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Изучение распространения в пространстве и времени парниковых газов, а также оценка потоков с
поверхности Земли этих газов с помощью системы усвоения данных представляет собой актуальную
задачу мониторинга состояния окружающей среды. Одним из подходов к оценке потоков парниковых
газов является подход, основанный на предположении, что потоки постоянны в заданной подобласти и
на заданном временном интервале (порядка недели). Это обусловлено как необходимостью эффективной
реализации алгоритма, так и свойствами используемых в таких задачах данных наблюдений.

Современные задачи оценки потоков парниковых газов с поверхности Земли имеют большую раз-
мерность, поэтому обычно рассматривается вариант, в котором оцениваемой переменной являются по-
токи, а модель переноса и диффузии входит в оператор наблюдения. При этом возникает проблема
использования больших окон усвоения, в пределах которых оцениваются значения потоков на несколь-
ких временных интервалах.

В работе рассматривается алгоритм оценки потоков по данным наблюдений из заданного временного
интервала. Алгоритм является вариантом алгоритма ансамблевого сглаживания, широко применяемого
в таких задачах. Показано, что при использовании окна усвоения, в котором происходит оценка значений
потоков для нескольких временных интервалов, алгоритм может становиться неустойчивым, при этом
нарушается условие наблюдаемости.
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The study of the spread of greenhouse gases in space and time, as well as the assessment of fluxes from
the Earth’s surface of these gases using a data assimilation system is an urgent task of monitoring the state
of the environment. One of the approaches to estimating greenhouse gas fluxes is an approach based on the
assumption that fluxes are constant in a given subdomain and over a given time interval (on the order of a
week). This is due to both the need for an effective implementation of the algorithm and the properties of the
observational data used in such problems.

Modern problems of estimating greenhouse gas fluxes from the Earth’s surface have a large dimension,
therefore, a variant is usually considered in which the estimated variable is fluxes, and the transport and
diffusion model is included in the observation operator. At the same time, there is a problem of using large
assimilation windows, within which the flow values are estimated at several time intervals.
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The paper considers an algorithm for estimating fluxes based on observations from a given time interval.
The algorithm is a variant of the ensemble smoothing algorithm, widely used in such problems. It is shown
that when using the assimilation window, in which the flow values are estimated for several time intervals, the
algorithm can become unstable, while the observability condition is violated.

Keywords: data assimilation, greenhouse gases fluxes, ensemble Kalman smoother.

1. Введение

Современное исследование окружающей среды включает в себя моделирование про-
цессов с привлечением математических моделей прогноза погоды и климата, а также
моделей распространения примеси в атмосфере. Оценка состояния окружающей сре-
ды по данным наблюдений является одной из наиболее актуальных задач в настоящее
время. Такая оценка производится на основе систем усвоения данных. Под усвоением
данных будем понимать совместный учет данных наблюдений и математической модели
для наиболее точной оценки пространственно-временного распределения исследуемых
величин [15,18].

С точки зрения математической постановки задачи усвоения данных существуют ва-
риационный подход и подход, основанный на теории оценивания (фильтр Калмана, ал-
горитмы сглаживания [15, 18]). В настоящей статье рассматривается второй подход к
задаче усвоения данных.

В случае, когда рассматриваются линейная модель и линейный оператор наблюдений
и имеются данные наблюдений на заданном временном интервале, задача оптимальной
оценки в конце этого интервала называется задачей фильтрации. Решением этой задачи
является фильтр Калмана [13]. Если оптимальная оценка ищется в заданном временном
интервале, такая задача называется задачей сглаживания [13]. При условии линейно-
сти модели прогноза и оператора наблюдений эта задача эквивалентна задаче усвоения
данных в вариационной постановке (4DVAR) [13,18].

В работе [8] было предложено применение метода Монте-Карло для решения задач
фильтрации и сглаживания (так называемые алгоритмы ансамблевой фильтрации и ан-
самблевого сглаживания). В этих алгоритмах используется выборка (ансамбль) прогно-
зов и наблюдений для аппроксимации ковариационных матриц [8]. В [8] предлагается ал-
горитм, называемый ансамблевым сглаживанием Калмана, в котором оценка осуществ-
ляется последовательно по мере поступления данных, как в фильтре Калмана, но при
этом оцениваются значения из некоторого временного интервала.

Изучение распространения в пространстве и времени парниковых газов, а также оцен-
ка потоков с поверхности Земли этих газов представляет собой одну из актуальных задач
мониторинга состояния окружающей среды. Для решения этой задачи принято исполь-
зовать системы усвоения данных [5].

