает термическую стабильность и снижает чувствительность к механическим воздействиям.

Многие из нитропиразолов предложены в качестве компонентов энергетических материалов, преимущественно взрывчатых веществ. Но для компонентов другого типа энергетических материалов — смесевых твердых ракетных топлив (СТРТ) — желательно более высокое содержание водорода при сохранении высокой энтальпии образования (ΔH_f^0).

Энергетические характеристики нитропиразолов повышаются по мере увеличения числа нитрогрупп в пиразольном цикле, но одновременно растет кислотность этих NH-

Работа выполнена на средства ИПХФ РАН (тема «Создание высокоэнергетических материалов...») при финансовой поддержке Президиума РАН (программа 56 «Фундаментальные основы прорывных технологий...», тема «Разработка твердых топлив и горючих для газо-генераторов...») с использованием оборудования Аналитического центра коллективного пользования ИПХФ РАН.

[©] Зюзин И. Н., Казаков А. И., Лемперт Д. Б., Вацадзе И. А., Курочкина Л. С., Набатова А. В., 2019.

Рис. 1. Структурные формулы соединений 1–3

гетероциклов [1]. Для улучшения совместимости нитропиразолов с другими компонентами СТРТ кислый NH-протон в молекулах полинитропиразолов должен быть заменен каким-либо углеводородным заместителем $(CH_3, C_2H_5$ и др.), но такой прием тут же снижает энергетические характеристики компонента. Для минимизации энергетических потерь желательно иметь в заместителе энергетические группы (NO₂, NNO₂, ONO₂, N₃ и др.). В качестве такого заместителя была предложена 2,2-бис(метокси-NNO-азокси)этильная группа — CH₂CH(N₂O₂Me)₂. Недавно эта идея была реализована, наряду с другими соединениями удалось синтезировать 1-(2,2-бис(метокси-NNO-азокси)этил)пиразол (соединение 1 на рис. 1), 1-(2,2-бис(метокси-NNO-азокси)этил)-3-нитропиразол (2) и 1-(2,2-бис(метокси-NNOазокси)этил)-4-нитропиразол (3) [2].

Интерес к 2,2-бис(метокси-NNO-азокси)этильной группе [3–7], принадлежащей к относительно малоизвестному классу алкокси-NNO-азоксисоединений, обусловлен превосходством последних над нитраминами по энтальпии образования при одинаковом элементном составе [8] в сочетании с высокой термической [9] и химической стабильностью [10–13].

В настоящей работе поставлены следующие задачи: определить экспериментально стандартные энтальпии образования ΔH_f^0 соединений 1–3, найти энергетический эквивалент вклада 2,2-бис(метокси-NNO-азокси)этильной группы в величину ΔH_f^0 замещенных нитропиразолов, а также оценить энергетическую эффективность соединений 1–3 и некоторых других известных и гипотетических соединений сходного строения в качестве потенциальных компонентов СТРТ.

1. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Соединения 1–3 (см. рис. 1) синтезировали по известным методикам [2] и очищали двухтрехкратной перекристаллизацией. Из двух возможных полиморфных модификаций соединения 3, отличающихся температурой плавления (124 и 148 °C) и ИК-спектрами [2], выбрали α -модификацию с температурой плавления 124 °С. Предварительный контроль чистоты проводили методом тонкослойной хроматографии на пластинах Merck Kieselgel 60 F_{254} , добиваясь отсутствия детектируемых примесей даже при 20-кратном избытке нанесенного вещества. Окончательно чистоту соединений 1–3 проверяли с помощью элементного анализа (прибор PerkinElmer Series II 2400) и спектроскопии ЯМР ¹Н (500 МГц, Bruker Avance III 500) с ручной обработкой электронных копий спектров. Массовая доля примесей в финишных образцах соединений 1–3 не превышала 0.5 %. Дополнительным критерием высокой чистоты образцов могут служить узкие диапазоны температуры плавления (менее $1 \,^{\circ}\text{C}$), определенные в открытых капиллярах при скорости нагрева $0.3 \div 0.7$ °C/мин.