Современные задачи оценки потоков парниковых газов с поверхности Земли имеют
большую размерность, поэтому обычно рассматривается вариант, в котором оцениваемой
переменной являются потоки, а модель переноса и диффузии входит в оператор наблю-
дения. Следуя [6, 18], будем называть такой подход к оценке потоков задачей обратного
моделирования. Задача обратного моделирования является более общей по отношению
к задаче усвоения данных и состоит в поиске оптимальной оценки искомой величины
по данным наблюдений, при этом предполагается, что известна модель, связывающая
наблюдаемые и оцениваемые переменные. В качестве примера можно выделить серию
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работ, проводимых международным коллективом авторов [9–12]. В этих работах оцени-
ваемой переменной является поток парникового газа CO2 с поверхности Земли, при этом
используются спутниковые данные наблюдений о концентрации парниковых газов. Про-
водится разбиение поверхности Земли на участки равной площади (1000 км на 1000 км)
и предполагается, что требуется оценить среднее по подобласти значение потока. Кро-
ме того, оценивается среднее за заданный временной промежуток (8 дней) значение.
Оценка значений средних по подобластям потоков по данным наблюдений для задан-
ного временного интервала и прогнозу производится по стандартной формуле фильтра
Калмана [13]. Для оценки значений на одном временном промежутке используются дан-
ные как из этого промежутка, так и нескольких последующих. Поэтому фактически при
этом реализуется ансамблевое сглаживание Калмана [8].

Для получения оптимальной оценки в алгоритмах ансамблевого сглаживания Кал-
мана и ансамблевого фильтра Калмана существенно как можно более точное задание
среднеквадратических ошибок наблюдений, а также других параметров, таких как на-
личие систематической ошибки, что свойственно спутниковым данным. Кроме того, для
достижения высокой точности оценки требуется знание первого приближения (априор-
ной информации), что в случае задачи оценки потоков является отдельной проблемой.
Важным при оценке потоков парниковых газов в процедуре усвоения, основанной на
ансамблевом сглаживании, является выбор окна усвоения. Окном усвоения называется
промежуток времени, в пределах которого используются данные наблюдений для вы-
числения оценки. В [5] рассматривается подход к задаче оценки потоков, основанный на
вариационных принципах. При этом отмечается, что на устойчивость алгоритма влияет
так называемая “матрица информации”. Ее вид зависит от оператора наблюдений, кото-
рый, в свою очередь, зависит от величины окна усвоения. В теории оценивания также
рассматривается матрица информации. Невырожденность этой матрицы является усло-
вием наблюдаемости системы и, в свою очередь, устойчивости процедуры оптимальной
фильтрации [1, 13]. Поскольку задача оценки потоков решается для больших времен-
ных промежутков, в пределах года и более, то использование большого окна усвоения
применяется в большинстве таких работ. При этом оцениваются средние значения за
некоторый временной период, например за месяц [6] или 8 дней [9–11]. Между тем, ис-
пользование в этих задачах окон усвоения, в пределах которых оцениваются значения
потоков для нескольких временных интервалов, может приводить к неустойчивости ал-
горитма. В [16] отмечается, что увеличение окна усвоения не улучшает результат оценки
потоков парниковых газов по спутниковым данным.

Таким образом, требуется проведение исследования свойств алгоритма ансамблевого
сглаживания Калмана, в частности, выполнения условия наблюдаемости. Этой пробле-
ме посвящена настоящая статья. В статье рассматривается алгоритм оценки потоков по
данным наблюдений из заданного временного интервала. Алгоритм является вариантом
алгоритма ансамблевого сглаживания, широко применяемого в таких задачах. Пока-
зано, что при рассмотрении алгоритма, в котором оцениваются значения потоков для
нескольких временных интервалов (среднее значение для этих интервалов), нарушается
свойство наблюдаемости, при этом алгоритм может становиться неустойчивым. Приво-
дятся результаты модельных численных экспериментов с одномерной моделью переноса
и диффузии пассивной примеси. При реализации алгоритма применяется эффектив-
ный локальный алгоритм, использующий разработанные ранее ансамблевые алгоритмы
фильтрации и сглаживания [3,4].

Проведенное в настоящей работе исследование свойств метода ансамблевого сгла-
живания планируется в дальнейшем использовать при разработке системы усвоения
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данных, основанной на ансамблевом подходе, для оценки потоков парниковых газов с
поверхности Земли.