Калориметрическое измерение теплоты сгорания соединений 1–3 выполняли на прецизионном автоматическом калориметре сжигания АБК-1В конструкции лаборатории термодинамики Института химической физики РАН [14]. Проводили по пять сжиганий каждого из соединений 1–3. Условия экспериментов и обсчет полученных результатов приведены в работе [15].

Энергия сгорания соединения в условиях бомбы постоянного объема рассчитывалась согласно уравнению

$$-\Delta U_{\rm B} = (Q - q_{\rm HNO_3} - q_t - q_{ba} - q_{ign})M/m_s,$$

Таблица 1

Эпері ил сі орапия соединений 1-5								
№ п/п	m_s, Γ	Q	q_t	$q_{\rm HNO_3}$	q_{ba}	$-\Delta U_{\mathbb{R}}, \ \Pi \mathbf{w} / \mathbf{r}$	$-\Delta U^0$ к Π ж/моль	
		Дж				<u> </u>		
Соединение 1, $W = 5465.6\pm$					0.1 Дж/К			
1	0.14982	10657.0	48.0	29.9	7642.3	19495.2	4750.7	
2	0.14981	10661.5	49.1	34.2	7643.2	19485.1	4751.5	
3	0.14983	10625.8	51.3	28.7	7609.3	19491.7	4753.1	
4	0.15010	10693.6	43.8	29.9	7684.1	19452.5	4743.5	
5	0.14778	10472.5	52.5	29.9	7500.6	19443.4	4741.3	
Соединение 2, $W = 5436.6 \pm 0.6 \mathrm{Дж/K}$								
1	0.15036	23064.2	37.8	46.2	20584.5	15826.6	4559.7	
2	0.15016	23178.4	38.7	46.4	20699.2	15837.2	4562.8	
3	0.13861	22925.5	37.9	50.9	20628.8	15814.5	4555.9	
4	0.15018	23134.9	37.2	50.3	20657.0	15810.0	4554.9	
5	0.15041	23033.7	36.4	46.4	20556.7	15811.4	4555.3	
Соединение 3, $W = 5436.6 \pm 0.6 \mbox{Дж/K}$								
1	0.24954	26510.7	24.7	54.9	22489.9	15729.8	4533.1	
2	0.24908	26562.3	38.8	52.0	22534.3	15742.7	4536.8	
3	0.24886	26 549.2	27.5	53.5	22523.6	15786.9	4549.6	
4	0.24987	26 553.6	31.8	51.6	22517.6	15752.8	4539.7	
5	0.24889	26514.4	30.7	55.3	22 487.6	15 769.0	4544.4	

Энергия сгорания соединений 1-3

где m_s — масса вещества, приведенная к вакууму; $Q = W\Delta T$ — общее количество тепла, выделившегося в результате опыта; W — тепловое значение калориметра; ΔT — подъем температуры с учетом поправки на теплообмен; $q_{\rm HNO_3}$ — поправка на образование азотной кислоты в продуктах реакции сгорания; q_t — энергия сгорания хлопчатобумажной нити; q_{ign} энергия поджига; q_{ba} — поправка на теплоту сгорания бензойной кислоты; $\Delta U_{\rm B}$ — теплота сгорания вещества в условиях бомбы; M — молекулярная масса соединения.

В табл. 1 представлены результаты по энергии сгорания соединений 1–3.

Энергия сгорания в стандартных условиях $-\Delta U^0$ соединений 1–3 рассчитана с учетом поправки Уошберна [16] — 4748.0 ± 6.6, 4567.0 ± 4.3 и 4550.0 ± 8.1 кДж/моль соответственно.

Погрешность полученных результатов вычисляли по формуле $\sigma = k[(\sum x^2)/N(N-1)]^{0.5}$ для 95%-го доверительного интервала, где x — отклонение каждого результата от среднеарифметического, N — число опытов для соединений 1–3, N = 5, k — соответствующий коэффициент Стьюдента.