В пункте 2 статьи содержится описание алгоритма ансамблевого сглаживания Кал-
мана. Пункт 3 посвящен алгоритму, в котором оцениваемой переменной является поток
парниковых газов с поверхности Земли, а модель распространения парникового газа в
пространстве и времени входит в оператор наблюдений. Пункт 4 посвящен исследова-
нию проблемы наблюдаемости в задаче оценки потоков парниковых газов, использующей
ансамблевое сглаживание, в п. 5 приводятся результаты модельных численных экспери-
ментов. Пункт 6 содержит заключительные выводы.

2. Алгоритм ансамблевого сглаживания Калмана

Предположим, что “истинное” состояние интересующего нас процесса может быть
представлено в виде динамико-стохастической системы

z>k+1 = Ak(z
>
k ) + η>k .

Предположим также, что известны данные наблюдений y0k, представляющие собой век-
тор размерности d:

y0k = Hk(z
>
k ) + ε0k.

В этих формулах z>k — вектор размерности p, k — номер шага по времени модели,
η>k и ε0k — случайные ошибки прогноза и наблюдений соответственно, Ak — оператор
модели, Hk — оператор, переводящий прогнозируемые переменные в наблюдаемые (опе-
ратор наблюдений), ε0k и η>k — гауссовские случайные величины: E

[
ε0k
(
ε0k
)> ]

= Rk,
E
[
η>k
(
η>k
)> ]

= Qk. Символом E обозначена операция теоретико-вероятностного осред-
нения.

При оценке значения вектора z по данным наблюдений в один момент времени для
решения задачи может быть применен фильтр Калмана [13]. Формулы фильтра Калмана
имеют вид

zfk+1 = Akz
f
k , (1)

zak = zfk +Kk

[
yk0 −Hkz

f
k

]
, (2)

Kk = P fkH
>
k

(
HkP

f
kH
>
k +Rk

)−1
.

В этих формулах zfk , z
a
k — значения прогноза и анализа соответственно. Отметим, что

в задачах усвоения данных прогнозом называется шаг алгоритма (1) (при этом при-
нято использовать индекс “f ”), анализом — шаг алгоритма (2) (при этом используется
индекс “a”). P fk , Rk — матрицы ковариаций ошибок прогноза и наблюдений соответствен-
но [13].

Если для вычисления матрицы P fk используется ансамбль прогнозов, получим алго-
ритм, называемый ансамблевым фильтром Калмана [8]. При этом ансамблем называют
выборку, состоящую из прогнозов по заданному набору случайных полей. Если рассмат-
ривается задача оценки значения на некотором временном интервале, применяется ал-
горитм ансамблевого сглаживания. Одним из вариантов реализации этого алгоритма по
данным за несколько моментов времени является алгоритм ансамблевого сглаживания
Калмана [8].
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Алгоритм ансамблевого сглаживания Калмана, предложенный в [8], состоит в сле-
дующем. Пусть имеются данные наблюдений в моменты времени {i(1), . . . , i(L)}. Обо-
значим ансамбль значений размерности N переменной z в начальный момент време-
ни t0 через Z0 = [z10 , . . . , z

N
0 ]. Ансамбль прогнозов к моменту наблюдений i(1) Z̃fi(1) =[

Z0, Z
f
1 , . . . , Z

f
i(1)

]>. Оценка по данным наблюдений в момент времени i(1) осуществля-
ется по формуле шага анализа фильтра Калмана (2)

Z̃ai(1) = Z̃fi(1) +Ki(1)

[
y
i(1)
0 −Hi(1)

(
Z̃fi(1)

)]
, (3)

Ki(1) = DZ̃fi(1)

(
Hi(1)DZ̃

f
i(1)

)>[
Hi(1)DZ̃

f
i(1)

(
Hi(1)DZ̃

f
i(1)

)>
+Ri(1)

]−1
.

В этих формулах Hi(1) — оператор наблюдений, Ri(1) — соответствующая матрица кова-
риаций ошибок наблюдений. Для вычисления матрицы Ki(1) ковариационная матрица
ошибок прогноза оценивается по ансамблю DZ̃fi(1) (ансамбль отклонений Z̃fi(1) от сред-
него по ансамблю значения, нормированный на

√
N − 1 ) [8].

Важно подчеркнуть, что для анализа по данным y
i(1)
0 к значениям первого прибли-

жения (элементы вектора Z̃fi(1)) добавляется соответствующий элемент вектора DZ̃fi(1),

умноженный на
(
Hi(1)DZ̃

f
i(1)

)>[
Hi(1)DZ̃

f
i(1)

(
Hi(1)DZ̃

f
i(1)

)>
+ Ri(1)

]−1
v
[
y
i(1)
0 − Hi(1)Z̃

f
i(1)

]
.

Последний множитель считается один раз (так как Hi(1) соответствует данным в момент
времени i(1)), а затем проводится вычисление компонентов вектора Z̃ai(1) с использова-

нием ансамбля возмущений DZ̃fi(1), т. е. весовой множитель домножается на компонент

вектораDZ̃fi(1), соответствующий конкретному моменту времени, для оценки компонента
Z̃ai(1), соответствующего этому моменту.

Пусть имеется прогноз к моменту времени i(j): Z̃fi(j) =
[
Zai(j−1), Z

f
i(j−1)+1, . . . , Z

f
i(j)

]>.
Оценка по данным в момент времени i(j) производится по формуле, аналогичной фор-
муле (3). Алгоритм подробно описан в монографии [8].

В работах [3, 4] предложена модификация описанного выше алгоритма, при которой
он становится локальным и более эффективным с вычислительной точки зрения. В рабо-
те [3] предложен локальный эффективный алгоритм реализации ансамблевого фильтра
Калмана (ансамблевый π-алгоритм). Он является аналогом алгоритма LETKF (Local
Ensemble Transform Kalman Filter — вариант ансамблевого фильтра Калмана, очень по-
пулярный в настоящее время) [14]. При этом ансамблевый π-алгоритм предназначен
для реализации стохастического фильтра, в то время как LETKF является детермини-
рованным фильтром [15]. Стохастическим называется ансамблевый фильтр Калмана, в
котором вычисляется ансамбль оценок на шаге анализа (2) по ансамблю прогнозов. В де-
терминированном ансамблевом фильтре Калмана оценка (2) вычисляется для среднего
по ансамблю значения, а затем вычисляется ансамбль возмущений [8,15]. Это различие
может влиять на свойства алгоритма [15,17].

В работе [4] рассматривается обобщение ансамблевого π-алгоритма на случай ансам-
блевого сглаживания. В этом алгоритме шаг анализа вычисляется только для среднего
по выборке значения, элементы ансамбля анализов вычисляются добавлением к средне-
му значению ансамбля возмущений. Кроме того, для вычисления ковариационной мат-
рицы ошибок анализа используется матрица трансформаций, что делает его более эф-
фективным с вычислительной точки зрения (т. к. размерность матрицы трансформаций
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порядка размерности ансамбля). Алгоритм является локальным в том смысле, что оцен-
ка на шаге анализа может проводиться для каждого узла сетки независимо. Это связано
со свойствами матрицы трансформаций. Отметим, что в алгоритме фильтра Калмана в
общем случае оценка осуществляется для всех узлов сетки одновременно, что затрудняет
практическую реализацию алгоритма для задач большой размерности. Более подробно
алгоритм изложен в работе [4].

3. Задача оценки потоков парниковых газов с поверхности
Земли по данным наблюдений о концентрации

Рассмотрим применение описанного в предыдущем пункте алгоритма ансамблевого
сглаживания Калмана в случае, когда производится оценка потоков парниковых газов с
поверхности Земли, а модель переноса и диффузии входит в оператор наблюдений.

Пусть оценка производится для среднего на заданном временном интервале (поряд-
ка недели) значения потока по данным из этого интервала. При работе с реальными
данными, например спутниковыми, для оценки значений в заданный момент времени
используются данные из интервала ±3 часа. Все данные считаются относящимися к это-
му моменту времени. В таком случае для вычисления невязки (данные минус прогноз в
формуле (2)) используется прогноз по модели с предыдущего момента оценки (анализа)
до момента наблюдения.

Если для оценки потоков используются данные из большого временного интерва-
ла, применяется алгоритм ансамблевого сглаживания. Рассмотрим вариант оценки по-
токов в заданном временном интервале и нескольких предыдущих по данным из этих
интервалов. В реальных экспериментах — это несколько временных интервалов (поряд-
ка недели). В пределах каждого интервала оценивается среднее значение потока, при
этом рассматривается n временных интервалов {k(j − 1), k(j)} от момента времени k(0)
до момента времени k(n). Данные берутся из интервала {k(n− 1), k(n)}, и оцениваются
средние значения потоков на интервале {k(n−1), k(n)} и (n−1) предыдущих временных
интервалах, т. е. рассматривается вектор потоков φ̃ =

[
φf1 , . . . , φ

f
n

]
, где φfj — значение

потока на временном интервале {k(j − 1), k(j)}.
В случае, когда оцениваемой переменной является поток, прогнозируемая переменная

z = φ̃ и уравнение шага прогноза имеет вид φ̃fj = φ̃aj−1, где φ̃
a
j−1 — значение анализа

в момент времени k(j − 1), т. е. считается, что в промежутках между шагами анализа
поток не меняется.