Уравнение реакции сгорания соединения 1 имеет вид

$$C_7 H_{12} N_6 O_4(\kappa p) + 8 O_2(r) =$$

= 7CO₂(r) + 6H₂O(ж) + 3N₂(r), (1)

для соединений 2, 3 —

$$C_7H_{11}N_7O_6(\kappa p) + 6.75O_2(r) =$$

= 7CO₂(r) + 5.5H₂O(ж) + 3.5N₂(r). (2)

Рис. 2. Структурные формулы соединений 4 и 5

Рис. 3. Изодесмические реакции

2. ОБСУЖДЕНИЕ ПОЛУЧЕННЫХ РЕЗУЛЬТАТОВ

2.1. Экспериментальная стандартная энтальпия образования

На основании средних значений ΔU^0 в соответствии с реакциями (1), (2) и с учетом поправок на работу расширения газов в бомбе ΔnRT (4.9 кДж/моль для соединения 1 и 9.2 кДж/моль для соединений 2, 3) по уравнениям сгорания вычислены стандартные энтальпии сгорания $\Delta H_{\rm c}^0$ и образования $\Delta H_f^0:$ для соединения 1

 $-4\,743.1\pm 6.6$ и 273.6 \pm 6.6 кДж/моль; для соединения 2

 $-4\,557.8\pm4.3$ и 231.1 ±4.3 кДж/моль; для соединения 3

 -4540.7 ± 8.1 и 214.0 ± 8.1 кДж/моль. Использовали известные значения ΔH_f^0 [17]: ΔH_f^0 (CO₂(г)) = -393.514 кДж/моль; ΔH_f^0 (H₂O(ж)) = -285.830 кДж/моль.

Таблица 2

7	~	
	значения станлартной энтальний	
	ла тепли етапдартней епталет	
	•	•

		$\Delta H_f^0,$ кДж/м				
Соединение			расчет	$\Delta \Delta H_{c}^{0}$	$\Delta H^0_{f_{j \to \text{kcn}}} - \Delta H^0_f \text{ (HetNH)}$	
	эксперимент	по схеме (3), (4)	$\Delta H_f^0 \; ({ m HetNH}) \; + \;$ + 151.8 × число групп	j		
1	273.6 ± 6.6	279.7		-6.1	155.2	
2	231.1 ± 4.3	238.3		-7.2	154.1	
3	214.0 ± 8.1	229.3		-15.3	146.2	
4		281.6	271.9			
5		254.4	244.7		_	
9			694			

 $\Delta\Delta H_f^0$ — разность между экспериментальным и рассчитанным по схеме (3), (4) значениями ΔH_f^0 ; $\Delta H_{f_{jscn}}^0 - \Delta H_f^0$ (HetNH) — вклад при замене атома H в HetNH на группу CH₂CH(N₂O₂CH₃)₂.

Полученные данные могут быть полезны для вычисления вклада в энтальпию образования 2,2-бис(метокси-NNO-азокси)этильного фрагмента, связанного с атомом азота пиразольного кольца. Парциальные вклады групп R наиболее просто и надежно вычисляют путем прямого сравнения энтальпий образования незамещенных соединений (R = H) и их замещенных аналогов (R = исследуемая группа или фрагмент) [8, 18–20]. В последнее время этот метод часто оформляется в виде метода изодесмических реакций. Например, ранее для расчета ΔH_f^0 соединений 2 и 3 (см. рис. 1), а также синтезированного в той же работе 3,4динитропроизводного (соединение 4 на рис. 2) и гипотетического 3,4,5-тринитропроизводного (соединение 5) были предложены изодесмические реакции (3), (4) (рис. 3) предположительно с нулевыми энтальпиями [2].