Связь данных на интервале {k(n − 1), k(n)} со всем вектором потоков φ̃ осуществ-
ляется через оператор наблюдений Ĥ. Будем считать, что на интервале {k(n− 1), k(n)}
известен вектор данных наблюдений y, состоящий из L подвекторов, соответствующих
моментам наблюдения {i(l), l = 1, . . . , L}, тогда y = Ĥ(φ̃) + ε (ε — случайная ошибка
наблюдений с нулевым средним и заданной ковариационной матрицей).

Данные наблюдений в момент времени i(l) представим в виде

yl0 = Hl(φ̃
l
t) + εl0,

где φ̃lt — “истинное” значение вектора потоков, Hl включает в себя интерполяцию в точку
наблюдений по пространству (оператор H int

l ), а также изменение переменной по времени
(оператор Hf

l , при этом используется модель переноса и диффузии): Hl = H int
l Hf

l , т. е.
оператор наблюдений связывает значения измерений о концентрации и оцениваемую
переменную, которой является поток.
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Будем представлять конечно-разностный аналог уравнения переноса и диффузии в
виде

qfk+1 = Fkq
f
k + φfk , (4)

где k — номер шага по времени модели, Fk — конечно-разностный аналог оператора
переноса и диффузии, qfk — концентрация парникового газа, φfk — поток (векторы раз-
мерности p).

Вычисление значения концентрации в момент времени k(j) по значениям в момент
времени k(j − 1) формально можно записать как

qfk(j) =

( m∏
i=1

Fi

)
qfk(j−1) +

m∑
j1=1

[ m∏
l=j1+1

Fk(j)+(j1+1)−l

]
φfj ,

где qfk(j−1), q
f
k(j) — значения концентрации в моменты времени k(j−1), k(j) соответствен-

но, m — количество временных шагов модели на временном интервале между шагами
анализа {k(j − 1), k(j)}, при m > i(j)

∏k(j)
l=m Fl = I.

Или в более компактном виде

qfk(j) = F̃0,jq
f
k(j−1) + F̃1,jφ

f
j , (5)

где F̃0,j =
∏m
i=1 Fi, F̃1,j =

∑m
j1=1

∏m
l=j1+1 Fk(j)+(j1+1)−l.

Рассмотрим алгоритм ансамблевого сглаживания Калмана, описанный в предыду-
щем пункте. Пусть известны на шаге прогноза значения потоков φ̃fk(n) = [φf1 , . . . , φ

f
n] для

n временных интервалов. Будем оценивать вектор φ̃fi(n) по данным в моменты времени
из интервала {k(n− 1), k(n)}.

Оператор наблюдений, связывающий данные и прогноз, включает в себя прогноз по
модели переноса и диффузии от момента предыдущей оценки до начала следующего
временного интервала и прогноз внутри интервала до времени наблюдения. Исходя из
общей формулы (5), к моменту времени k(n− 1)

qfk(n−1) = F̃ qfk(0) + [H1, . . . ,Hn−1]
[
φfi(1), . . . , φ

f
i(n−1)

]>
,

где F̃ — оператор при значении концентрации в момент времени k(0), [H1, . . . ,Hn−1] —
операторы при компонентах вектора потоков [φf1 , . . . , φ

f
n−1] (матрицы размерности p).

Тогда к моменту времени наблюдения i(l)

qfi(l) = F̃0,lq
f
k(n−1) + F̃1,lφn = F̃0,lF̃ q

f
k(0) + [F̃0,lH1, . . . , F̃0,lHn−1, F̃1,lHn]

[
φf1 , . . . , φ

f
n−1, φ

f
n

]>
,

где Hn = I (единичная матрица), F̃0,l — оператор при значении концентрации в момент
времени k(n− 1), F̃1,l — оператор при n-й компоненте вектора потоков φn.

Формально мы можем использовать формулу (3). Отметим, что эта формула записана
для ансамбля анализов. Для среднего по ансамблю значения формула будет выглядеть
аналогично. Если вычисляется оценка вектора φ̃ak(n) по данным в момент времени i(l),
то оператор наблюдений можно представить в виде

Ĥl(φ̃
f
k(n)) = H int

l

[
F̃0,lH1, . . . , F̃0,lHn−1, F̃1,lHn

]
φ̃fk(n) + F̃0,lF̃ q

f
k(0), (6)

или
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Ĥl(φ̃
f
k(n)) = H̃lφ̃

f
k(n) +H0q

f
k(0), (7)

где H̃l = H int
l [F̃0,lH1, . . . , F̃0,lHn−1, F̃1,lHn], H0 = F̃0,lF̃ . Если на интервале {k(n−1), k(n)}

есть L векторов данных наблюдений, то оператор наблюдений Ĥ будет иметь вид

Ĥ = [Ĥ1, . . . , ĤL]>.