Другими словами, было принято допущение о равенстве парциальных вкладов при замене атомов Н при атомах азота пиразольных циклов и одного из атомов Н в молекуле воды в твердом состоянии на 2,2-бис(метокси-NNOазокси)этильную группу. Экспериментальные данные по ΔH_f^0 соединения 6 отсутствуют. Поэтому принято второе допущение — о равенстве ΔH_f^0 соединения 6 среднеарифметическому значению ΔH_f^0 соединений 7 и 8, т. е. о близости теплового эффекта реакции (4) (см. рис. 3) к нулю. Для расчетов по схеме (3), (4) (см. рис. 3) использовали следующие

Рис. 4. Структурная формула соединения 9

экспериментальные значения ΔH_f^0 , кДж/моль: H₂O(кр) — 291.6 [17]; П — 118.4 [18]; З-НП — 77.0 [18]; 4-НП — 67.8 [19]; З,4-ДНП — 120.1 [19]; ТНП — 92.9 [20]; 7 — 333.6 ± 1.7 [8]; 8 — 73.0 ± 1.3 [8].

Сравнение полученных в данной работе экспериментальных значений ΔH_f^0 соединений 1–3 с результатами вычисления по изодесмическим реакциям (3), (4) (табл. 2) показывает их достаточно хорошее соответствие (расчет дает завышение всего лишь на $6 \div 15$ кДж/моль). Тем не менее, осредненный вклад при замене атома Н в HetNH на группу CH₂CH(N₂O₂CH₃)₂ (см. табл. 2), равный 151.8 кДж/моль, может быть рекомендован не только для расчета значений ΔH_f^0 новых нитропиразолов с 2,2-бис(метокси-NNOазокси)этильной группой у атома азота пиразольного кольца, но и для расчета других со-

Соединение	Брутто-формула	$\Delta H_{f}^{0},\kappa$ Дж/кг	$ρ$, $γ/cm^3$	$\Omega_{\rm CO}$	α	N, %	Н, %
1	$\mathrm{C_7H_{12}N_6O_4}$	1069	1.28	-59.0	0.2	34.4	4.95
2	$\mathrm{C_7H_{11}N_7O_6}$	799	1.44^{*}	-36.0	0.31	30.5	3.83
3	$\mathrm{C_7H_{11}N_7O_6}$	740	1.53^{*}	-36.0	0.31	30.5	3.83
4	$\mathrm{C_7H_{10}N_8O_8}$	842	1.58^{*}	-19.2	0.42	33.5	3.0
5	$\mathrm{C_{7}H_{9}N_{9}O_{10}}$	670	1.65^{**}	-6.3	0.54	33.2	2.4
9~[6]	$\rm C_{12}H_{18}N_{14}O_{10}$	1 340	1.55^{*}	-34.0	0.30	37.8	3.50
Октоген	$C_4H_8N_8O_8$	295	1.900	0	0.67	37.8	2.7

Параметры соединений 1–5, 9 для термодинамических расчетов СТРТ

*Значения плотности при комнатной температуре получены делением d (100 K) [2, 6] на 1.035 [2]. **Оценка плотности пиразола 5 получена аппроксимацией плотностей пиразолов 2–4. $\Omega_{\rm CO}$ — кислородный баланс с окислением углерода до СО, для соединений с брутто-формулой $C_aH_bF_cN_dO_e - \Omega_{\rm CO} = [e - a - (b - c)/2] \cdot 1600/M$, где M — молекулярная масса; α — кислородный коэффициент, для соединений с брутто-формулой $C_aH_bF_cN_dO_e - \alpha = (e + c/2)/(2a + b/2)$.

единений с этой группой у атома азота. С помощью этого подхода уточнены результаты расчета ΔH_f^0 соединений 4, 5 и вычислено значение ΔH_f^0 соединения 9 (рис. 4) — бис(метокси-NNO-азокси)этильного производного другого высокоэнтальпийного гетероцикла — бисфуразано[3,4-*b*;3',4'-*e*]пиперазина [6] (см. табл. 2).