4. Выполнение условия наблюдаемости в алгоритме оценки
потоков парниковых газов по данным о концентрации

В процедуре усвоения данных на результат в заданный момент времени влияют зна-
чения, полученные в предыдущие моменты времени. Важным условием получения оп-
тимальной оценки является устойчивость алгоритма по времени. В [7] отмечается, что
устойчивость алгоритма фильтра Калмана зависит от выполнения так называемого усло-
вия наблюдаемости. Ансамблевый фильтр Калмана является вариантом приближенного
решения задачи оптимальной фильтрации. Как отмечено в [8], оценка, полученная в
алгоритме ансамблевого сглаживания Калмана в заданный момент времени по данным
наблюдений в этот же момент времени, совпадает с оценкой ансамблевого фильтра Кал-
мана. Рассмотрим выполнение условия наблюдаемости в случае применения алгоритма
ансамблевого сглаживания Калмана к задаче оценки потоков с поверхности Земли пар-
никовых газов.

Пусть требуется оценить вектор φ̃ = [φ1, . . . , φn] по данным наблюдений y0 в за-
данный момент времени. Данные наблюдений представим в виде y0 = H̃φ̃ + ε0, где
ε0 — случайная ошибка наблюдений с нулевым математическим ожиданием и ковари-
ационной матрицей R. Тогда линейная несмещенная оценка с минимальной дисперсией
(гауссовско-марковская) имеет вид φ̃ = (H̃>R−1H̃)−1H̃>R−1y0. Для существования этой
оценки матрица M = H̃>R−1H̃ должна быть невырожденной [1, 13]. Это условие назы-
вается условием наблюдаемости, а матрица M — матрицей информации [1,13].

В случае, если y0 = H̃φ̃ + (H0q0 + ε0), задачу оценки φ̃ можно представить в виде
y0 −H0q0 = H̃φ̃ + ε0. Для получения оценки также требуется невырожденность матри-
цы M .

Применение алгоритма ансамблевого сглаживания Калмана эквивалентно поиску
вектора φ̃ = [φ1, . . . , φn], доставляющего минимум функционалу [8, 13]

J =
1

2

(
φ̃− φ̃0

)>
P−10 (φ̃− φ̃0) +

1

2

[
y0 − Ĥ(φ̃)

]>
R−1

[
y0 − Ĥ(φ̃)

]
,

φ̃0 — априорное значение оцениваемой величины.
Если P−10 6= 0, т. е. известна априорная информация φ̃0, то оценка будет иметь вид

φ̃ =
(
P−10 +M

)−1(
M>R−1y0 + P−1b φ̃0

)
,

где M = H̃>R−1H̃. Если предположить, что P−10 = 0, то для решения задачи требуется,
чтобы выполнялось условие M > 0 [1, 13]. Это условие является частным случаем усло-
вия наблюдаемости [1,13]. В общем случае рассматривается минимум функционала при
выполнении условия, такого что по времени переменная удовлетворяет прогностическо-
му уравнению. В нашем частном случае предполагается, что прогностический оператор
равен единичному.



Е.Г. Климова 295

Как видно из приведенной выше формулы, наличие априорной информации может
улучшить обусловленность матрицы (P−10 +M).

Рассмотрим задачу оценки потоков парниковых газов на n временных интервалах по
данным в момент времени i(l) из интервала {k(n−1), k(n)}. Как показано в предыдущем
пункте, при этом Ĥl(φ̃) = H̃lφ̃ + H0q0 (индексы f опущены). Тогда на точность оценки
влияют свойства оператораMl = H̃>l R

−1
l H̃l. Для удобства изложения далее индексы “f ”

опущены. Матрица Ml имеет вид

Ml =


H̃1,T
l BlH̃

1
l · · · H̃1,T

l BlH̃
n−1
l H̃1,>

l BlH̃
n
l

H̃2,T
l BlH̃

1
l · · · H̃2,T

l BlH̃
n−1
l H̃2,T

l BlH̃
n
l

· · · · · · · · · · · ·
H̃n,T
l BlH̃

1
l · · · H̃n,T

l BlH̃
n−1
l H̃n,T

l BlH̃
n
l

 .

В этой формулеBl = H int,>R−1l H int, H̃ i
l = F̃0,lHi для i = 1, . . . , n−1, H̃n = F̃1,lHn,Hn = I.