2.2. Энергетические возможности соединений 1-5, 9 в качестве потенциальных компонентов СТРТ

Пиразолы 1-4 — высокоплавкие кристаллы с невысоким кислородным балансом. Поэтому одно из немногих их применений в качестве компонентов СТРТ — газифицирующие добавки, причем наибольший эффект может быть достигнут в составах СТРТ без металлического горючего. В одной из лучших по энергетике композиций такого типа на базе активного связующего (C_{18.96}H_{34.64}N_{19.16}O_{29.32}; $\Delta H_f^0 =$ -757 кДж/кг; $\rho = 1.49$ г/см³ [21]) и перхлората аммония избыточно высокий кислородный баланс компенсируется большим количеством октогена (до $65 \div 70$ %). Для того чтобы оценить возможность замены этого опасного взрывчатого вещества в таких составах на 2,2-бис(метокси-NNO-азокси)этильные производные гетероциклов 1-5, 9, с помощью программы TERRA [22] были рассчитаны значе-

ния удельного импульса I_{sp} (при давлении в камере сгорания и на срезе сопла 40 и 1 атм соответственно). Композиции сравнивали по величине так называемого эффективного импульса для третьей ступени $I_{ef}(3) = I_{sp} + 25(\rho - \rho)$ 1.7) [23], где ρ — плотность композиции. Для расчета брали рецептуры, содержащие 19 ± 0.15 (об.) % активного связующего и смесь перхлората аммония и компонентов 1-5, 9 или октогена. Для объективного сравнения энергетического потенциала исследуемых компонентов сравнивать их нужно при равных объемных долях связующего. В зависимости от плотности газифицирующего компонента (соединения 1–5, 9 или октоген) и его количества доля активного связующего по объему 19 % соответствует $15 \div 20$ % по массе. Параметры газифицирующих компонентов, принятые для термодинамических расчетов СТРТ, приведены в табл. 3.

Если сравнивать соединения 1-5, 9 с октогеном, то все они хотя и превосходят октоген по ΔH_f^0 , но уступают ему по кислородному балансу $\Omega_{\rm CO}$ (см. табл. 3) и особенно по плотности. На рис. 5 представлены полученные данные. Видно, что с ростом кислородного баланса $\Omega_{\rm CO}$ компонента растут значения как I_{sp} , так и $I_{ef}(3)$, но октоген обеспечивает все же более высокие значения I_{sp} и $I_{ef}(3)$. Оптимальное содержание перхлората аммония, при котором достигается максимум импульсов I_{sp} и $I_{ef}(3)$,

Таблица 3

Рис. 5. Удельный и эффективный импульсы композиций, содержащих 19 ± 0.15 (об.) % активного связующего, газифицирующий компонент (1–5, 9 или октоген) и перхлорат аммония, в зависимости от содержания последнего в составе

уменьшается с ростом $\Omega_{\rm CO}$ добавки, что вполне ожидаемо. При этом видно, что выигрыш октогена по величине $I_{ef}(3)$ заметно выше, чем по величине I_{sp} , что вытекает из существенно более высокой плотности октогена.

Из реально существующих газифицирующих добавок 1–4 и 9 некоторый интерес представляет пиразол 4 с двумя нитрогруппами. Состав с компонентом 4 оптимален при содержании добавки 34 % ($I_{ef}(3) = 249.1 \text{ кгс} \cdot \text{с/кг}$) и уступает 6 кгс · с/кг оптимизированному составу на основе октогена ($I_{ef}(3) = 255.2 \text{ кгс} \cdot \text{с/кг}$). Но такой выигрыш октоген имеет при его очень высоком массовом содержании (≈ 67 %) в СТРТ, что весьма опасно. При снижении же добавки до 35 % и ниже (что резко снижает чувствительность и вероятность перехода горения в детонацию) пиразол 4 уже имеет преимущество над октогеном.

Для нас несколько неожиданным оказалось, что соединение 9 уступает по эффективности мононитропиразолам 2 и 3, хотя энтальпия образования существенно превосходит не только их, но и остальные компоненты из табл. 3. И это почти при одинаковом кислородном балансе компонентов 2, 3 и 9. Дело в том, что удельный импульс оптимизированных композиций СТРТ зависит от многих параметров, в первую очередь, конечно, от энтальпии образования и кислородного баланса, но и массовое содержание азота и водорода играет большую роль: повышение доли водорода увеличивает удельный импульс, а повышение доли азота при прочих равных условиях — снижает. Доля азота в компоненте 9 существенно выше, чем в компонентах 2 и 3 (37.8 против 30.5 %), а водорода — меньше (3.5 против 4.95 %). Этим и объясняется установленное явление (на первый взгляд, аномальное), что компонент 9 уступает (пусть и немного) по эффективности компонентам 2 и 3, несмотря на его существенно более высокую энтальпию ΔH_f^0 .