Элементы матрицы Ml получаются после подстановки в формулу матриц H̃l из (7).
Матрица Ml состоит из блоков размерности (p × p), оператор H int имеет размерность
(p× d).

Рассмотрим два последних столбца матрицы Ml, обозначим их Sn−1 и Sn. Элемен-
ты Sn−1 получаются путем умножения элементов Sn справа на C = F̃−11,l F̃0,lHn−1. Для
осуществления этой операции требуется невырожденность оператора F̃1,l. Отметим, что
вид этого оператора аналогичен оператору F̃1,j из формулы (5). Если существует опе-
ратор, обратный к F̃1,l, можно подобрать ненулевой собственный вектор матрицы Ml,
соответствующий собственному числу, равному 0 [2].

Рассмотрим блочный вектор c = [0, . . . , 0, g,−λg]> (первые (n−2) значения представ-
ляют собой нулевые подвекторы), где g — собственный вектор матрицы C . Тогда вектор
c будет собственным вектором матрицы Ml, соответствующим нулевому собственному
значению. Действительно, при умножении j-й строки блоков матрицы Ml на вектор c
получим Sjn−1g−λS

j
ng = SjnCg−λSjng = 0 (Sjn−1, S

j
n — j-е элементы столбцов Sn−1 и Sn),

т. е. матрица Ml вырождена.
Из вышесказанного следует, что в случае, если оцениваемая величина φ является пе-

ременной на заданном временном интервале, матрицаMl будет вырождена, т. е. наруша-
ется условие наблюдаемости [1,13]. В свою очередь, это может привести к неустойчивости
процедуры оценки [7].

Если производится оценка по всем данным y = [y10 , . . . , y
L
0 ] и соответствующая мат-

рица R блочно-диагональная, то M = diag
{
H̃>1 R

−1
l H̃1, . . . , H̃

>
LR
−1
l H̃L

}
, где H̃l — опе-

ратор наблюдений, Rl — блок матрицы R, соответствующий l-у вектору наблюдений.
Аналогично предыдущим выкладкам можно показать, что данная матрица также будет
вырождена в случае, если оцениваемая величина φ является переменной на заданном
временном интервале.

Таким образом, при использовании в рассматриваемой задаче оценки потоков боль-
ших окон усвоения, в пределах которых оценивается поток на нескольких временных
интервалах, возникает проблема устойчивости алгоритма оценивания. Соответственно,
более правильным является оценивание на временных интервалах, в пределах которых
вычисляется среднее значение потока.
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5. Численные эксперименты
с одномерной моделью переноса и диффузии

Численные эксперименты проводились с 1-мерной моделью переноса и диффузии
пассивной примеси. Рассматривалось следующее уравнение:

∂q̂

∂t
+ u

∂q̂

∂x
= k2

∂2q̂

∂x2
+ φ̂(x, t),

где q̂ — прогнозируемая переменная, φ̂(x, t) — неизвестный источник пассивной приме-
си. Для решения уравнения применялся полулагранжев метод, при этом бралась неявная
схема по времени и схема центральных разностей по пространству. Для решения конечно-
разностного аналога уравнения диффузии использовался метод циклической прогонки.
Уравнение решалось на отрезке (0, 1), при этом рассматривались периодические гра-
ничные условия. Задавалось 240 узлов сетки, u = 1, k2 = 0.6 × 10−3. Рассматривался
конечно-разностный аналог этого уравнения в виде (4).

Были проведены следующие численные эксперименты с модельными данными. В на-
чальный момент времени истинное значение концентрации задавалось в виде дискрет-
ного аналога функции sin(x), начальное значение эмиссии бралось в виде дискретного
аналога функции φ0(x), где

φ0(x) =

{
0.1, 0.375 ≤ x ≤ 0.625,

0, 0.375 > x ∧ x > 0.625.
(8)

Заданные начальные значения q0, φ0 считались “истинными”. Для получения началь-
ных данных для прогноза по модели qd0 , φd0 к “истинным” начальным данным добавля-
лось возмущение qd0 = q>0 + δ, δ ∼ N(0, s0), φd0 = φ>0 + δφ, δφ ∼ N(0, dg0). Через N(a, b)
обозначена случайная величина, распределенная по нормальному закону с математиче-
ским ожиданием, равным a, и дисперсией, равной b. После задания начальных значений
“истинных” концентрации и потока и начальных значений концентрации и потока для
прогноза был проведен расчет на 100 шагов по времени. Полученное значение концентра-
ции бралось в качестве начального значения для проведения экспериментов по усвоению
данных.