ЗАКЛЮЧЕНИЕ

Ha основании полученных экспериментально значений стандартной энтальпии образования 1-(2,2-бис(метокси-NNO-азокси)этил)пиразола, 1-(2,2-бис(метокси-NNOазокси)этил)-3-нитропиразола И 1-(2,2-бис (метокси-NNO-азокси)этил)-4-нитропиразола (соответственно 273.6 \pm 6.7, 231.0 \pm 3.3 и 213.8 ± 7.9 кДж/моль) определен вклад замены атома H у атомов N в гетероциклах на группу CH₂CH(N₂O₂Me)₂ (151.9 кДж/моль). С помощью этой величины оценена энтальпия образования нескольких известных и гипотетических соединений.

Расчетным путем установлено, что 1-(2,2-бис(метокси-NNO-азокси)этильные производные пиразола, 3- и 4-нитропиразола, 3,4динитропиразола, 3,4,5-тринитропиразола, а также биспроизводное бисфуразано[3,4-*b*;3',4'*e*]пиперазина уступают октогену в качестве газифицирующих компонентов СТРТ в составах с активным связующим без металла. Некоторый интерес может представлять только производное 3,4-динитропиразола, который при невысоком содержании обеспечивает для безметалльной композиции СТРТ удельный импульс 249 кгс · с/кг.

ЛИТЕРАТУРА

- Dalinger I. L., Vatsadze I. A., Shkineva T. K., Popova G. P., Shevelev S. A. The specific reactivity of 3,4,5-trinitro-1H-pyrazole // Mendeleev Commun. — 2010. — V. 20, N 5. — P. 253–254.
- Зюзин И. Н., Далингер И. Л., Супоницкий К. Ю. N-[2,2-Бис(метокси-NNO-азокси)этил]пиразолы // Химия гетероцикл. соединений. — 2017. — Т. 53, № 6-7. — С. 702–709.
- 3. Зюзин И. Н., Головина Н. И., Лемперт Д. Б., Нечипоренко Г. Н., Шилов Γ. В. 1,1-Ди(метокси-NNO-азокси)этен. Синтез и рентгеноструктурное исследование // Изв. АН. Сер. хим. — 2008. — № 3. — С. 619–624.
- 4. Зюзин И. Н., Лемперт Д. Б. Реакция 1,1-ди(метокси-NNO-азокси)этена с нитроформом с образованием 1,1-ди(метокси-NNO-азокси)-3,3,3-тринитропропана // Изв. АН. Сер. хим. — 2009. — № 10. — С. 2108–2109.
- 5. Зюзин И. Н., Головина Н. И., Лемперт Д. Б., Шилов Γ. В. 2,2-Ди(метокси-NNOазокси)-3-этоксипропан-1-ол. Синтез и рентгеноструктурное исследование // Изв. АН. Сер. хим. — 2010. — № 10. — С. 1875–1879.
- Zyuzin I. N., Suponitsky K. Yu., Sheremetev A. B. 2,2-bis(methoxy-NNO-azoxy)ethyl derivatives of 4,8-dihydro-bis-furazano[3,4-b:3'4'e]pyrazine: The synthesis and X-ray investigation // J. Heterocycl. Chem. — 2012. — V. 49, N 3. — P. 561–565.
- Зюзин И. Н. Азидопроизводные геминальных бис(алкокси-NNO-азокси)соединений // Журн. орган. химии. — 2015. — Т. 51, № 2. — С. 187– 191.
- Кирпичев Е. П., Зюзин И. Н., Авдонин В. В., Рубцов Ю. И., Лемперт Д. Б. Стандартные энтальпии образования алкокси-NNOазокси соединений // Журн. физ. химии. — 2006. — Т. 80, № 9. — С. 1543–1546.
- Зюзин И. Н., Лемперт Д. Б., Нечипоренко Г. Н. Кинетика термического разложения N-алкил-N'-метоксидиазен-N-оксидов в газовой фазе // Изв. АН СССР. Сер. хим. — 1988. — № 7. — С. 1506–1509.
- 10. Зюзин И. Н., Лемперт Д. Б. Кинетика и возможные механизмы щелочного гидролиза алкокси-NNO-азокси соединений // Журн. общ. химии. — 2010. — Т. 80, № 9. — С. 1473–1475.
- 11. Зюзин И. Н., Лемперт Д. Б. Кинетика гидролиза метокси-NNO-азоксиметана в сильных кислотах // Кинетика и катализ. — 2011. — Т. 52, № 1. — С. 19–27.
- 12. Зюзин И. Н., Лемперт Д. Б. Кинетика гидролиза геминальных алкокси-NNO-азокси соединений в сернокислой среде // Журн. общ. химии. — 2012. — Т. 82, № 6. — С. 947–951.