Для организации численных экспериментов задавались: ансамбль начальных полей
qn0 = qd0 + δn, δn ∼ N(0, s0), n = 1, . . . , Nens; φn0 = φd0 + δnφ , δ

n
φ ∼ N(0, dφ0), n = 1, . . . , Nens;

наблюдения y0 = q>0 + δ0; δ0 = N(0, ε0); ансамбль наблюдений с возмущениями yn0 =
y0 + δn0 , δ0 ∼ N(0, ε0), n = 1, . . . , Nens. Через Nens обозначено число элементов ансамбля.
Данные наблюдений считались известными во всей области интегрирования. Во всех
численных экспериментах рассматривался вариант R = ε20I.

При проведении численных экспериментов считалось, что данные наблюдений име-
ются во всех узлах сетки рассматриваемой области.

Были проведены численные эксперименты с модельными данными для различных
окон усвоения. Для оценки потока использовался метод ансамблевого сглаживания Кал-
мана, описанный в предыдущих пунктах. В экспериментах “истинное” значение потока
задавалось зависящим от времени. В течение всего временного интервала каждые 20 ша-
гов по времени “истинное” значение (8) умножалось на множитель α = (1 + 1.5× 20/Nt),
где Nt = 500 — общее количество временных шагов.

Рассматривались следующие значения параметров: s0 = ε0 = 0.01, dφ0 = 0.01,
Nens = 100. Брались различные окна усвоения, т. е. оценка проводилась по данным из
временного интервала в dt шагов по времени, dt = {1, 10, 20, 30, 40}.
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Было проведено две серии численных экспериментов. В первой серии начальное зна-
чение потока считалось неизвестным и задавалось равным нулю. Во второй серии к
истинному значению потока добавлялось возмущение, и полученное значение бралось
в качестве начального значения потока. Точность оценки определялась сравнением с
“истинным” значением и вычислением среднеквадратической ошибки. Результаты этих
экспериментов приведены на рисунках 1 и 2 (первая серия экспериментов), рис. 3 и рис. 4
(вторая серия экспериментов). На этих рисунках приведено поведение по времени сред-
неквадратической ошибки оценки потока при различных значениях окна усвоения для
временного интервала 160 шагов по времени.

Рис. 1. Среднеквадратическая ошибка при разных значениях окна усвоения dt = {1, 10, 20}.
Начальное значение потока равно нулю

Рис. 2. Среднеквадратическая ошибка при разных значениях окна усвоения dt = {20, 30, 40}.
Начальное значение потока равно нулю
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Рис. 3. Среднеквадратическая ошибка при разных значениях окна усвоения dt = {1, 10, 20}.
Начальное значение потока задается отличным от нуля

Рис. 4. Среднеквадратическая ошибка при разных значениях окна усвоения dt = {20, 30, 40}.
Начальное значение потока задается отличным от нуля

Как видно из рисунков, поведение среднеквадратической ошибки существенно зави-
сит от того, известна ли нам информация о начальных значениях потоков. При отсут-
ствии такой информации в первые 40–50 шагов по времени имеет место сильный рост
ошибки, затем процесс становится более стабильным. Что касается влияния окна усвое-
ния, то при dt > 20 в среднем величина ошибки больше и поведение менее стабильное,
чем при dt ≤ 20. При этом использование алгоритма сглаживания (dt > 1) позволяет по-
лучить более точную оценку в случае dt ≤ 20. Отметим, что поток задается меняющимся
каждые 20 шагов по времени.

Таким образом, как видно из рисунков, предпочтительнее использовать окно усвое-
ния, в пределах которого значение потока не меняется.
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6. Заключение

Задача оценки потоков парниковых газов с поверхности Земли в настоящее время
решается с помощью систем усвоения данных. При этом используются модели распро-
странения примеси в атмосфере и метеорологические поля скорости ветра, температуры
и т. д. для моделирования переноса и диффузии парниковых газов. В качестве матема-
тической постановки задачи одним из популярных алгоритмов является ансамблевый
фильтр Калмана. При больших окнах усвоения рассматривается алгоритм ансамблевого
сглаживания Калмана.

В статье рассматривается подход к задаче, в котором потоки являются оценивае-
мой переменной, а модель переноса и диффузии входит в оператор наблюдений. При
этом используется алгоритм ансамблевого сглаживания Калмана и проводится анализ
свойств наблюдаемости данного алгоритма. Показано, что при использовании окна усво-
ения, в пределах которого производится оценка значений потоков на нескольких времен-
ных интервалах, нарушается свойство наблюдаемости и алгоритм может становиться
неустойчивым. Этот вывод подтверждается модельными численными экспериментами с
одномерной моделью переноса и диффузии пассивной примеси.
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