- Зюзин И. Н., Лемперт Д. Б. Реакционная способность алкокси-NNO-азокси соединений по отношению к гидразингидрату и неорганическим восстановителям // Журн. общ. химии. 2014. Т. 84, № 5. С. 738–740.
- 14. Иноземцев Я. О., Воробьев А. Б., Иноземцев А. В., Матюшин Ю. Н. Калориметрия энергоемких соединений // Горение и взрыв. — 2014. — Т. 7, № 7. — С. 260–270.
- Казаков А. И., Дашко Д. В., Набатова А. В., Степанов А. И., Лемперт Д. Б. Термохимические и энергетические характеристики DNTF и DNFF // Физика горения и взрыва. — 2018.— Т. 54, № 2. — С. 27–38.
- Experimental Thermochemistry. V. 1: Measurement of Heats of Reaction / F. D. Rossini (Ed.). New York: Interscience Publ. Inc., 1956.
- Термическиеконстанты веществ / под ред. акад. В. П. Глушко. — М.: Изд-во АН СССР, 1965.
- Kostikova L. M., Miroshnichenko E. A., Matyushin Y. N., Vorobev A. B., Inozemtcev J. O. Enthalpy characteristics of mononitroderivatives heterocyclic compounds // Pyrotechnics: Basic Principles, Technology, Application: 33rd Int. Annu. Conf. of ICT. — Karlsruhe, FRG, 2002. — P. 86.1–8.
- Lebedev V. P., Matyushin Y. N., Inozemtcev Y. O., Dalinger I. L., Shevelev S. A., Fomenkov I. V. Thermochemical and explosive properties of nitropyrazoles // Energetic Materials; Production, Processing and Characterization: 29th Int. Annu. Conf. of ICT. — Karlsruhe, FRG, 1998. — P. 180.1–13.
- Конькова Т. С., Мирошниченко Е. А., Воробьев А. Б., Матюшин Ю. Н., Шкинева Т. К., Далингер И. Л. Энтальпии образования нитропроизводных диазолов // Изв. АН. Сер. хим. 2016. № 11. С. 2612–2617.
- Lempert D., Nechiporenko G., Manelis G. Energetic characteristics of solid composite propellants and ways of energy increasing // Centr. Eur. J. Energ. Mater. — 2006. — V. 3, N 4. — P. 73–80.
- Трусов Б. Г. Программная система TERRA для моделирования фазовых и химических равновесий // XIV Междунар. конф. по химической термодинамике. — СПб., 2002. — С. 483.
- 23. Павловец Г., Цуцуран В. Физикохимические свойства порохов и ракетных топлив. — М.: Изд-во Министерства обороны, 2009.

Поступила в редакцию 06.04.2018. После доработки 27.04.2018. Принята к публикации 23.05.2018.